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Abstract. A new method for isolating the equatorial and coastal Kelvin wave signal from alongtrack

satellite altimetry data is presented and applied to sea level anomaly (SLA) observations in the trop-

ical Indian Ocean. The method consists of sequential projections onto the SLA data, starting with

meridional or cross-shore Kelvin wave profiles derived from shallow water theory (y–projections).

Next, Fourier basis functions in x-t (along-waveguide distance and time respectively) space with the5

phase speed ranges of Kelvin and Rossby waves are projected onto the y–projections. After projec-

tions in all three dimensions have been carried out, least-squares methods are applied to optimize the

non–orthogonal basis function coefficients and minimize the misfit of their along–waveguide forc-

ing and dissipation. Lastly, the westward-propagating (Rossby wave-related) signals are removed,

generating a Kelvin wave coefficientK that represents Kelvin wave activity. Along the Indian Ocean10

equatorial-coastal waveguide, Hovmöller diagrams of K show reduced high–wavenumber noise

compared to analogous diagrams of pre-processed sea level anomaly. Results from a Monte Carlo

simulation demonstrate that Kelvin wave signals generated a priori can be effectively isolated even

when superimposed with strong Rossby waves; the signs of all but the weakest Kelvin waves are

diagnosed correctly in over 90% of cases. When the method is applied to 21 years of satellite obser-15

vations and the SLA signal associated with K is removed, the large residual in the equatorial SLA

signal has a spatial distribution consistent with wind–forced Rossby waves. The equatorial SLA vari-

ability in the western part of the basin is poorly correlated with the SLA field associated with K, as

the superimposed SLA profile of Rossby waves can distort the true origin locations of Kelvin waves

in the raw SLA field. Therefore, this method offers improved tracking of Kelvin waves compared to20

the raw SLA dataset, and may provide the opportunity to study weakly nonlinear aspects of these

waves by comparison with linear models.
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1 Introduction

The quantification of ocean variability associated with equatorial long waves is a topic of great im-

portance for understanding the tropical ocean and its role in climate. Since the advent of satellite25

altimetry, the surface manifestations of these waves and the wind forcing driving them have been

tracked in datasets that now comprise over 20 years of continuous global coverage (e.g., Delcroix

et al., 1994; Susanto et al., 1998; Boulanger and Menkes, 1999; Drushka et al., 2010). However, to

use these observations to better understand the behavior of these planetary waves and their relation-

ship to climate variability, analysis techniques are needed that target the specific signatures of Kelvin30

and Rossby waves in satellite observations. In particular, the present study was motivated by a need

to quantify the relative presence of upwelling vs. downwelling Kelvin waves in the equatorial Indian

Ocean and along the coasts of Sumatra and Java, where they are influential in the evolution of Indian

Ocean Dipole events (Delman et al., submitted).

A variety of techniques have been employed to quantify equatorial long wave activity from satel-35

lite observations; these range from the application of sophisticated data assimilation techniques to

meridional projections of sea level anomaly (SLA) data. The data assimilation approaches generally

use a linear wave–propagation model, along with Kalman filters (e.g., Miller and Cane, 1989; Fu

et al., 1993) or adjoints (e.g., Thacker and Long, 1988; Long and Thacker, 1989a, b) to incorpo-

rate observations. These techniques are particularly useful for cases where observations are sparse40

and error–prone, as is often the case for in–situ measurements, and also during the earlier years of

satellite observations when spatial resolution was low (e.g., Geosat). As the spatial and temporal

coverage of altimeter–derived remote sensing data increased, it was conceivable to estimate Kelvin

and Rossby wave activity using solely meridional projections of SLA data, or a combination of SLA

and current observations. Cane and Sarachik (1981) showed that vectors containing SLA and sur-45

face current profiles associated with a given vertical Kelvin wave mode and its associated meridional

Rossby wave modes are orthogonal; this orthogonality provided the basis for an equatorial wave de-

composition in numerous studies (e.g., Delcroix et al., 1994; Yuan et al., 2004; Yuan and Liu, 2009).

