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Abstract:  A series of Observing System Simulation Experiments (OSSEs) is carried out with a global data assimilation

system at  1/4° resolution using simulated data derived from a 1/12° resolution free run simulation. The objective is  to

quantify how well multiple altimeter missions and Argo profiling floats can constrain the global ocean analysis and forecast

at 1/4° resolution but also to better understand the sensitivity of results to data assimilation techniques used in Mercator

Ocean operational systems. Impact of multiple altimeter data is clearly evidenced even at a 1/4° resolution. Forecasts of sea

level and ocean currents are significantly improved when moving from one altimeter to two altimeters not only on the sea

level but also on the 3D thermohaline structure and currents.  In high eddy energy regions, sea level and surface current

forecast errors when assimilating one altimeter data set are respectively 20% and 45% of the error of the simulation without

assimilation.  Forecasts of sea level and ocean currents continue to be improved when moving from one altimeter to two

altimeters with a relative error reduction of almost 30%. The addition of a third altimeter still improves the forecasts even at

this medium 1/4° resolution and brings an additional relative error reduction of about 10%.  The error level of the analysis

with one altimeter is close to the forecast error level when two or three altimeter data sets are assimilated.  Assimilating

altimeter data also improves the representation of the 3D ocean fields. The addition of Argo has a major impact to improve

temperature and demonstrates  the essential  role of  Argo together  with altimetry to  constrain a  global  data assimilation

system. Salinity fields are only marginally improved. Results derived from these OSSEs are consistent with those derived

from experiments with real data (observing system evaluations/OSEs) but they allow a more detailed characterization of

errors  on analyses and forecasts.  Both OSEs and OSSEs should be systematically  used and intercompared to  test  data

assimilation systems and quantify the impact of existing observing systems. 

1. Introduction

Observing  System  Simulation  Experiments  (OSSEs)  are  powerful  tools  to  evaluate  the  impact,  relative  merits  and

complementarities of the different components of the global ocean observing system. They allow an assessment of existing

elements  of  the  global  ocean  observing system and are  essential  to  evaluate  revised  or  new design (e.g.  evolution  of

sampling characteristics, addition of a new observing system component). OSSEs rely on models that realistically represent

the space-time variability of the essential ocean variables to be monitored, and data assimilation to optimally merge in-situ,

satellite observations and models. OSSEs typically use two different models. One model is used to perform a “truth” or

“nature” run - and it is treated as if it is the real ocean. The “nature” run is sampled in a manner that mimics either an

existing or future observing system - yielding synthetic observations. The synthetic observations are assimilated into the
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second model (assimilated run) and the model performance is evaluated by comparing it against the nature run. This in turn

quantifies  the impact  of  observations.  OSSEs are also important  tools  to test  the capability  of  global  data assimilation

systems to effectively merge different types of observations with models to produce improved ocean analyses and forecasts.

OSSEs are  complementary  to  OSEs (Observing System Evaluations).  OSEs analyse  the  impact  of  real  data  for  ocean

analysis and forecasting generally by comparing a  run assimilating all available data with a run assimilating all the data

except for the data type to be investigated. OSSEs allow, however, a more comprehensive assessment of errors on analyses

and forecasts at all depths and for all parameters through the comparison with the nature run (the “truth”). On the other hand,

results for existing observing systems must be consistent with those derived from OSSEs. This issue of calibration of OSSEs

with respect to OSEs is actually an important element for a proper design of OSSEs (e.g. Halliwell et al., 2014). Choice of

the nature run, assimilated run, data assimilation scheme and errors to apply to synthetic observations should be carefully

analysed to avoid under or overestimations of forecast and analysis errors in OSSEs.

In this study, an assessment of the impact of multiple altimeters and Argo profiling floats is carried out with the Mercator

Ocean global 1/4° data assimilation system via a series of OSSEs. The objective is to quantify the impact of assimilating

several altimeters on analyses and forecasts and the complementarities between altimetry and Argo observations when they

are both assimilated.  A secondary objective is  to test  the capability of  the Mercator  Ocean data assimilation system to

effectively use and merge multiple altimeters and Argo. Altimetry and Argo are the backbone observing system required for

operational oceanography (e.g. Le Traon, 2013). They are systematically used today to constrain global and regional ocean

analysis and forecasting systems. Multiple altimeter missions are required to constrain the mesoscale circulation (e.g. Le

