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Abstract. A strong El Niño developed in early 2015. Measurements from a research cruise on the RV 

Sonne in October 2015 near the equator east of the Galapagos Islands and off the shelf of Peru, are used 10 

to investigate changes related to El Niño in the upper ocean in comparison with earlier cruises in this 

region. At the equator at 85°30’W, a clear temperature increase leading to lower densities in the upper 

350 m had developed in October 2015, despite a concurrent salinity increase from 40 to 350 m. Lower 

nutrient concentrations were also present in the upper 200 m, and higher oxygen concentrations were 

observed between 40 and 130 m. In the equatorial current field, the Equatorial Undercurrent (EUC) east 15 

of the Galapagos Islands almost disappeared in October 2015, with a transport of only 0.02 Sv in the 

equatorial channel between 1°S and 1°N, and a weak current band of 0.78 Sv located between 1°S and 

2°30’S. Such near-disappearances of the EUC in the eastern Pacific seem to occur only during strong El 

Niño events. Off the Peruvian shelf at ~9°S, characteristics of upwelling were different as warm, saline 

and oxygen rich water was upwelled. At ~12°S, ~14°S and ~16°S, the upwelling of cold, low salinity 20 

and oxygen-poor water was still active at the easternmost stations of these three sections , while further 

west on these sections a transition to El Niño conditions appeared. Although since early 2015 the El 

Niño was strong, the October measurements in the eastern tropical Pacific only showed developing El 

Niño water mass distributions. In particular the oxygen distribution indicated the ongoing transition 

from ‘typical’ to El Niño conditions progressing southward along the Peruvian shelf.  25 
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1 Introduction 

The El Niño-Southern Oscillation (ENSO) cycle of alternating warm El Niño and cold La Niña events 

is the dominant year-to year climate signal on earth. ENSO originates in the tropical Pacific through 

interaction between the ocean and the atmosphere, but its environmental and socioeconomic impacts are 

felt worldwide (McPhaden et al., 2006). In the eastern tropical South Pacific El Niño events strongly 5 

influence the commercial fishery and weather and impact on the economics and living conditions. 

 The strongest El Niño events since 1950 were observed in the years 1982/83 and 1997/98, the latter 

also referred to as ‘the climate event of the twentieth century’ (Changnon, 2000). Climate models  

suggest a doubling in the occurrences of extreme El Niño events in the future in response to greenhouse 

warming (Cai et al., 2015). In early 2015, an El Niño with strength similar to the 1997/98 El Niño 10 

developed. Sea surface temperature anomalies were strongest along the equator and the tropical North 

Pacific, while the development of a temperature anomaly in the eastern tropical Pacific off Peru was, 

according to NOAA’s ‘ENSO diagnostic discussion archive’, strong in April and May, then weakened 

and intensified again August to October 2015. 

El Niño dynamics modulate near-surface temperature, salinity and density, as well as the mixed layer 15 

depth, oxycline depth, and the vertical extent of the low oxygen layer (e.g. Fuenzalida et al., 2009). In 

the eastern Pacific, ENSO variability is most pronounced along the equator and the coasts of Ecuador 

and Peru (Wang and Fiedler, 2006) but also off Chile (e.g. Ulloa et al., 2001). Weaker trade winds 

during El Niño conditions result in a weaker equatorial circulation with a generally observed weakening 

or disappearance of the Equatorial Undercurrent (EUC) (Kessler and McPhaden, 1995; Johnson et al., 20 

2002). During the height of an El Niño event, the EUC episodically disappears in the western and 

central Pacific and partially reverse (Firing et al., 1983; McPhaden et al., 1990; Johnson et al., 2000; 

Izumo, 2005), while in the eastern Pacific, episodic disappearance of the EUC seems rare (Halpern, 

1987; McPhaden and Hayes, 1990; Seidel and Giese, 1999; Johnson et al., 2000; Izumo, 2005). El Niño 

events lead to a pronounced eastward extension of the west Pacific warm pool, and to a development of 25 

atmospheric convection, and hence a rainfall increase, in the usually cold and dry eastern Pacific (Cai et 

al., 2015).  
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Past El Niño events have been observed to have different local occurrences and parameter distributions 

in recent years. There has been evidence of an increased occurrence of El Niño events in the central 

Pacific called Central Pacific (CP) El Niño or ‘El Niño Modoki’ (e.g. Ashok and Yamagata. 2009; 

Dewitte et al., 2012), different from the cold tongue, or Eastern Pacific (EP), El Niño events which 

develop in the eastern Pacific. For a typical CP El Niño, the largest SST increase occurs at the equator 5 

between 130°W and 160°E while cooling appears off the shelf of Peru. For the EP El Niño the SST 

increases at the equator east of 180°W to South America and southward along the South American coast 

to Chile (e.g. Dewitte et al., 2012). 

In the Eastern Tropical South Pacific (ETSP), a subsurface low-oxygen zone exists with a pronounced 

minimum in oxygen at ~100 to 500 m depth and is referred to as an oxygen minimum zone (OMZ) or 10 

oxygen deficient zone (ODZ). This ODZ is suboxic (oxygen concentrations below ~4.5-10.0 mol kg
-1

; 

e.g. Karstensen et al., 2008; Stramma et al., 2008). In suboxic regions nitrate and nitrite become 

involved in respiration processes such as denitrification or anammox (e.g. Kalvelage et al., 2013). In the 

eastern equatorial Pacific the oxygen content has been shown to increase during El Niño events in the 

upper 300 to 350 m in the equatorial channel (e. g. Fuenzalida et al., 2009; Czeschel et al., 2012), as 15 

well as off the Peruvian coast (e.g. Helly and Levin, 2004). Coastal winds during El Niño events are 

usually upwelling-favourable, and thus could not produce the observed warming (Kessler, 2006). 