Boulanger and Menkes (1995, 1999), BM9599 hereafter, also carried out a decomposition using

only meridional projections of SLA data that were reasonably consistent with projections derived50

from in–situ moorings. However, the decomposition of Kelvin and Rossby wave modes based on

meridional projections of SLA alone are not orthogonal, and as Yuan et al. (2004) notes, this ne-

cessitates the inversion of an ill–conditioned matrix. An alternative approach used complex EOFs

of SLA to separate Rossby and Kelvin wave signals in the equatorial Pacific (Susanto et al., 1998);

one limitation of this method is that complex EOFs by definition constrain the along–waveguide55

and across–waveguide length scales of the waves, while shallow–water theory only constrains the

across–waveguide length scale.

Here we build on the methodology of BM9599, by using the approximate phase speeds as well

as cross–waveguide profiles to isolate the Kelvin wave signal. Starting with the SLA meridional
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projections of BM9599, we apply harmonic projections in the along–waveguide direction and in60

time, followed by a least–squares fit to optimize the non–orthogonal projection coefficients. The

result is a Kelvin wave coefficientK that approximates Kelvin wave generation and dissipation along

the waveguide, and can be used to track coastal as well as equatorial Kelvin waves. The method as

described is focused only on an accurate representation of Kelvin (not Rossby) wave activity, though

an extension of these techniques might enable a comprehensive decomposition of equatorial waves65

(as discussed in Section 4). The paper is structured as follows: Section 2 describes the satellite

data used, and the harmonic projection and least–squares method that results in the Kelvin wave

coefficient K. Section 3 estimates errors associated with the computation of K using a Monte Carlo

simulation, and discusses qualitative and quantitative analyses of satellite observations to assess

how effectively K describes Kelvin wave activity along the Indian Ocean waveguide. Section 470

summarizes the strengths and weaknesses of the method, and considers the possibility of extending

the method to quantify Rossby wave activity.

2 Method

2.1 Data

Our methodology quantifies Kelvin wave activity using AVISO Ssalto/Duacs alongtrack SLA data,75

specifically those from the TOPEX/Poseidon, Jason–1, and Jason–2 satellites. These satellites re-

peat their orbit over a given track approximately every 10 days, and the data have near–continuous

coverage from September 1992 to December 2013. The reason for using alongtrack as opposed

to the frequently–used gridded product is the increased spatial resolution in the along–track direc-

tion, ∼1/10◦ compared to 1/3◦ for gridded data. One of the advantages of this method is its utility80

for tracking waves in their transition from equatorial to coastal Kelvin waves. However, quantify-

ing coastal Kelvin waves requires higher spatial resolution, as the baroclinic radius of deformation

shrinks from ∼400 km at the equator to ∼100 km at 10◦S. The disadvantage of using the along-

track data is the large spacing between tracks in the zonal/alongshore direction (∼ 300 km along the

coast), but the spacing is still small relative to the along–waveguide length scale of Kelvin waves85

near the equator, typically >1000 km.

Due to the anisotropy of equatorial–coastal long waves, the offset angle between satellite tracks

and meridional cross–sections at the equator is likewise considered to be negligible, and both as-

cending and descending tracks are used in the analysis. Along the Sumatra and Java coasts, only

ascending (SW–NE oriented) tracks are used in Kelvin/Rossby wave projections to best approxi-90

mate a cross–shore profile. For computational expediency in the least–squares part of the solution,

the method was applied to overlapping two–year subsets of the full data record, with each subset

overlapping with the next one by a year. The results from each subset were then patched together

using a tapered weighted averaging in the overlapping year to create a continuous field of K values
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for the 21–year period of record (i.e., with 20 subsets patched together). For comparison purposes95

and to present clear visual snapshots of variability in the Indian Ocean basin, gridded maps of SLA

(MSLA) (Ducet et al., 2000) were also used to generate some of the figures in this paper.