Traon et al., 2015) and Argo observations are required to constrain the temperature and salinity fields. OSEs carried out in

the  context  of  the  GODAE  OceanView  international  program  (Bell  et  al.,  2015)  have  demonstrated  the  impact  of

assimilating several  altimeters and Argo (e.g.  ;  Lea et  al.,  2014;  Oke et  al.,  2015; Turpin et  al.,  2015).  They show, in

particular, that the addition of the first altimeter has the largest impact but that there are quantitative improvements seen by

the addition of a second and third altimeter. Argo is, on the other hand, mandatory to constrain temperature and salinity fields

(e.g. Turpin et al., 2015). Analysing the impact of altimetry and Argo in a global data assimilation system through OSSEs

has, to our knowledge, not been carried out at least in recent years. Such an analysis can provide, however, very useful and

complementary results compared to these past OSEs by allowing a more detailed analysis of analysis and forecast errors. 

The paper is organized as follows. Section 2 provides a description of the OSSE methodology and modelling and data

assimilation system. Section 3 analyses the impact of assimilating one, two or three altimeters. Complementary role of Argo

is discussed in section 4. Main conclusions and future prospects are given in section 5. 

2 OSSE methodology 

This section describes the methodologies used to perform the different OSSEs. The Mercator Ocean data assimilation system

is first presented. The Nature Run and the Free Run used to initialise the Assimilated Run, the simulation of observations and

the characteristics of OSSEs are then described. 

2.1 The Mercator Data Assimilation System

Commonly called SAM2, the current protocol for data assimilation at Mercator Ocean (Lellouche et al., 2013) computes

correction over a 7 day assimilation window and is based on a modified Kalman filter named SEEK (Singular Evolutive

Ensemble Kalman filter) first introduced by Pham et al. (1998). Analysis is calculated at the middle of the assimilation

window, i.e.  the fourth day. The SEEK filter means,  as explained by Brasseur and Verron (2006), that covariance error

matrices  are forced at  a  low rank (“Singular”)  and that  it  computes model error covariances propagation (“Evolutive”)

following the model dynamics. 
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The filter used in SAM2 is not evolutive as a SEEK. Indeed, instead of using EOFs to build its error covariance matrix that

will be propagated onto the model along time steps, SAM2 takes a fixed base of smoothed model anomaly fields (349 in the

following experiments). This approach allows the system to get a covariance matrix that is realistic with the climatological

statistics of the ocean model at the time step and saving computation time as this matrix will not be propagated in the model

unlike the SEEK. Anomalies, for the five control variables (Sea Level, U, V, T, S), are the differences of a smoothed (running

mean along time) free run with it-self. These anomalies are selected respectively to the season of the assimilation cycle in a

way to make statistics evolving consistently with climatology, so our filter is not evolutive in the way we defined it ( model

error covariance propagated by the dynamical model ). Once the correction is calculated, it is projected in the model space

by using a linear combination of the selected anomalies. Then, this correction is injected linearly over the seven days using

the  Incremental  Analysis  Update (IAU,  Bloom  at  al.,  1996).  As  explained  in  Lellouche  et  al.  (2013),  when  in  situ

measurements are assimilated, a bias correction based on a 3D-Var approach is used to correct large scale and slow evolving

errors in T, S and thus dynamical height. Bias correction uses a collection of temperature and salinity innovations from the

last three months and creates a correction to be added in the model prognostic equations. Here we kept the setup of the

assimilation scheme as it is in the operational system and described in Lellouche et al. 2013 except for the representativity

errors we did not take into account, the assimilation of the full SSH signal and not only the SLA and the uniform observing

error covariance matrix (3 cm in RMS)

2.2. The Nature Run and the initialisation of the Assimilated Run

In this study, both the “nature” run (NR) and the assimilated run (AR) are based on the NEMO model (Nucleus for European

Modelling of the Ocean, Madec et al. 1998) with a global coverage and 50 vertical levels with 22 levels within the upper

100m and with 1m resolution for the first level up to 450 m for the last one (at the bottom). The system uses the OPA (Océan

Parallélisé) model coupled with the LIM2 ice model (Fichefet and Morales Maqueda, 1997). The difference between the two

configurations is that the NR uses a 1/12° tripolar grid (ORCA12) and the second one a 1/4° tripolar grid (ORCA025). Both

models are forced using the CORE (Coordinated Ocean-Ice Reference Experiment) bulk formulation (Large and Yeager,

2009). The 1/12° free model is chosen for NR because it is a good estimation of the true ocean variability. The 1/12° NR was

chosen for its capacity to better represent mesoscale variability (50-500km) in the ocean compared to a 1/4° resolution

simulation. Assimilating data from a higher resolution model into the 1/4° configuration is a way to determine how these

structures, underestimated in a free 1/4° model, can be forced to be closer to reality (NR). 