Coastal warming during El Niño is caused by downwelling Kelvin waves generated by mid-Pacific 

westerly wind anomalies that deepen the eastern thermocline, nutricline and oxycline and allow 

warming to occur, independent of the local winds (Kessler, 2006). Consequently, during El Niño events 20 

the upwelled water off Peru is warmer, more oxygen replete and less nutrient rich. El Niño, in general, 

results in a depressed thermocline and thus reduced rates of macronutrient supply and primary 

production (Pennington et al., 2006) off Peru which also contributes to an oxygen increase on the shelf 

(Gutierrez et al., 2008). In case of strong El Niño events when the oxygen concentration above the shelf 

bottom increases from about zero to >40 mol kg
-1 

the sediments respond with tremendous changes of 25 

ecological state (Gutiérrez et al., 2008). At a time-series station at ~12°S, 77°30’W off Lima from 1996 

to 2010 for temperature, salinity, density, oxygen and nutrients, the influence of El Niño - especially the 
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strong 1997/1998 El Niño - is clearly visible with higher temperature, salinity and oxygen, and lower 

density, nitrite, silicate and phosphate (Graco et al., 2016).  

Here we use measurements from an RV Sonne research cruise in October 2015 (Fig. 1) from a section 

across the equator east of the Galapagos Islands and from 4 sections off the Peruvian shelf, to 

investigate changes in the upper ocean related to the strong 2015 El Niño in comparison with earlier 5 

cruises in this region. The aim is to unravel the progress of the transition to El Niño conditions in the 

eastern Pacific several months after the start of the El Niño. 

 

2 Data sets and methods 

In October 2015 an RV Sonne transit cruise (So243; 5 to 22 October 2015) from Guayaquil, Ecuador to 10 

Antofagasta, Chile was carried out (Fig. 1) (short cruise report available at: https://www.ldf.uni-

hamburg.de/sonne/wochenberichte/wochenberichte-sonne/so242-243/so243-scr.pdf), which allowed us 

to investigate possible El Niño signals at the equator near 85°30’W and off the shelf of Peru at sections 

perpendicular to the shelf at ~9°S, ~12°S, ~14°S and ~16°S.  

A Seabird CTD system with a GO rosette with 24 x 10 L water bottles was used for water profiling and 15 

discrete water sampling. The CTD system was used with double sensors for temperature, conductivity 

(salinity) and oxygen. The dual CTD temperature sensors calibrated by the manufacturer are compared 

during the cruise that the deviation is less than 0.002°C and the accuracy of the temperature 

measurements is estimated to be 0.002°C or better. The CTD salinity calibration with salinometer 

salinity samples resulted in a r.m.s. uncertainty of 0.0011. The CTD oxygen sensors were calibrated 20 

with oxygen measurements obtained from discrete samples from the rosette applying the classical 

Winkler titration method, using a non-electronic titration stand (Winkler, 1888; Hansen, 1999). The 

r.m.s. uncertainty of the CTD oxygen sensor calibration of cruise So243 was determined as ±0.8 mol 

kg
-1

. Oxygen concentrations of less than 3 mol kg
-1

 are not resolved by Winkler titration and values 

below 3 mol kg
-1

 were used as 0 mol kg
-1

 for the sensor calibration as the H2S smell of the water of 25 

related rosette bottles indicated 0 mol kg
-1

. 
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Nutrients were measured on-board with a QuAAtro auto-analyzer (Seal Analytical). Nitrite (NO2
-
), 

nitrate (NO3
-
), phosphate (PO4

3-
) and silicid acid (Si(OH)4 referred to silicate hereinafter) were 

measured with an analytical precision of 5.5%, 1.3%, 0.4% and 0.5% respectively. The N:P ratio used 

here was computed as N:P= (NO3
-
 + NO2

-
): PO4

3-
 . 

Two vessel mounted Acoustic Doppler Current Profilers (ADCP) were used to record ocean velocities 5 

in October 2015: an RDI OceanSurveyor 75 kHz ADCP with 8 m bin spacing provided the velocity 

distribution to ~650 m depth, while a 38 kHz ADCP with 32 m bin spacing provided velocity profiles 

down to ~1300 m depth. During the entire cruise the navigation data was of high quality. Due to the 

interest in the upper ocean the higher resolution 75 kHz ADCP is used here. 

Earlier crossings of the equator (Table 1 and Fig. 1) were accomplished in March/April 1993 on RV 10 

Knorr (Tsuchiya and Talley, 1998), in February 2009 on RV Meteor (Czeschel et al., 2011) and in 

November 2012 on RV Meteor (Stramma et al., 2013) at 85°50’W. Sections across the Peruvian shelf 

between 9°S and 16°S were made during RV Meteor cruise M91 in December 2012 (Czeschel et al., 

2015; Bange, 2013). Measurement accuracies during these cruises were similar as in October 2015 and 

the details are described in the related literature. In contrast to October 2015, the CTD stations in 1993, 15 

2009 and 2012 were not carried out at 2°30’S, 85°30’W but at 2°20’S and 2°40’S at 85°50’W and these 

two stations were combined for a mean profile at 2°30’S. The sections across the equator and off the 

Peruvian shelf were not at identical geographical coordinates, but we expect that the offset is small 

compared to the differences measured. 

Different indices exist to describe the El Niño status and will be used here to determine the El Niño 20 

status at the time of the measurements. The NINO 1+2 index is the temperature difference compared to 

the 1982-2005 climatological cycle in the eastern tropical Pacific (0-10°S, 80-90°W), and is close to the 

region of the measurements used here. The Oceanic Niño Index (ONI) has become a standard for 

identifying El Niño and La Niña events. It is a running 3-month mean sea surface temperature (SST) 

anomaly for the Niño 3.4 region (i.e., 5°N-5°S, 120-170°W) related to the 1981-2010 base period. 25 

Events are defined as 5 consecutive overlapping 3-month periods at or above the 0.5°C anomaly for 

warm El Niño events, and at or below -0.5°C anomaly for cold La Niña events. 
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3 The El Niño in 2015 

The SST anomaly for 27 September 2015 to 24 October 2015 was strong along the equator to the South 

American continent and southward off the Peruvian coast (Fig. 2). The NINO 1+2 index was high at 

+2.52 in October 2015 (Table 1), hence the 2015 El Niño is a clear EP El Niño. The SST distribution in 

fall 2015shows a strong and prominent SST increase  along Central America and in the eastern North 5 

Pacific at 20-25°N that differs from the typical EP El Niño distribution. This feature, also known as 

‘The Blob’, is an unrelated positive temperature anomaly which developed in 2013 in the Gulf of 

Alaska and progressed along the North American continent to the 20-25°N region in mid-2015 

(Kintisch, 2015). 