2.2 Kelvin wave y–projections

The first step in the computation of the Kelvin wave coefficient K is to calculate the projection

of the SLA data onto a meridional or cross–shore profile of a baroclinic Kelvin wave based on100

linear shallow–water theory (e.g., Gill and Clarke, 1974; McCreary, 1981). We refer to this as the

y–projection; for an equatorial Kelvin wave it is the same Gaussian profile given in Appendix A2 of

Boulanger and Menkes (1995), but our analysis also considers coastal Kelvin waves for which the

wave profile transitions to a decaying exponential away from the equator. For an equatorial–coastal

Kelvin wave the profile is105

hK(y) = h0 exp
[
−β cosφ

2c
y2± f0

c
y

]
(1)

where y is the perpendicular distance relative to the equator or the coastline, h0 is the amplitude

(i.e., peak value) of the wave, f0 is the Coriolis parameter at the latitude where the profile intersects

the coast, and φ is the angle of orientation of the coast relative to the east–west axis (f0 = 0 and

φ= 0 for equatorial Kelvin waves). The sign in front of (f0/c)y for coastal Kelvin waves is chosen

such that the term is always negative. As our focus here is on Indian Ocean Kelvin waves that are110

deflected to the south of the equator, y is negative and decreasing away from the coast, and f0 < 0, so

the sign is negative. The value of c for the meridional/cross–shore profiles in this analysis was taken

to be 2.5 m s−1. This value of c lies between the first–and second–mode baroclinic phase speeds for

Kelvin waves in the region, as these two modes account for most Kelvin waves observed in Indian

Ocean SLA (Drushka et al., 2010). However, using c = 2.0 m s−1 or 3.0 m s−1 does not produce a115

substantially different result.

Applied to the altimetry data, the Kelvin wave y–projection is given by

Ky =
1
2

r∫

−r

(
hSLA−hSLA

) hK −hK
h0

dy (2)

for equatorial Kelvin waves and

Ky =

0∫

−r

(
hSLA−hSLA

) hK −hK
h0

dy (3)

for coastal Kelvin waves south of the equator, where hSLA is the alongtrack altimetry profile, and r

is the radius for the profile projection. The overbar indicates the meridional a= 1/(2r)
∫ r
−r ady or120
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cross–shore a= 1/(r)
∫ 0

−r ady mean (for equatorial and coastal waves respectively) of the profile a

over the range being integrated. For the r value, we used 5◦ of latitude for equatorial Kelvin waves; r

was then tapered to a distance equivalent to 3◦ of latitude along the coasts of Java and Nusa Tenggara

to account for the smaller radius of deformation. We note that Ky is an integrated measure of the

sea level displacement; this type of measure is a more consistent indicator of Kelvin wave activity in125

the equatorial–coastal transition than peak amplitude, since without substantial dissipation, the peak

amplitude of the wave tends to increase poleward as the radius of deformation decreases (Figure 1).

2.3 Projection using harmonic basis functions in x and t

After the Kelvin wave y–projections Ky are computed, the next step in our approach is to project

Ky onto two–dimensional Fourier basis functions in along–waveguide distance x and time t. One130

method of separating these components is to assume that a vector b consisting of the alongtrack

Kelvin wave projections Ky can be explained as a linear combination of two–dimensional Fourier

basis functions

Am = b (4)

where the columns of A are the basis functionsAcos
m,n = cos[2π (kmx− fnt)] andAsin

m,n = sin[2π (kmx− fnt)]
and x and t are along–waveguide distance and time respectively; the Fourier coefficients to be solved135

for are contained in the vector m.