The OSSEs were started from January 7, 2009 over an almost one-year time period. Two different initial conditions (i.e.

January  7,  2009)  for  the  NR and for  the  AR are  required  so that  we can  quantify  the  impact  of  assimilating  pseudo

observations of the NR in the AR. This was achieved by running the two free run NEMO configurations initialized from

climatology but at different times. The NR simulation was started in 2003 and forced with ECMWF (European Centre of

Medium Weather Forecasting) operational 3-h atmospheric data and the AR was initialized from a 1/4° free run started from

1989 and forced by ECMWF ERA-Interim 3h atmospheric data. The OSSEs are all forced with the ECMWF operational 3-h

data.  Note that as AR and NR are both forced by ECMWF operational data, our OSSEs do not address the impact of

atmospheric forcing errors. 

2.3 Simulated observations 

To assess the impact of the number of altimeter data, three satellites have been considered: Jason-1, Jason-2 and Envisat

(Fig. 1a). Jason-1 and Jason-2 have a 10-day repeat cycle and Envisat a 35-day repeat cycle. Jason-1 was in its interleaved

orbit with its ground tracks just in between Jason-2 tracks and a time shift of 5 days. This orbit was chosen to optimize

mesoscale variability sampling by Jason-1 and Jason-2. The OSSEs were carried out over the year 2009. Jason-1, Jason-2
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and Envisat simulated observations were derived from the NR with a resolution of 7 km  between two points along the tracks.

An observation white noise of 3 cm RMS was simulated and added to these pseudo observations. 

Mercator Ocean operational systems assimilate Sea Level Anomaly (SLA) observations. The Absolute Sea Level (i.e. sea

level relative to the geoid) is obtained by using a pre-calculated Mean Dynamic Topography (MDT). In our case, the nature

and  assimilated  runs  have  different  MDTs  because  of  the  grid  resolution,  the  model  parametrizations  and  different

initialization procedures. We thus chose to assimilate the absolute sea level (witch include the MDT and the SLA) from the

NR at 1/12°.

Argo in-situ Temperature and Salinity observations from the surface down to 2000 m were simulated using the 2009 Argo

profile positions in the Coriolis CORA3.2 data base (Fig 1b). 

2.4 OSSEs 

The four different OSSEs that have been carried out are summarized in Table  1.  The first three simulations address the

question of the number of altimeters required to constrain ocean analyses and forecasts. There are three experiments with one

(Jason-2),  two (Envisat  and Jason-2)  and  three  (Jason-1,  Envisat  and  Jason-2) assimilated satellite  data  sets.  They are

respectively called Sat1, Sat2 and Sat3 experiments. The other OSSE addresses the impact of Argo profiling floats together

with the three satellite data sets. 

All the assimilated experiments start the 7th of January 2009 and end the 30th of December 2009. The difference between a

given simulation and the NR are used to derive statistics on errors on analyses and forecasts over the last 7 months (June-

December 2009).  For each assimilation experiment,  time series  of  errors  on analyses  and forecasts (up to 7 days)  are

obtained. 7-day forecast errors will be used in this study. 

3. Altimetry OSSEs results 

Impact of assimilation of altimeter data is first analysed on sea level (SL). A wavenumber spectral characterization of the

error is also carried out. Errors on surface zonal (U) and meridional velocities (V) are then estimated. Finally, errors on

velocities, temperature and salinity at depths are analysed to quantify how the assimilation of multiple altimeter data can

constrain deep fields. Analyses are focused on regions with high mesocale variability: Gulf Stream (GS), Agulhas Current

(AC) and Kuroshio (KU). 

3.1. Impact on Sea Level 

Figure 2 shows the Mean Square Error (MSE) for the Free Run (FR) and for the analyses and forecasts of the three different

assimilation runs (Sat1, Sat2 and Sat3) estimated as the difference with the NR. As expected, the FR shows large differences

with the NR as they provide two uncorrelated mesoscale variability fields. Assimilation of one satellite leads to a significant

reduction of both analysis and 7-day forecast errors due to a strong correction of the mean sea level. Adding a second

altimeter reduces significantly the errors. The impact of assimilating a third altimeter remains positive but not as large as the

addition of a second altimeter. Moreover, errors are largely reduced between the 7-day forecast and the analysis for each of

the three assimilation runs. 