The only El Niño events since 1950 with an October maximum ONI of more than 1.7, or an overall 10 

maximum of 2.0 or larger, are the 1972/73, 1982/83 and the 1997/98 El Niños. In early 2015 the ONI 

index was even larger than the ONI index of these 3 large El Niño events, while in October 2015 it was 

at a similar strength as the three earlier strong El Niños (Fig. 3). Accordingly, the 2015 El Niño has to 

be listed as one of the 4 strongest El Niños since 1950. 

 15 

4 The equatorial region east of the Galapagos Islands  

 

4.1 The hydrographic variability 

4.1.1 Background information 

The hydrographic distribution in the eastern equatorial Pacific is influenced by a seasonal cycle as well 20 

as El Niño related cycles. At 110°W in the eastern Pacific west of the Galapagos Islands, relationships 

between zonal velocity, temperature, and salinity in the EUC are all evident in the seasonal cycle. The 

EUC peaks in strength around April/May, when it also surfaces (Johnson et al., 2002). The thermocline 

is extremely sharp and shallow. The meridional equatorial spreading of the thermocline associated with 

the EUC zonal velocity strength is noticeably stronger during April than in October, when in April 25 

equatorial SST is lowest and the South Equatorial Current (SEC) is strongest (Johnson et al., 2002). The 

laterally isolated salinity maximum within the thermocline just south of the equator is strongest when 
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the EUC velocity is at its greatest (Johnson et al., 2002), and this is also visible in the sea surface 

salinity (Supplement Fig. S1) from the MIMOC climatology (Schmidtko et al., 2013). Between austral 

fall and winter the minimal oxygen concentration of the ODZ core in the eastern South Pacific at the 

equator changes  from 8 to 5 µmol O2 L
-1

 (Paulmier and Ruiz-Pino, 2009).  

Weaker trade winds during El Niño conditions result in a weaker equatorial circulation while stronger 5 

trade winds during La Niña conditions lead to a stronger equatorial circulation (Johnson et al., 2002). 

During La Niña, the current system at 110°W is spun upwards when compared to El Niño. The cold 

tongue located in the eastern tropical Pacific is quite weak during El Niño. Surface salinities are 

generally fresher during El Niño than during La Niña, a feature which is at least partially a product of 

increased local precipitation associated with the eastward migration of warm sea surface temperatures 10 

and convection, and partly a result of the reduced trade winds (Johnson et al., 2002). For the 1996-1998 

El Niño-La Niña cycle, a fresh mixed layer in the eastern equatorial Pacific and higher  salinity within 

the pycnocline (defined by the 20°C isotherm) during the El Niño was observed. The higher salinity was 

caused by the larger equatorward spreading of the subsurface salinity maximum of the South Pacific 

Tropical Water (SPTW) due to anomalous eastward flow south of the equator with the relaxation of the 15 

South Equatorial Current and the weaker EUC at the equator (Johnson et al., 2000). Hence, during El 

Niño events higher salinity should be expected near the pycnocline. 

 

4.1.2 Observations for the 2015 El Niño 

SST anomalies for the period 27 September to 24 October 2015 showed an SST anomaly of 2.0-2.5°C 20 

at 85°30’W at and south of the equator, and of 1.5-2.0°C just north of the equator (Fig. 2). In the upper 

100 m of the water column, oxygen, temperature, salinity and density profiles at the equator on the 

~85°30’W meridian (Fig. 4) reveal differences between March 1993, February 2009, November 2012 

and the El Niño of October 2015. It is important to note that 1993 was not defined as an official El Niño 

year as only 4, instead of 5, consecutive overlapping 3-month periods were at or above the 0.5°C 25 

anomaly. However, in March and April 1993 the NINO 1+2 index reached +0.65 and +0.97 (Table 1) 

and had El Niño like SST anomalies. To this end, we will refer to March 1993 as ‘El Niño-like’ 

hereinafter. 
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In February 2009 the ONI index was for the fourth and last month -0.5 or less, therefore conditions 

were similar to a weak La Niña event and we will refer to it as ‘La Niña-like’ hereinafter. In February 

2009, in the upper 100 m at the equator at ~85°30’W the oxygen and temperature were lowest and the 

density highest compared to the other 3 periods (Fig. 4), representing an expected La Niña parameter 

distribution. The hydrographic profiles in the neutral ONI period in November 2012 mainly lay between 5 

the El Niño profiles for March 1993 and October 2015, and the La Niña-like profiles in February 2009. 

The November 2012 were somewhat closer to the February 2009 profiles. The El Niño profiles in 

October 2015 and the El Niño-like profiles in March 1993 showed slightly higher oxygen 

concentrations and temperature, and lower density in the upper 100 m in comparison to November 2012 

and February 2009 (Fig. 4). In October 2015 the salinity compared to the 3 other years was lowest in a 10 

deep thermocline in the upper 40 m as expected for the surface layer during an El Niño event because of 

the increased precipitation and reduced equatorial upwelling. In contrast, a weak salinity maximum was 

located below 40 m as expected near the pycnocline as saline warm water progresses from the western 

Pacific eastward during El Niño. In October 2015 the higher temperature, higher salinity, and lower 

density reached down to ~350 m, while the oxygen profile below 130 m merges with the profiles from 15 

the other measurement periods (Fig. 5).   