Basis functions Am,n that propagate from one side of the basin to the other at constant ampli-

tude are most effective at representing Kelvin waves that similarly propagate across the basin with

little change in amplitude. Kelvin waves that are forced and dissipate within the domain, especially

with the low wavenumbers common to Kelvin waves, may have some of their energy aliased into140

westward–propagating signals. To resolve this aliasing issue, we introduce an additional tapering

parameter s to the basis functions (Figure 2). The basis functions Am,n,s take the form

Am,n,s =





0, x≤ xs−∆x
(
1− xs−x

∆x

)
Am,n, xs−∆x < x < xs

Am,n, x≥ xs
(5)

The tapering location xs is varied at intervals of ∆x = 600 km throughout the span of the waveguide,

corresponding to the shortest wavelengths resolved along the coastal part of the waveguide (along

the equator the effective Nyquist wavenumber is higher with more satellite tracks used). For s= 1,145

xs = xW the western boundary, while for s > 1, xs = xW +(s−1)∆x. The forcing and dissipation

of a wave within the domain can be expressed as the superposition of basis functions with varying

s-values.
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Furthermore, to reduce the number of basis functions and make the subsequent least–squares

problem less underdetermined, we limit the basis functions to certain phase speed ranges associated150

with the waves we expect to observe using satellite altimetry. Therefore only basis functions Am,n,s

corresponding to phase speeds cm,n = fn/km typical of Kelvin waves (1.5 m s−1 ≤ cm,n ≤ 3.5 m

s−1), Rossby waves (−1.2 m s−1 ≤ cm,n ≤−0.4 m s−1), and stationary signals (km = 0 or fn = 0)

are included in Am,n,s, while the other basis functions are excluded. This phase–speed limitation

reduces the number of basis functions to approximately twice the number of Ky values in b. The155

tapered basis functions in Am,n,s corresponding to the phase speed ranges are projected onto the

vector b containing the Ky values. First, a least–squares planar fit to b is removed, and then the

basis functions are projected onto b

mP = ATb (6)

producing a vector mP of data projections that can be used to solve for the basis function coefficients

m of identical size. For the projection values to be unbiased with respect to s, the projections are160

normalized by the size of the nonzero domain, expressed as a normalizing vector nP, with nPm,n,s =

(2/N)xmax [xmax− (xs− 0.5∆x)]−1, and N = length(b). Accordingly, the normalized vector of

basis function projections is

mnP = nPmP = nPA
T
b (7)

2.4 Least–squares optimization and removal of westward–propagating signals

After the x–t projections have been carried out and normalized, basis function coefficients are re-165

covered from the data projections in mnP using least–squares methods; the solution is optimized

to prevent a poorly-scaled solution with the cancellation of large coefficients in m. In addition to

constraining the size of the basis function coefficients mTm, we chose to minimize the misfit of

the rate of change in data projection values along the waveguide, ∂mnP/∂s, in order to constrain

high–wavenumber variability within the domain. We also minimize the misfit of the untapered data170

projection values, mnP|s=1, to the s= 1 basis function coefficients. Hence the vector that we mini-

mize the misfit for is

wTDmnP = wT


 mnP|s=1

∂mnP

∂s |s>1


 (8)

where D is the identity operator for s= 1 projections, and the finite difference operator for s > 1

projections. The column vector w can be used to weight the elements of DmnP relative to one

another. In this case setting w to all ones was found to be sufficient, though accuracy may be gained175
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in certain areas by adjusting the weighting vector; we speculate about one such case in Section 4.

With wn = 1 for all n, we miminize the misfit of DmnP and the size of mTm using the cost

function

L=
[
DnPA

T
(Am)−DmnP

]T [
DnPA

T
(Am)−DmnP

]
+λmTm (9)

Setting λ= 0.1 was found heuristically to produce the most credible reconstructions of theKy values

in b, while reducing noise at the highest wavenumbers. The coefficient vector m is then given by180

m =
[(

DnPA
T
A
)T

DnPA
T
A +λI

]−1

DnPA
T
ADmnP (10)

Finally, all coefficients of m that correspond to westward–propagating basis functions, i.e., sgn(fn) =

−sgn(km), are set to zero. The resulting vector mK is used to reconstruct the Ky field with the

westward–propagating signals removed

bK = AmK (11)

where vector bK consists of the Kelvin wave coefficients K as a function of x and t. These compu-

tations are carried out for overlapping two–year subsets of the data, which are then merged to create185

a continuous field of K values for the period Sept. 1992–Dec. 2013 covered by the alongtrack SLA

dataset.