The evolution in time of the global MSE of Sea Level for both the analysis and 7-day forecast fields is shown on Fig. 3. The

system constrained by the 1/12° simulated SSH observations converges toward a stable state in 2 to 3 months. The Free Run

MSE is about 97 cm² (not shown on the plot) over the time period of the experiment; it is reduced to 20 cm 2 in Sat1. The

analysis MSE in Sat2 is lower than Sat1 and approximatively equal to 15 cm2. Sat3 provides a slight improvement of a few
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cm2 compared to Sat2. In fact,  first altimeter brings the biggest error reduction compared to the Free Run but second and

third altimeters keep reducing this error.

To analyse further the structure of errors in high mesoscale variability areas, MSEs for analyses and 7-day forecasts are

shown for the GS (Fig. 4 and Fig. 5), AC (Fig. 6 and 7) and KU (Fig. 8 and Fig. 9) regions. “Diamond” like structures can be

seen  on the  analysis  error  maps  for  all  regions  when only one  altimeter  is  assimilated  revealing  the  repetitive  spatial

sampling of Jason-2. Adding Envisat observations suppresses this effect. In those energetic regions, the MSE for the Free

Run is very high in the core of the main current. The increase of the number of assimilated altimeter data set allows a clear

reduction of both 7-day forecast and analysis errors.

To summarize results shown on the different maps, the following score is defined as the MSE for a given AR in percentage

of the Free Run MSE: 

 EMBED Microsoft Equation 3.05 









)ror Square(erMean

)ror Square(erMean
=α

FR

AR100                                                                  (1)

Those statistics are presented in Table 2. 

The greatest impact is made with the assimilation of the first altimeter which strongly reduces the large scale biases existing

between the NR and FR. Sat1 Sea Level global analysis MSE reaches 21% of the Free Run MSE. Adding a second satellite

(Sat2) reduces the analysis errors by 6%. The third satellite (Sat3) reduces further the errors by about 2%. 

Compared to Sat1 global analysis MSE, Sat2 analysis MSE is reduced by 28% and for Sat3 compared to Sat2 error is

reduced by 11%. In high eddy energy region, that ratio can reach respectively 42% and 22%. 

For a same assimilation experiment, the analysis error is always lower than the 7-day forecast error. The error level of the

analysis with one altimeter is close to the 7-day forecast error level when two or three altimeter data sets are assimilated.

This is true for all of the considered regions and globally (Table 2). The largest error reduction due to data assimilation

occurs in the Agulhas and Kuroshio regions. 

The error increase between the analysis and 7-day forecast for each experiment highlights the “model predictability” in the

different regions. The  relative MSE in % between analysis and forecast  increase is 28% globally for Sat1, 35% for Sat2 and

37% for Sat3. In WBCs, values are around 34% for Sat1, around 49% for Sat2 and 54% for Sat3. The error increase is thus

the largest when more altimeter data are assimilated.  Analyses are thus better constrained but this does not fully translate

into improved forecasts.    

Note that  as  the NR and the ARs use the same atmospheric forcing,  7-day forecast  errors  are only related to internal

mesoscale dynamics and initialization issues.

3.2 Spectral characterization of the error 

Estimation of the sea level wavenumber spectrum from altimetry data (e.g. Le Traon et al. 1990; Stammer 1997; Le Traon

and Dibarboure, 2008) has allowed major progresses in the characterization of ocean mesoscale dynamics. Wavenumber

spectra are used here to characterize sea level analysis and 7-day forecast errors in the Gulf Stream, the Agulhas Current and

the Kuroshio regions.

Wavenumber spectra were calculated from the sea level model error fields using Fast Fourier Transform (FFT). The FFT was

applied in 10° x 20° boxes within the previously defined WBCs regions but not fitting exactly to the areas shown on the

maps. Longitudinal spectra were estimated from daily error fields and meridionaly averaged. Figure 10 shows the mean sea
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level error spectrum calculated in the GS(a), AC(b) and KU(c) regions. The computation is made from June to December

2009 both for the analysis and for each 7th-day forecast of the assimilation cycle. 