The strong thermocline/pycnocline of the eastern tropical Pacific is also a strong nutricline. A consistent 

general pattern is that nitrate and phosphate increase with depth to ~500 m with a slight maximum at 

intermediate depths, while silicate continues to increase with depth (Fiedler and Talley, 2006). The 

vertical distribution of nutrients at the equator at ~85°30’W shows lower nitrate, phosphate and silicate 20 

concentrations in the upper 200 m in October 2015 as well as in the El Niño-like year 1993 in 

comparison to the 2009 and 2012 concentrations (Fig. 6). A primary nitrite maximum (PNM) usually 

occurs in the lower euphotic zone,  which results from nitrite excretion by phytoplankton and/or a 

decoupling of ammonia and nitrite oxidation (i.e. higher rates of ammonia vs. nitrite oxidation; Fiedler 

and Talley, 2006; Lomas and Lipschultz 2006). At the equator in the eastern Pacific nitrite is close to 25 

undetectable below 100 m depth (Fig. 6). In 1993 and 2015, however, the PNM was located ~25 m 

deeper and maximum nitrite concentrations were considerably higher. This reflects the deeper 

pycnocline in El Niño years. The enhanced nitrite concentrations seem to be caused by the northward 
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transport of high nitrite concentration found in the PNM of the SPTW (e.g. Tsuchiya and Talley 1998 

and as observed during cruise M90) in combination with a reduced photo inhibition of ammonia 

oxidation at deeper water depths (see e.g. Ward, 2008 ; Grundle et al., 2013). Furthermore, the deep 

thermocline and pycnocline in October 2015 indicate that equatorial upwelling was reduced. According 

to the upper ocean hydrographic and nutrient distribution in October 2015, a clear El Niño situation had 5 

adjusted at the equator at ~85°30’W. 

At 1°N, ~85°30W in the 50-300 m layer, salinity and temperature were higher and the density lower in 

October 2015 than at the 3 other times, however, the oxygen was not significantly higher during this 

time (Supplement Fig. S2). At 2°30’S, ~85°30’W in the 50 to 250 m layer, the salinity, temperature and 

oxygen were lower and the density higher in the La Niña-like month of February 2009 than at the other 10 

three years. The temperature at 2°30’S in the El Niño of October 2015 was higher in the 50 to 250 m 

depth range than in the other 3 years and salinity showed slightly higher values at ~50 to 100 m and 150 

to 250 m depth. The oxygen concentration was slightly higher only in the upper ~60 m for both El Niño 

events in March 1993 and in October 2015 compared to 2009 and 2012 (Supplement Fig. S3). However, 

earlier selected measurements at 4°S, 85°W showed a clear oxygen increase to a depth of ~350 m depth 15 

for the El Niño years 1982/83 in comparison to non El Niño measurements (Czeschel et al., 2012), 

hence we conclude that El Niño influence on the water mass distribution was still weak at 2°30’S in 

October 2015 and only developing in the upper ocean. 

 

4.2 Circulation observations 20 

4.2.1 Background information 

The EUC, which carries oxygen rich water towards the ODZs of the eastern Pacific, has a seasonal 

cycle, with a transport peak in the eastern Pacific at 95°W in April/May of ~30 Sv and a minimum in 

October/November of little less than 15 Sv (Johnson et al., 2002; their Figure 17). The Galapagos 

Islands form a barrier to the EUC which causes it to bifurcate into a shallow/southern core centered at 25 

~50 m depth (EUCs) and a deeper/northern core centered at ~150 m depth (EUCd) (Karnauskas et al., 

2010). We are not aware of any El Niño related EUC variability observations east of the Galapagos 

Islands. Results from an ocean model for 110°W show an increase in the surface eastward EUC current 
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during austral fall, while during other seasons the EUC is at deeper depth (Cravatte et al., 2007). ROMS 

(Regional Ocean Model System) model results (Montes et al., 2011) for El Niño periods east of the 

Galapagos Islands show the EUC flowing at shallower depth associated with lighter water. The model 

runs display a weakening and southward shift of the EUC branches east of the Galapagos Islands with 

weaker transports which are variable, depending on the boundary conditions provided by different 5 

ocean general circulation models (OGCMs). The modelled ROMS EUC transports at 86°W between 

2°N and 2°S at 200 m depth for February/March and October/November depending on the OGCMs are 

~10-12 Sv and ~7-8 Sv for OCCAM, ~6-8 Sv and 4-5Sv for SODA, and ~5.5 Sv and 7-8 SV for ORCA 

(Echevin et al., 2011). 

During the 1997/98 El Niño shipboard current measurements showed that the EUC virtually 10 

disappeared across much of the Pacific basin, associated with the weakening or even the reversal of the 

equatorial pressure gradient within the pycnocline (Johnson et al., 2000). For the 1982-1983 El Niño 

there seems to be a strong time delay for the EUC weakening. In September 1982 at 159°W, the EUC 

reversed (Firing et al., 1983), however, at 95°W, the EUC was strong in November 1982 before being 

replaced by a westward jet in May 1983 (Hayes et al., 1986). 15 

 

4.2.2 Observations for the 2015 El Niño 

The direct velocity observations in October 2015 on the diagonal section from the Ecuadorian shelf to 

1°N, 85°30’W, show only a weak signature of the zonal EUC in the upper 100 m located mainly at, and 

south, of the equator (Fig. 7a). The weak transport of the EUC is 0.01 Sv between 1°S and 1°N, and 20 

0.29 Sv between 2°30’S and 1°S. The westward flow in the upper 200 m is mainly connected to a 

northward flow direction (Fig. 7b) north of 1°S. This north-westerly flow indicates the flow of oxygen-

poor water from the ODZ off the South American continent to the west near the equator.  

The direct velocity observations on the meridional section at 85°30’W between 1°N and 2°30’S and the 

diagonal continuation to 5°S, 84°16’W, again show the weak signature of the EUC in the upper 100 m 25 

located mainly at, and south, of the equator north of 2°30’S in October 2015 (Fig. 8d). The EUC 

transport in the upper 300 m is 0.02 Sv between 1°S and 1°N and 0.78 Sv between 2°30’S and 1°S 

(Table 2). The stronger eastward flow component in the upper 200 m between 3°S and 4°S might be a 
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combination of the EUC and the Southern Subsurface Countercurrent (SSCC; also called Tsuchiya Jet), 

as described for El Niño periods east of the Galapagos Islands in model results (Montes et al., 2011). 

The eastward flow near 2°S below 200 m is the South Intermediate Countercurrent (SICC). 

The strongest EUC in our four measurement periods occurred at the end of March 1993, with 12.77 Sv 

between 1°S and 1°N in the upper 300 m (Table 2; Figure 8a). This measurement at the end of March 5 

was close to the time of eastern Pacific EUC peak transport in April/May. In addition, it was at the 

beginning of an El Niño-like phase, where warmer, oxygen-rich water is transported from the western to 

the eastern tropical Pacific and could enhance the eastward flow component.  