3 Representations of Kelvin wave activity and error/variance estimates

3.1 Comparison of K values with raw SLA

To demonstrate how well K represents Kelvin wave activity, we present a case study where we190

compare the raw SLA along the IO equatorial–coastal waveguide during the year 1997 to the Ky

andK values for the same period (Figure 3). TheKy andK values are calculated from the alongtrack

SLA data at points where the satellite tracks cross the waveguide, hence these values are presented

as points in Fig. 3b–c, whereas the raw SLA data from the gridded product are contoured in Fig.

3a. During the May–July period, the predominant feature in the raw SLA (Fig. 3a) is an eastward–195

propagating patch of elevated positive SLA, indicative of a downwelling Kelvin wave. However,

the Kelvin wave y–projection (Fig. 3b) shows that this downwelling wave was both preceded and

followed by upwelling Kelvin waves, both of which are much more evident in the Kelvin wave

projection (Fig. 3b) than in the raw SLA (Fig. 3a). The y–projection still contains a number of

westward-propagating signals (e.g., Jan.–Feb., and Oct.–Dec.) unrelated to Kelvin waves, and most200

likely represent Rossby waves flanking the equator. These westward–propagating signals are no
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longer visible in the K values for 1997 (Fig. 3c), and the trajectories of alternating upwelling and

downwelling Kelvin waves are much more readily apparent.

The values of K can also be re–projected back into two spatial dimensions, to reconstruct the

component of the SLA field that is associated with Kelvin wave activity. The reconstructed hK is205

obtained by obtaining the wave amplitude h0 associated with K

h0(x,t) =
K(x,t)

∫ 0

−r exp
[
−β cosφ

2c y2− f0
c y
]
dy

(12)

and substituting into (1). A comparison of the reconstructed hK with gridded maps of SLA over a

two–month period in 1997 (Figure 4) confirms that the Kelvin wave reconstruction is broadly con-

sistent with the Kelvin wave activity suggested by the gridded SLA field, but also highlights some

key differences. In late May and early June, an elevated SLA field persists in the eastern equato-210

rial Indian Ocean (Fig. 4b–c), while the reconstructed hK indicates that the Kelvin wave activity is

changing sign from positive to negative there (Fig. 4g–h). In late June and early July, reconstructed

hK indicates that upwelling Kelvin wave activity is being generated from approximately 60◦E east-

ward (Fig. 4i–j), while SLA is only substantially depressed east of 90◦E (Fig. 4d–e). The discrepancy

during this latter period is likely accounted for by the influence of downwelling Rossby waves on215

the SLA field in the central Indian Ocean; these waves have positive SLA maxima near the north and

south radii of deformation, and would also elevate SLA (to a lesser extent) at the equator. Therefore,

this implies that in the raw SLA field in early July 1997 (Fig. 4e) the upwelling Kelvin wave still

present in the central equatorial Indian Ocean would not be apparent; this has potential implications

for understanding the timing of the upwelling wave and where it was forced.220

3.2 Monte Carlo–based error estimates

In order to place uncertainty bounds on the method’s capacity to remove westward–propagating wave

activity from the Kelvin wave estimate, we carried out a Monte Carlo simulation. In this way the

method could be applied to propagating waves whose amplitudes andK values were known a priori.