The error reduction due to altimeter data assimilation is visible for all of the three selected regions: the free model run error

spectrum is higher at all wavelengths larger than 100 km. The assimilation corrects the 1/4° model sea level below its own

capacity to represent small scales. Below this limit of 100 km, all the simulations are gathered in one curve. This curve

follows the same slope as the full sea level spectrum of the Nature Run (not shown on the plot).

As seen before, the error is reduced each time an additional altimeter is assimilated, for all wavelengths larger than 100 km

and up to 1000 km. It is also the case for the analysis compared to the 7-day forecast. Analysis of spectra in a variance

preserving form (Figure 11) shows that, compared to analysis errors, 7-day forecast errors occur at larger wavelengths; they

have a maximum variance at wavelengths between 300 to 500 km while it is about 200-300 km for analysis errors. 

Compared to the Free Run errors, adding one satellite (Sat1) reduces analysis errors for all wavelengths larger than 250 km.

Addition of a second (Sat2) and third (Sat3) altimeter allows reducing analysis errors down to 150 km wavelength. In the

KU and the GS regions, the Sat2 and Sat3 analysis errors are similar for most of the length scale.  In the AG region, the

assimilation of the third satellite still allows a significant analysis error reduction. 

In  most cases,  the 7-day forecast  error  spectrum for  the Sat3 experiment  is  lower than the analysis  error  for  the Sat1

experiment for wavelengths smaller than 300 km. 

3.3 Impact on surface currents and currents, temperature and salinity at depths

To assess the system ability to reproduce the Nature Run, it is necessary to analyse how non assimilated model variables are

improved when assimilating sea level altimeter data. The unobserved variables are impacted by assimilating only sea level

observation through two mechanisms. The first one is the multivariate characteristic of the analysis corrections computed by

SAM2. The model error covariance matrix is defined with a collection of model anomalies used to calculate increment for all

the model prognostic variables, SL, U, V, T and S. The second one is the non linear model dynamics that implies changes on

temperature, salinity and velocities when the SSH analysis correction on sea level is added to the model 7-day forecast. 

Because of geostrophy, we expect, in particular, that assimilating more altimetry data will better constrain surface velocity

fields. Figure 12 presents the MSE of analysis and 7-day forecast for the zonal velocity U. The Free Run shows everywhere

higher values for the velocity MSEs both for U and V (not shown). 

Table 3 shows the same score as the one used for the Sea Level but for the MSE of the analysis and 7-day forecast errors of

the zonal and meridional velocity components in cm2s-2. Globally and in the Gulf Stream region, the meridional and zonal

velocities MSE are similar, meridional velocity MSE are slightly higher (~10%) than zonal errors in the Agulhas Current and

slightly lower (10% again) in the Kuroshio. 

The absolute MSEs are decreasing from Sat1 to Sat3, and are much lower than the Free Run. For each experiment, the

analysis error is again reduced compared to the 7-day forecast error. The level of error for the 7-day forecast of Sat3 is, in

most regions, comparable to the level of the analysis error of Sat1. The assimilation of a second satellite leads to a higher

error reduction than the third one, for both analysis and 7-day forecast and in all regions. 

Sat1 global analysis velocity MSEs represent 55% of the Free Run MSE. Additional error reductions of 10% and 4% occur

for Sat2 and Sat3. In high eddy energy regions (GS, AC, KU), the analysis MSEs are smaller and can reach 35% of the Free

Run MSE for Sat1; they continue to be reduced by 13% and 4% for Sat2 and Sat3 (in average in the WBCs).  
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7-day forecast surface velocity errors are less reduced when an additional altimeter data set is assimilated. They globally

represent 64%, 56% and 53% of the Free Run MSE for respectively Sat1, Sat2 and Sat3.  

Assimilation of multiple altimeter data does not only improve the surface velocity but also velocity fields at depth. Figure 13

shows global RMS error profiles for U and V. These plots are similar for the two velocity components and show decreasing

error profile with depth. There is a clear positive impact of the assimilation of additional altimetry observations up to 2000

meter depth. The improvement brought by each additional satellite is almost uniform on the vertical and even the third

altimeter improves the 3D velocity field estimation. 