In February 2009 the EUC transport between 1°S and 1°N was weak (3.55 Sv), although it occurred 

only two months before the time of the seasonal EUC peak transport. As previously described, February 10 

2009 was at the end of a short La Niña-like period with an ONI index of -0.7, and the low EUC 

transport might be related to a generally weak eastward transport of warm western equatorial Pacific 

water during La Niña. On a cruise approximately 1.5 months later in March to April 2009 between the 

Galapagos Islands and Ecuador, a region of possible strong cross-hemispheric exchange was observed 

immediately to the east of the Galapagos, where a shallow (200 m) 300 km wide north-eastward surface 15 

flow transported 7 to 11 Sv (Collins et al., 2013). This north-eastward flow might have weakened the 

EUC transport at and south of the equator. The two diagonal sections in March/April 2009 crossed the 

85°50’W section at ~1°50’S and 2°30’S and, similar to the February 2009 measurements, showed a 50 

m depth eastward and westward flow at 1°50’S and 2°30’S, respectively, and a westward flow at both 

of these latitudes at 200 m depth. In contrast to the velocity distribution in March 1993, November 2012 20 

and October 2015 (Fig. 8), the eastward flow component in the upper 200 m south of 2°30’S almost 

disappeared in February 2009.  

The EUC transport in November 2012 at 85°50’W between 1°S and 1°N was 10.78 Sv in the upper 300 

m (Table 2). The months before these measurements had no large ONI index values and should 

represent the non-El Niño EUC transport in this region for November. The transport of 10.78 Sv in 25 

November at 85°50’W is less than the November minimum at 95°W of ~15 Sv (Johnson et al., 2002; 

their Figure 17), and seems to be a reasonable estimate east of the Galapagos Islands, as the EUC 
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transport decreases in the eastern Pacific. The core of the EUC below 200 m is quite deep and agrees 

with the seasonal cycle where the EUC should be located at deeper depth in austral spring.  

5 The upwelling region off Peru 

5.1 Background information 

Off Peru a highly productive year-round upwelling system is located between 4 and 16°S (Chavez and 5 

Messié, 2009). Since the 1950s, an SST decline corresponding to an increase of upwelling was observed 

off Peru (Gutiérrez et al., 2011). The SST off of Peru measured at six locations between 5°S and 12°S 

over a period of six years shows a seasonal cycle of 2 to 3°C amplitude with the largest SST near March 

and the minimum near October (Montes et al., 2011; their Fig. 4). This seasonal cycle is also visible in 

the MIMOC climatology for 9°S and 12°30’S (Supplement Fig. S1). The time series station at ~12°S, 10 

77°30’W shows a seasonal cycle of about 20 m displacement for the 15°C isotherm, the oxycline depth 

and the upper boundary of the ODZ (Graco et al., 2016). Seasonal eddy fluxes are described along the 

coast of Peru with the largest signal at approximately 15°S with a peak during the Austral winter 

(Vergara et al., 2016). The typical nutrient distribution along a cross-shelf section at 12°S (as seen in 

December 2012) shows elevated phosphate concentrations in the surface waters near the coast whereas 15 

nitrate  is depleted in the water column and the near surface waters close to the coast (Kock et al., 2016; 

their Fig. 3). 

Conditions which develop along the coast of Ecuador, Peru and northern Chile during El Niño events 

include a strengthening of the poleward flow along the coast of Peru, persistent deepening of the 

thermocline, reducing or even reversing the prevailing upwelling induced land-sea temperature gradient, 20 

and a southward shift in the position of the ITCZ which brings heavy precipitation to normally arid 

regions (Strub et al., 1998). A reduction in coastal cloud cover due to warmer water next to the coast 

may enhance insolation and reduce atmospheric pressure over land, maintaining the pressure difference 

and winds over the coast. As a result, upwelling-favourable winds are not greatly reduced when El Niño 

conditions are observed in the ocean (Enfield 1981; Huyer et al., 1987; Strub et al., 1998; Halpern et al., 25 

2002). In general, upwelling-favourable winds and upwelling continue during El Niño events, and water 

continues to be drawn from 50-100 m depth to the surface layer, but the thermocline and nutricline are 
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displaced downward and thickened, so that upwelling during El Niño brings only warm and nutrient-

poor water to the surface (Enfield 1981; Huyer et al., 1987; Strub et al., 1998; Halpern et al., 2002). The 

intensity of the upwelling appears to be determined by an interplay between alongshore, poleward 

advection, and wind intensity, but also by the cross-shore geostrophic flow and distribution of the water 

masses on a scale of 1000 km or more (Colas et al., 2008). In relation to the downward displacement of 5 

the thermocline and nutricline, the oxycline is also displaced downward. For the 1997/98 El Niño event, 

Helly and Levin (2004) described a possible depression of the upper layer of the ODZ (defined by 

oxygen concentrations < 0.5 ml l
-1

; ~22.3 µmol l
-1

) by 100 m reducing the ODZ area off Peru and 

northern Chile (6°-20°S) by 61% (from 77,000 to 30,000 km
2
).  

 10 

 

5.2 Observations for the 2015 El Niño 

The SST anomalies for the period 27 September to 24 October 2015 (Fig. 2), showed a strong SST 

anomaly of 1.5-2.0°C between 8°S and 14°S and a weaker anomaly of 0.5-1.5°C between 14°S and 

20°S. Differing hydrographic distributions were measured off Peru at ~9°S in December 2012 with a 15 

neutral ONI status, and in October 2015 with the strong El Niño. In the entire upper 300 m at ~9°S, 

temperature, salinity (Supplement Fig. S4 and S5) and oxygen (Fig. 9) were higher in October 2015 

than in December 2012. In contrast to the typical seasonal cycle which is characterized by lower SST in 

October than in December, the SST at 9°S was higher in October 2015 than in December 2012 as a 

result of the El Niño related SST increase. Higher upper water column temperatures in October 2015 20 

also correlated to lower densities in the upper 300 m (as can be seen from the selected isopycnals in Fig. 