We created 100 years of randomly–generated basis function coefficients m, using Cholesky factor-225

ization (e.g., Gentle, 1998) to construct m fields whose local covariance statistics in wavenumber–

frequency (k–f ) space resemble values computed from the altimetry data, so that realistic Kelvin

and Rossby wave signals could be generated. The m coefficients were adjusted so that their values

are partially dependent on the local wave amplitude at the same wavenumber and frequency

m|k,f,s =

[
Cs

s−1∑

s′=1

m|k,f,s′
]

+ r (13)

with Cs the location–dependent adjustment parameter and r the Cholesky decomposition–based230

random component. The variances of the basis functions were also adjusted so that the distributions
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of total Kelvin and Rossby wave variance along the waveguide are consistent with the variances

obtained from satellite altimetry. Finally, after the artificially–generated eastward– and westward–

propagating signals were combined, a small amount of white noise was added to the Ky fields; the

variance of this noise is location–dependent and based on the variance in altimetry observations that235

could not be explained by either Kelvin or Rossby wave signals.

Once the artificial wave field was constructed, the harmonic projection and least–squares method

described in sections 2.3–2.4 was applied to the artificialKy field, and theK values derived from the

basis function coefficients known a priori and deduced from the method were compared. An example

of this for a given simulated year is shown in Figure 5; the artificially–generated Ky field contains240

signals propagating in both directions, though for most of the year the westward–propagating Rossby

waves appear to predominate (Fig. 5a). However, a consideration of the Kelvin wave signalKa priori in

isolation (Fig. 5b) reveals that in addition to the very strong downwelling wave early in the year, a se-

ries of weak and moderate Kelvin waves propagate throughout the year. Many of these weaker waves

are unidentifiable in theKy field with the Rossby wave signals superimposed (Fig. 5a). However, the245

reconstructed Kelvin wave signal Kreconst, computed by applying the harmonic projection and least–

squares method, recovers most of the weaker Kelvin waves in theKa priori signal and reproduces their

approximate timing and intensity (Fig. 5c). In the few locations where visible discrepancies between

Ka priori and Kreconst are present (e.g., the intensities of the Kelvin waves in March–April, east of

90◦E), high amplitude westward–propagating signals and/or sharp noisy gradients are present in the250

Ky field.

We now consider the error that is present in the reconstructed signalKreconst relative to the original

signalKa priori, specifically ε=Kreconst−Ka priori. When the 100–year artificial timeseries is analyzed,

it is found that the normalized root–mean–square (RMS) error 〈ε2〉1/2/〈K2
reconst〉1/2 is dependent

on location along the waveguide as well as whether the fields are spatially– and temporally–filtered255

(Figure 6a). (Here the angle brackets 〈〉 denote temporal averaging over the entire 100–year time span

of the simulation, but no spatial averaging other than filters applied prior to the error calculation.) The

error in recovering the original Kelvin wave signal is highest near the equatorial–coastal transition

of the waves, and on the eastern end of the domain; elsewhere it is confined to a fairly narrow

range. However, the error magnitude also depends on whether a spatial or temporal averaging filter is260

applied prior to the error calculations. Except for the most error–prone regions, the error associated

with unfiltered pointwise values of K is 50% to 60% of the total standard deviation of K. If the

K has a spatial moving average (boxcar) filter applied, but temporal averaging is limited to 10

day ranges (the resolution of the original points), the normalized error decreases slightly in most

locations and is smoother across the waveguide. The error associated with 30–day moving averages265

ofK (a typical timescale for intraseasonal Kelvin waves) decreases more substantially, to 35%–45%

in most locations.
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The probability and cumulative distribution functions associated with errors in K illustrate that

errors of the same magnitude as the Kelvin waves themeselves are infrequent when a 30–day mov-

ing average filter is applied (Fig. 6b). Relative to the total standard deviation in filtered K, σK ,270

the magnitude of the errors only exceed 0.5σK about 10% of the time (either positive or negative),

and only exceed 1σK about 2.5% of the time. In this simulation, σK ≈ 1.9× 104 m2, so the error

magnitude is less than 1×104 m2 over 90% of the time. If the error is considered relative to the mag-

nitude of the filtered reconstructed Kreconst at each location and time, the error variance is somewhat

larger. Even so, with the weakest Kelvin waves (|Kreconst|< 0.3σK) excluded, the error will only275

result in misdiagnosing the sign of most Kelvin waves (i.e., ε/Kreconst > 1) approximately 8.5% of

the time. Moreover, the 8.5% incidence decreases further if the threshold for excluding weak Kelvin

waves is raised (approximately 5.5% for a 0.5σK threshold and 2% for a 1σK threshold); thus sign

misdiagnosis using this method is rarely a problem for moderate and strong Kelvin waves.