Assimilating sea level altimeter data also improves the temperature and salinity at depths as shown on RMS error profiles for

temperature (T) and salinity (S) of Fig. 14. Temperature error profiles show a maximum at the thermocline depth as the

salinity error decreases with depth. Globally, Sat1 gives a good improvement for T a depth, comparatively to Free Run with

0.2°C of RMS error in temperature at 200m depth. Sat2 and Sat3 are not distinguishable and only improve the RMS error

score by less than 0.05°C. The experiments with altimeter data assimilation only slightly improved Salinity fields. Sea level

as measured by altimetry is to a large extent the signature of baroclinic processes and represents an integral of the density

anomaly.  As density variations are mainly correlated to temperature variations and less salinity variations in most of the

ocean regions, this explains why assimilating altimeter data improves the representation of the upper temperature fields (e.g.

Guinehut et al., 2012).

4. OSSE with Argo and altimetry 

Assimilating altimeter data only improves temperature fields and marginally salinity fields but errors remain large. This

leads to the next part of the study concerning the Argo1 experiments. This experiment has been designed to answer how a

simulated Argo profiles data set allows correcting large scales when they are assimilated with altimetry compared to the Sat3

experiment. Argo floats are designed to monitor large scale and low-frequency variability as described in Roemmich et al.

(2009) and the complementarity between remote sensing observation and in situ profiles has been studied in the North

Atlantic using OSSEs-like simulations by Guinehut et al. (2004). They showed how well the estimation of 200m T fields was

improved thanks to the merging of in situ profiles and altimeter data. Here one wants to assess the global impact of the Argo

profiles assimilation using the idealistic configuration of OSSEs in the Mercator Ocean systems. This issue has already been

explored  using  OSEs by  Turpin  et  al  (2016).  In  the  latter  study, the  impact  of  Argo profiles  was  assessed  using  the

operational observing array. Three experiments were intercompared, the first one where half of the Argo floats have been

removed, the second where all the floats were removed and the last one where all Argo floats were assimilated. The system

used in the OSEs (Model combined to an assimilation scheme) is very similar to the one that is used here, meaning 1/4°

Nemo model and the SAM2 assimilation scheme. OSEs results showed an increasing improvement in both 7-day forecast

and analysis scores when more profiles are assimilated and this mainly in the 0-300m and 700-2000m depth layers.

Profiles in Fig. 15 represent the RMS of the error of T and S  for the 7-day forecasts for the global ocean for the OSSEs

Argo1 and Sat3. The black line shows the Free Run score. These scores need to be compared with the results of Turpin et al

(2016) in Section 3.1.1 and 3.1.2. Profiles shown in the latter uses RMS of innovations meaning, the difference between the

observed  T and  S  profiles  and  the  model  7-day  forecast  values  at  the  observation  point  over  the  seven  days  of  the

assimilation cycle. This metric can be compared to our 7-day forecast errors, meaning the difference on the ¼° model grid

between the 7th field of each assimilation cycle with the Nature Run. 

It is then expected that scores may differ from one set of experiment to the other. Moreover there are no reasons for the

Nature Run to be similar to the ocean state estimated by OSEs and so the results to be exactly the same. 
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Now considering these OSE and OSSE results, we see that the given profiles are very similar. As we explained in the

previous part, temperature fields at depth are improved compared to the Free Run when altimetric sea level observations are

assimilated and this conclusion can also be made when looking at the OSEs results when analysing the corresponding Free

Run and RunNa (meaning No Argo) OSEs of Turpin et al. (2016). In the OSSEs, maxima of RMS errors drop from 1.2°C

(Free Run) to 0.9°C (Sat3) and in the OSEs, it goes from 1.35°C (Free Run) to 1.18°C (RunNa). For S, both protocols give

the similar conclusion that salinity is not highly impacted by altimetry data assimilation. 

Improvement brought by the Argo float assimilation is explained by the comparison between Argo1 and Sat3 for OSSEs and

the RunOP (for Operationnal Run) and RunNa for Turpin et al. (2016) OSEs. Temperature RMS error maximum reaches

0.6°C  for  Argo1  and  1°C  in  the  RunOP;  in  both  cases  it  is  reduced  compared  to  simulations  without  Argo  profiles

assimilations. Concerning Salinity, maxima are located at the surface and are close to 0.2 psu for Argo1 and 0.17 psu for

RunOP. The major improvement is done in Argo1 where the RMS error is divided by almost two compared to Sat3. 

This comparison helps to validate the results of the OSSE experiments. The similarity of the error profiles for both the OSE

and OSSE is a good indication of the realism of the OSSE experimental context, at least in term of errors relative to the

“Nature Run” for the OSSE and the real ocean for OSEs.