9) despite the concurrent influence on density from the salinity increase. Accordingly the density 

changes are temperature dominated. In December 2012 there was strong upwelling at ~9°S with the <5 

mol kg
-1

 O2 layer located below ~30 m depth, while in October 2015 this low oxygen layer was only 

found below 240 m depth. The October 2015 nutrient profiles obtained from shelf stations at ~9S with 25 

water depths of little more than 100 m (not shown), highlight that nitrate, phosphate and silicate 

concentrations were lower, and nitrite concentrations were higher in comparison to profiles from the 

same location in December 2012, as would be expected for El Niño periods. Although the isopycnals 
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and parameter distribution shows that upwelling at 9°S was occurring in October 2015, it is clear that 

warmer, saline and oxygen replete water was being upwelled, and that the contribution of oxygen 

deplete and nutrient rich water was strongly reduced.  

At ~12°S the measured oxygen distributions for December 2012 and October 2015 are quite similar in 

the upwelling region at the easternmost station pair with oxygen concentrations of less than 5 mol kg
-1

 5 

(Fig. 10). The oxygen concentration between the isopycnals = 25.6 and 25.8 kg m
-3

 was even lower in 

October 2015 than in December 2012 in the upwelling region east of ~77°30’W (Fig. 10). However, 

below the oxycline below 50 m depth, temperature, salinity and oxygen concentrations (Fig. 11f) were 

higher in October 2015 than in December 2012 and indicate the transition to El Niño conditions. The 

seasonal signal in the time-series station at ~12°S, 77°30’W shows a shallower 15°C isotherm and 10 

oxycline depth of about 20 m in October than in December (Graco et al., 2016), hence the deeper 

oxycline in October 2015 compared to December 2012 is not a seasonal signal but an El Niño influence. 

The nutrient distribution at the shelf at ~12°S (Fig. 11) also shows El Niño influence with lower 

phosphate and silicate in October 2015 than in December 2012. This is in agreement with the observed 

increase in temperature and salinity, and the lower phosphate and silicate at the time series station at 15 

~12°S during the strong 1997/1998 El Niño (Graco et al., 2016). Under El Niño conditions upwelling is 

reduced and this prevents nutrients such as phosphate and silicate from becoming enriched in the mixed 

layer. Nitrate and nitrite are different, however, because their distributios are driven more by oxygen 

availability, which regulates nitrification and denitrification.  Indeed, nitrate was lower and nitrite was 

higher in December 2012 than in October 2015, with nitrite reaching 5.4 µmol L
-1

 at 75 m in December 20 

2012 (Fig. 11) consistent with the observations of Kock et al. (2016). At the depths of the high nitrite 

concentrations in December 2012, very low oxygen concentrations of less than 2 µmol kg
-1

 were 

measured. Under low oxygen conditions incomplete nitrification, incomplete denitrification, or a 

combination of both, can result in accumulations of nitrite (e.g. Codispoti and Christensen 1985; Gruber 

2008; Brockmann and Morgenroth 2010), as was likely the case during 2012. The higher oxygen 25 

concentrations in the ODZ at ~12°S during October 2015 would have prevented the build-up of nitrite, 

as under these conditions denitrification shuts off and nitrification goes to completion, producing more 

nitrate.   
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Another notable difference between December 2012 and October 2015 at ~12°S is the lower N:P ratios 

in the upper 150 m during 2012 vs. 2015 (Fig. S6e). Again, higher oxygen concentrations in the upper 

150 m during 2015 El Nino probably reduced the impact of fixed N loss processes on the N:P signatures 

of near-surface waters. These results imply that El Nino conditions could, at least, partially alleviate 

phytoplankton N limitation due to the reduction in the magnitude of denitrification. While it is beyond 5 

the scope of the focus of this study, it would be interesting to examine whether this increase in N:P 

ratios during the 2015 El Nino impacted the phytoplankton communities within this region. The 

expectation that they may have impacted the phytoplankton communities is certainly reasonable 

(Rousseaux and Gregg, 2012), as Hauss et al. (2012) observed an increase in diatom biomass when the 

NO3
-
:PO4

3-
 ratios of water collected from the Peruvian upwelling region were increased. 10 

The results from ~12°S shelf water indicate that upwelling of oxygen-poor water was still continuing in 

October 2015 at 12°S in the near surface layer, despite the enhanced SST anomaly related to El Niño. 

Below the oxycline, however, El Niño conditions were developing. The observations west of 77°48’W 

in the upper 75 m show that oxygen as well as temperature (not shown) were lower in October 2015, 

maybe related to a stronger poleward flow of the Peru Chile Undercurrent (PCUC) which has been 15 

shown to be a characteristic of El Niño events (Strub et al., 1998). The PCUC advects seawater property 

anomalies from equatorial to extratropical regions and shoals during El Niño despite the velocity and 

transport intensification (Montes et al. 2011; Chaigneau et al., 2013).  

At ~14°S at the easternmost station near the shelf, the oxygen distribution is quite similar for December 

2012 and October 2015 (Supplement Fig. S6), indicating non-El Niño oxygen-poor upwelling near the 20 

shelf. West of 77°W, the isopycnals are deeper in October 2015 related to a deeper thermocline with 

warmer water in the upper 100 m (not shown) and higher oxygen in October 2015 compared to 

December 2012. Similar to ~12°S the nutrient distribution shows higher nitrate and lower phosphate 

and silicate in October 2015 compared to December 2012 at ~14°S. As outlined above, the higher 

nitrate concentrations in October 2015 likely result from less denitrification and more complete 25 

nitrication, as a result of the increased oxygen concentrations, and this again provides evidence for a 

developing El Niño situation.  
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At ~16°S the oxygen concentrations at the shelf were lower in October 2015 than in December 2012 

(Supplement Fig. S7), indicating similar as at ~14°S non-El Niño upwelling close to the shelf. The 

higher oxygen near the shelf in December 2012 was probably related to an unusual distribution related 

to an eddy located near the ~16°S section (e.g. Stramma et al., 2013; Czeschel et al., 2015). The SST at 

~14°S and ~16°S was lower in October 2015 than in December 2012, hence the slight increase of SST 5 

by El Niño did not compensate the typical seasonal SST signal. Different to the sections at ~9°S, ~12°S 

and ~14°S, at ~16°S the density distribution below the thermocline did not shift to higher densities in 

October 2015 which shows that the El Niño influence at 16°S was the weakest of the 4 shelf sections. 