3.3 Kelvin wave–related and unrelated SLA characteristics280

For a more comprehensive view of the variability encapsulated by the Kelvin wave coefficient K

described here, we also consider the reconstructed Kelvin wave–associated SLA field hK , in the

context of the total SLA field hSLA observed by satellites over the 21–year period from 1992 to

2013. The SLA at each point in space and time can be considered as the sum of the reconstructed

hK and a residual hres285

hSLA = hK +hres (14)

with hres in theory encompassing contributions to the SLA field from processes unrelated to Kelvin

waves, including Rossby and other planetary waves. Figures 7a,b illustrates the variances of hK and

hres respectively, normalized by hSLA. The variance ratios of both hK (Fig. 7a) and hres (Fig. 7b) to

hSLA exceed 1 along some parts of the waveguide, though this is more commonly the case with hres.

(NB: The variance ratios can exceed 1, since the hK and hres fields are generally not orthogonal.290

Thus we do not describe the variance ratios as “explained variance” in the traditional sense, but rather

compare the variances attributed to Kelvin waves vs. the residual to examine whether the residual

signal is consistent with other phenomena such as Rossby waves.)

Additionally, we compute the correlation between hK and the total hSLA and hres fields (Figure

8), to consider whether the sign of Kelvin wave activity covaries with that of the total SLA field and295

the residual. The effective degrees of freedom N∗ for the correlations in Fig. 8 were computed from

the decorrelation timescales of hK . With 21 years of data, values of N∗ range from approximately

50 to 500 over the spatial domain, with decorrelation timescales ranging from intraseasonal to semi-

annual. (For N∗ = 50, correlation coefficient magnitudes exceeding 0.23 exceed the 95% confidence

threshold; for N∗ = 500 this threshold is approximately 0.08.) The correlation of hK to hSLA along300
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the waveguide (Fig. 8a) is strongly positive in the eastern part of the basin and along the coast, but

insignificant or negative in the western part of the basin. The correlation of hK to hres is negative

over nearly the entire domain, suggesting the tendency of hK and hres to be of opposite sign and

explaining how hres in particular can have a much larger variance than the total SLA field.

The variance ratios (Fig. 7) and correlations (Fig. 8) suggest different contributions from hK and305

hres variability in at least four distinct regions along the waveguide. In the western and central parts

of the equatorial basin, even the maximum variances of hK near the equator are only slightly more

than half the variance associated with hres. In this equatorial region, it is likely that most of hres can

be attributed to Rossby waves; indeed a linear wind–forced model of equatorial waves (Nagura and

McPhaden, 2010) has shown that in the western part of the basin, Rossby waves are associated with a310

higher SLA standard deviation than Kelvin waves, even at the equator where Kelvin wave variability

peaks. The correlation of hK and hres (Fig. 8) is also strongly negative here, consistent with the

expected response of the ocean to a uniform zonal wind forcing, which would generate Kelvin and

Rossby waves of opposite sign. In the eastern part of the basin and along the coast of Sumatra, the

variances of hK and hres are more comparable, though this does not quite resemble the results from315

the linear forced model (Nagura and McPhaden, 2010) which show a much larger component of

SLA due to Kelvin waves than Rossby waves. Near the coast of Java, the variance of hK is much

larger than that of hres, suggesting that most of the SLA variability in this area can be attributed to

coastal Kelvin waves. Along Nusa Tenggara (NT) the variance of hres is once again comparable to

or greater than hK ; this may be due in part to the complexity of the islands and bathymetry here.320

It is also likely that the computation of K does not accurately resolve the splitting and diversion

of Kelvin wave energy through Lombok Strait between Java and NT (e.g., Syamsudin et al., 2004;

Drushka et al., 2010), since the least–squares fit exhibits a preference for slow tapering of K rather

than the abrupt change in wave activity associated with the narrow strait.