Figure 16 maps give a better understanding of how and where the improvements are made in Argo1 compared to Sat3. They

represent the RMS error of temperature at the surface, 318m, 902m and 1941m. Those depths correspond to model vertical

level. Only fields in the upper 2000m are shown because it is the maximum depth for Argo profiles.

Sat3 RMS error maps show larger scale patterns compared to the Argo1 fields where much more small structures are visible.

At the surface, in-situ data assimilation is the most effective in the southern ocean where RMS errors are strongly driven

back to a much smaller value (from more than 2°C to less than 0.8°C). Elsewhere Argo1 presents weaker and smaller RMS

error compared to Sat3.

The 318m depth is the most impacted level by the assimilation presented here. The strong RMS error in the Atlantic is

efficiently corrected in Argo1 and values are reduced everywhere else. Errors show smaller structures and only remain high

in the WBCs.

The last two maps (at 902m and 1941m) give similar results but in a much less significant way. Big patterns in Sat3 are

corrected and lead to small RMS error structures in Argo1. 

Finally we did not comment the impact of Argo observations on the Seal Level since the differences are not significant

between Argo1 and Sat3.

5. Conclusion 

A series of Observing System Simulation Experiments (OSSEs) was carried out with a global data assimilation system at

1/4° resolution using simulated data derived from a 1/12° resolution free simulation. The objective was to quantify how well

multiple altimeter missions and Argo can constrain a global data assimilation system. Impact of multiple altimeter data is

clearly evidenced. The first altimeter is the one that reduces the most the error and corrects large scale sea level biases.  This

was also found in OSEs conducted with different real time forecasting systems (e.g. Lea et al., 2014; Oke et al., 2015). )

where the first altimeter contributes the most to the Sea Level error reduction. Forecasts of sea level and ocean currents

continue to be improved when moving from one altimeter to two altimeters with a relative error reduction of almost 30%.

The addition of a third altimeter still improves the forecasts even at this medium 1/4° resolution and brings an additional

relative error reduction of about 10%.  Results show that a third altimeter still provides sea level and ocean current error

reduction in every highly dynamic area such as WBCs. This is because in WBCs a 1/4° model is not able to create structures

8

5

10

15

20

25

30

35



with scales smaller than 100-200km, but when assimilating several altimeters, this limit falls closer to 100km. Assimilating

altimeter data improves the representation of the upper temperature fields. The addition of Argo has a major impact to

improve temperature fields and demonstrates the essential role of Argo together with altimetry to constrain the ocean interior

in a global data assimilation system. Salinity fields are only marginally improved. Results derived from these OSSEs are

consistent with those derived from experiments with real data (OSEs) but they allow a more detailed analysis of errors. They

also show that  our OSSEs are well  calibrated to simulate the impact  of observing systems on our ocean analyses  and

forecasts. 

The study is now being extended to analyse the impact of extension of Argo (deep Argo, improved coverage in western

boundary currents and in the tropics), evolution of the altimeter constellation and impact of the other elements of the global

in-situ observing systems (e.g. moorings, gliders). 
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Table 1 : Computed simulations and assimilated data set.
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Table 2 : Assimilated simulation relative Sea Level MSE in percent of the Free Run MSE.
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Table 3 : Assimilated simulation relative zonal velocity (U) meridional velocity (V) and  MSE in percent of the Free Run

MSE.
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Fig.1 : a) Satellites tracks over 35 days in the North Atlantic. Blue : Jason 2 ; Black : Envisat ; Blue : Jason 1. b) Argo

profiles over the year 2009.

Fig.2 : Global Mean Square Error (MSE) of the relative SL in cm2 compared to NR  for the FR (a), Sat1(b,c), Sat2(d,e) and

Sat3(f,g). 7-day forecast on the left column and analyses on the right.

Fig.3 : Time evolution of the global MSE of SL in cm² for both analyses (plain lines) and 7-day  forcasts (dashed lines) for

Sat1(blue), Sat2(Green) and Sat3(Red).

Fig.4 : GS 7-day forecast MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).

Fig.5 : GS analyses MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).

Fig.6 : AC 7-day forecast MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).

Fig.7 : AC analyses MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).

Fig.8 : KU 7-day forecast MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).

Fig.9 : KU analyses MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).