The observed transitional feature of normal conditions near-shore and El Nino conditions offshore is 

probably a consequence of the cross-shore pattern in vertical velocity during upwelling. The near-shore 10 

vertical velocity is to be expected substantially larger than the offshore vertical velocity (Fennel, 1999). 

A downwelling Kelvin wave could then neutralize the weak offshore upwelling and bring down the 

thermocline, while near-shore the strong upwelling would hardly weaken and for some time still bring 

up remnants of cold oxygen-poor water, until supplies feed from the offshore warmer and oxygen 

replete waters. The wind field would not need to change in order to produce this transition pattern in 15 

hydrography. 

 

6 Conclusion 

In this study, hydrographic measurements from a cruise to the eastern tropical Pacific in October 2015 

were used to investigate the signal of the strong 2015 El Niño in the water mass distribution and in the 20 

EUC in comparison to measurements from the years 1993, 2009 and 2012. An increase of temperature 

from the surface to 350 m depth, and salinity in the 40 to 350 m depth layer appeared at the equator east 

of the Galapagos Islands at 85°30’W in October 2015. The warmer temperature led to lower densities 

despite the concurrent influence of the salinity increase on density. In October 2015, nitrate, phosphate 

and silicate concentrations were all lower in the upper 200 m when compared with previous non-El 25 

Nino periods, however, higher oxygen concentrations, which are characteristic of El Niño events, were 

only located between 40 and 130 m at the equator. Except for an oxygen increase in the upper ~60 m at 
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2°30’S, no obvious large vertical oxygen increase appeared at 1°N and 2°30’S at 85°30’W. This weak 

oxygen increase at and near the equator might be related to the weak EUC, which would else be 

expected to bring oxygen richer water eastwards.  

Due to the influence of seasonal and El Niño signals, the velocity and transport observations of the EUC 

east of the Galapagos Islands were quite variable in the direct velocity measurements in different years. 5 

In addition intraseasonal signals with the passage of upwelling and downwelling waves at intraseasonal 

time scales (Cravatte et al., 2003; Echevin et al., 2013) might modify the measurements. As previously 

observed in the central and western Pacific, and as predicted from model simulations, the EUC at the 

equator almost disappeared with a transport of only 0.02 Sv between 1°S and 1°N in October 2015 

related to the El Niño conditions. Although weak, the EUC had shifted southward with a transport of 10 

0.78 Sv between 2°30’S and 1°S in October 2015. These observations are in agreement with the 

predicted weakening and southward shift of the EUC in model results for El Niño periods (Montes et 

al., 2011). According to earlier observations, the disappearance of the EUC in the eastern Pacific seems 

to be related mainly to strong El Niño events. For the very strong 1982/83 El Niño, a disappearance of 

the EUC was described for the eastern Pacific (Halpern, 1997), whereas for the strong 1997/98 El Niño 15 

the EUC disappeared over all longitudes (Izumo, 2005). In contrast, during the moderate El Niños of 

1986/87 and 1991/92 a disappearance was described in the western and central Pacific, but only a 

weakening in the eastern Pacific (McPhaden et al., 1990; McPhaden and Hayes, 1990;  Izumo, 2005; 

Kessler and McPhaden, 1995; Seidel and Giese, 1999). 

Four hydrographic sections near the Peruvian shelf between ~9°S and ~16°S had different El Niño 20 

related signals in October 2015. At ~9°S there was a large SST increase, and we observed upwelling of 

lighter water which was both warmer and more oxygenated, all of which are characteristic upwelling 

features of El Niño events. Between 12°S and 16°S the SST increase in October 2015 was weaker than 

at 9°S, and at the easternmost stations near the Peruvian shelf at ~12°S, ~14°S and ~16°S cold and 

oxygen-poor water was upwelled as during regular upwelling conditions, probably some left-over water 25 

from the pre El Niño period. West of the easternmost stations, El Niño type changes were observed also 

below the thermocline and oxycline, a feature which weakened southward and which may be related to 

the shoaling and intensification of the PCUC and the influence of a downwelling Kelvin wave. 
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The 2015 El Niño started strong early in the year, and by October 2015 had an ONI index similar to 

earlier major El Niño events. The water characteristics at 85°30’W at the equator and EUC variability 

and upwelling at ~9°S also indicated that a strong EP El Niño had developed. However, at 1°N and 

2°30’S at 85°30’W and at the sections near the shelf between 12°S and 16°S, the El Niño influence was 

still weak. To this end, the weak EUC clearly indicated a strong EP El Niño at the equator, while off the 5 

South American continent the distribution of hydrographic parameters, oxygen and nutrients indicated a 

transition period from regular to El Niño conditions progressing southward along the Peruvian shelf. 

Despite the strong 2015 El Niño, the shift to El Niño distribution in the eastern Pacific was surprisingly 

slow. As the ONI index increased to the end of 2015, we expect that the El Niño conditions were 

strengthening in the eastern Pacific after the cruise in October 2015. Measurements carried out by 10 

CNRS, IRD and IMARPE with a Glider from IFREMER at about 8°S off Peru between 7 November 

and 17 December 2015 showed an increase in temperature and oxygen and a decrease in density at ~100 

m when compared to October 2015, thus confirming the expected strengthening of the El Niño 

conditions. ( https://www.ird.fr/toutel- 

actualite/actualites/communiques-et-dossiers-de-presse/cp-2015/lancement-de- 15 

cienperu-projet cienperu-projet-d-etude-des-impacts-d-el-nino-2015-2016-sur-l-ecosysteme-marindu- 

perou) 

In summary, the temperature, salinity and oxygen measurements all indicate that during October 2015 

the El Niño was strongest along our northern transects and weakest along our southern transects. This 

was also apparent in the nutrient properties between the northern and southern portions of our study 20 

region. As outlined above, at 12°S the N:P ratio was higher and nitrite concentrations were lower during  

October 2015 when compared to the non-El Niño period of December 2012, both of which point to a 

reduction in the magnitude of denitrification. When comparing the differences between coastal 

nutricline N:P ratios and nitrite concentrations along the coast, we found that the differences between 

October 2015 and December 2012 decreased between 12°S  and 14°S, and again between 14°S  and 25 

16°S (data not shown). This again highlights the potential for El Niño events to impact N loss processes 

and upper water column biogeochemistry.   

 



19 

 

Data availability  

The data from the RV Knorr cruise in March/April 1993 are available for ADCP at    

ftp://ftp.soest.hawaii.edu/caldwell/adcp/DATABASE/00014.html, for CTD data as 

https://doi.pangaea.de/10.1594/PANGAEA.294039 and for nutrients as  

https://doi.pangaea.de/10.1594/PANGAEA.837024. The assembled measurements of the Meteor cruises 5 

in February 2009, November 2012 and December 2012 and the Sonne cruise in October 2015 used in 

this paper are available at https://doi.pangaea.de/10.1594/PANGAEA.861392. 
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Table 1. Time and geographical location of CTD data used in this study and the NINO 1+2 and ONI 

indices for the months of observation or for 2 months for measurements carried out at the end or 

beginning of a month listed in the tables (http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices) and  5 

  (http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml).   

 

Time                          location                        NINO 1+2                                  ONI                                                                                      

29-31 March 1993    1°N-2°40’S         +0.65 March +0.97 April         +0.5 March +0.7 April 

12-13 Feb 2009        1°N-2°40’S                       -0.11                                        -0.7 10 

01-03 Nov 2012       1°N-2°40’S          -0.11 Oct   -0.38 Nov              +0.4 Oct   +0.2 Nov  

07-08 Oct 2015         1°N-2°30’S                     +2.52                                        +2.0 

06-23 Dec 2012        ~9°S-~16°S                      -0.68                                        -0.2 

10-19 Oct 2015       ~9°S –~16°S                      +2.52                                       +2.1 

 15 

Table 2. Summed zonal positive (eastward) and negative (westward) ADCP transports in Sv (10
6
 m

3
 s

-

1
) in the equatorial channel at 85°50’W in March 1993, February 2009 and November 2012 and at 

85°30’W in October 2015 as well as the related El Niño status. The velocity data were slightly 

smoothed and extrapolated to the surface.  

 20 

Time                   1°S – 1°N, 0 – 300 m       2°30’S – 1°S, 0 – 300 m      El Niño status                                                                                

29-31 March 1993      12.77    -0.38                  6.28          -0.07              early El Niño-like 

12-13 Feb 2009           3.55     -1.58                  0.55          -1.57               late La Niña-like 

01-03 Nov 2012        10.78     -0.94                  4.22          -0.36               neutral 

07-08 Oct 2015          0.02    -13.86                 0.78          -4.08               El Niño 25 
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Figure 1. Cruise track (blue line) and CTD stations (black circles) of cruise RV Sonne from Guayaquil 

5 October to Antofagasta 22 October 2015, as well as equatorial stations March 1993, February 2009 

and November 2012 (yellow x), CTD sections off Peru December 2012 (red x) and ADCP sections 5 

across the equator (yellow line). Topography (color) with depth/height contours in 1000 m intervals 

enhanced by the 200 m depth contour. 
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Figure 2. Average sea surface temperature anomalies in °C for the period 27 September 2015 to 24 

October 2015. Image with permission from NOAA extracted from 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-

web.pdf file version from 26 October 2015, redrawn with very minor modifications to improve the 5 

figure quality.   

 

 

 

Figure 3. ONI index for the strong El Niño years 1972 (dash-dotted), 1982 (dotted), 1997 (dashed), and 10 

the years used here 1993 (green), 2009 (blue), 2012 (red) and 2015 (black line). The months of 

measurements used here are marked by coloured dots.  
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Figure 4. Upper 100 m profiles at the equator at 85°50’W for 30 March 1993 (green), 12 February 2009 

(blue), 2 November 2012 (red) and at the equator at 85°30’W for 7 October 2015 (black) for (a) oxygen 5 

in mol kg
-1

, (b) potential temperature in °C, (c) salinity and (d) potential density in kg m
-3

. 
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Figure 5. Same as Figure 4, but for 100 to 400 m depth.  

 

 

Figure 6. Upper 300 m profiles at the equator at 85°50’W for 30 March 1993 (green), 12 February 2009 5 

(blue), 2 November 2012 (red) and at the equator At 85°30’W for 7 October 2015 (black) for (a) nitrate 

in mol L
-1

, (b) nitrite in mol L
-1

 (scale change at 0.1mol L
-1

), (c) phosphate in mol L
-1

 and (d) 

silicate in mol L
-1

. 
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Figure 7. ADCP zonal (positive eastward) (a) and meridional (positive northward) (b) velocity section 

(in m s
-1

) on the diagonal section from the Ecuadorian shelf at ~ 2°30’S to 1°N, 85°30’W on 5 and 6 5 

October 2015 (see Figure 1). Contour interval is 0.1 m s
-1

. 
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Figure 8.  Zonal ADCP velocity sections (in m s
-1

; positive eastward; contour interval 0.1 m s
-1

) on the 

meridional path from 1°N to 5°S at 85°50’W (a) in March 1993, (b) in February 2009 (c) in November 5 

2012 and (d) from 1°N to 2°30’S at 85°30’W and diagonal to 5°S 84°12’W in October 2015 (see Figure 

1). 
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Figure 9. Oxygen section (color; in mol kg
-1

; same color-scale on both frames) at ~9°S off the 

Peruvian shelf for December 2012 (a) and October 2015 (b). Three selected isopycnals are included as 

white dashed lines. Please note that the section in October 2015 reaches further west than in December 

2012. 5 

 

    

Figure 10. Oxygen section (color; in mol kg
-1

; same color-scale on both frames) at ~12°S off the 

Peruvian shelf for December 2012 (a) and October 2015 (b). Three selected isopycnals are included as 

white dashed lines. 10 
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Figure 11. Nutrient profiles at shelf stations with water depth of slightly more than 100 m in December 

2012 at 12°15’S, 77°31’W (green) and in October 2015 at 12°21’S, 77°25’W (black) for (a) nitrate in 

mol L
-1

, (b) nitrite in mol L
-1

, (scale change at 1 mol L
-1

), (c) phosphate in mol L
-1

, (d) silicate in 

mol L
-1

, (e) N:P ratio and (f) CTD-oxygen in mol kg
-1

. 5 

 