Fig.10 :  Sea  Level  error  energy  spectrum in  the  GS(a),  AC(b)  and  KU(c)  for  FR(black),  Sat1(blue),  Sat2(green)  and

Sat3(red). Analyses are in plain line and 7-day forecast in dashed line.

Fig.11 : Sea Level variance preserving error spectrum in the GS(a), AC(b) and KU(c) for FR(black), Sat1(blue), Sat2(green)

and Sat3(red). Analyses are in plain line and 7-day forecast in dashed line.

Fig.12 : Global MSE in cm2.s-2 of U compared to NR in cm for the FR (a), 

Sat1(b,c), Sat2(d,e) and Sat3(f,g). 7-day forecast on the left column and analyses on the right.

Fig.13 :  Global  7-day  forecast  RMSE of  U (a)  and  V(b)  profiles  in  cm.s-1 for  FR(black),  Sat1(blue),  Sat2(green)  and

Sat3(red).

Fig.14 :  Global 7-day forecast  RMSE of T (a)  and S(b) profiles  respectively in C° and psu for  FR(black),  Sat1(blue),

Sat2(green) and Sat3(red).

Fig.15 : Global 7-day forecast RMSE of T (a) and S(b) profiles respectively in C° and psu for FR(black), Sat3(blue) and

Argo1(red).

Fig.16 : 7-day forecast RMSE of T in °C for Sat3 (left) and Argo1 (right) at the surface (a,b), 318m (c,d), 902m (e,f), and

1941m (g,h).
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Fig.1 : a) Satellites tracks over 35 days in the North Atlantic. Blue : Jason 2 ; Black : Envisat ; Red :

Jason 1.



Fig.1 : b) Argo profiles over the year 2009.



(a)

(b) (c)

(d) (e)

(f) (g)

Fig.2 : Global Mean Square Error (MSE) of the relative SL (in cm2) compared to NR  for the FR 

(a), Sat1(b,c), Sat2(d,e) and Sat3(f,g). 7-day forecast on the left column and analyses on the right.



Fig.3 : Time evolution of the global MSE of SL in cm² for both analyses (plain lines) and 7-day 

forcasts (dashed lines) for Sat1(blue), Sat2(Green) and Sat3(Red).
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(b)

(c)

Fig.4 : GS 7-day forecast MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).



(a)

(b)

(c)

Fig.5 : GS analyses MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).
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(b)

(c)

Fig.6 : AC 7-day forecast MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).



(a)

(b)

(c)

Fig.7 : AC analyses MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).
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(b)

(c)

Fig.8 : KU 7-day forecast MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).



(a)

(b)

(c)

Fig.9 : KU analyses MSE of SL in cm² for Sat1(a), Sat2(b) and Sat3(c).



(a) (b)

(c)

Fig.10 : Sea Level error energy spectrum in the GS(a), AC(b) and KU(c) for FR(black), Sat1(blue), 

Sat2(green) and Sat3(red). Analyses are in plain line and 7-day forecast in dashed line.



(a) (b)

(c)

Fig.11 : Sea Level variance preserving error spectrum in the GS(a), AC(b) and KU(c) for FR(black),

Sat1(blue), Sat2(green) and Sat3(red). Analyses are in plain line and 7-day forecast in dashed line.



(a)

(b) (c)

(d) (e)

(f) (g)

Fig.12 : Global MSE in cm2.s-2 of U compared to NR for the FR (a),  Sat1(b,c), Sat2(d,e) and 

Sat3(f,g). 7-day forecast on the left column and analyses on the right.



(a) (b)

Fig.13 : Global 7-day forecast RMSE of U (a) and V(b) profiles in cm.s-1 for FR(black), Sat1(blue), 

Sat2(green) and Sat3(red).



(a) (b)

Fig.14 : Global 7-day forecast RMSE of T (a) and S(b) profiles respectively in C° and psu for 

FR(black), Sat1(blue), Sat2(green) and Sat3(red).



(a) (b)

Fig.15 : Global 7-day forecast (dashed line) and analysis (plain line) RMSE of T (a) and S(b) 

profiles respectively in C° and psu for FR(black), Sat3(blue) and Argo1(red).
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(e) (f)

(g) (h)

Fig.16 : 7-day forecast RMSE of T in °C for Sat3 (left) and Argo1 (right) at the surface (a,b), 318m 

(c,d), 902m (e,f), and 1941m (g,h).