Finally, the lack of a robust correlation between hK and hSLA along the equator in the western part325

of the basin (Fig. 8) implies that using raw SLA to track Kelvin wave propagation may not accurately

represent where waves originate. Namely, SLA crests and troughs that only become clearly apparent

in the eastern part of the basin may actually have origins further west; some specific cases of this are

evident when comparing the SLA and K values for 1997 (Fig. 3a, c).

4 Conclusions330

The harmonic projection and least–squares method outlined here produces a measure of Kelvin wave

activity that can be applied directly to satellite observations of SLA, not only along the equator, but

also along low–latitude coastal waveguides. The method removes the westward–propagating signals

(i.e., Rossby wave signals) along such waveguides, and produces K coefficients that represent the

time variability of Kelvin wave activity at each location along the waveguide. When filtered to re-335
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move sub–monthly temporal variability, the values of K have an RMS error of approximately 0.4

times the local standard deviation of K at most points along the waveguide; excluding the weakest

waves, the method also diagnoses the sign of the Kelvin waves correctly over 90% of the time. A

decomposition of the near–equatorial SLA into Kelvin wave–associated and residual components

generates a residual field generally consistent with the activity of wind–forced Rossby waves, which340

tend to be of the opposite sign of the Kelvin waves on which they are superimposed. Therefore the

use of this method helps to isolate the Kelvin wave–associated SLA signal; it also allows for some

variation in the phase speed of the waves, so a comparison of K values with the results of linear

wind–forced models of equatorial waves (e.g., Yu and McPhaden, 1999; Nagura and McPhaden,

2010) may be useful in studying some weakly nonlinear aspects of Kelvin waves.345

It is notable that the SLA along the equator in the western Indian Ocean is not robustly correlated

with Kelvin wave activity deduced from this method, a result that has important implications for the

interpretation of SLA variability at the equator. The use of this method helps show that the SLA

signal of numerous intraseasonal Kelvin waves can be traced to the western equatorial Indian Ocean

and co–located with zonal wind stress forcing (e.g., Delman et al., submitted); therefore the lack of350

readily identifiable eastward–propagating sea level anomalies at the equator at a given time does not

necessarily imply that Kelvin waves are absent. Rossby waves may be obscuring the Kelvin waves’

signal on the western side of the basin, and the computation of K may assist in tracking Kelvin

waves from their true generation region.

We also observe two limitations of the harmonic projection/least–squares method in the form355

presented here, and consider how these might be addressed. The first is the difficulty of resolving

Kelvin wave activity to the east of Lombok Strait (∼115◦E), as evidenced by the abrupt increase

in residual variance h2
res (Fig. 7b) and decrease in hK–hSLA correlation (Fig. 8a) from the Java to

the NT coastline. Prior analyses of altimetric SLA (Syamsudin et al., 2004; Drushka et al., 2010)

indicate that about 30–50% of the Kelvin wave energy from the Java coastline continues eastward360

along the NT coastline; the rest of the energy is presumed to transit north through Lombok Strait. In

terms of our method, which does not track Kelvin wave energy through the strait, this would require

an abrupt “dissipation” of Kelvin wave activity at Lombok Strait, which is likely not resolved by our

tapered basis functions. Moreover, the overall skill of the method decreases approaching the eastern

boundary of our domain and the complex topography of the Savu Sea region. One possible way to365

resolve the abrupt change in Kelvin wave energy across the strait using our method is to adjust the

weighting w of the misfit of the vector in (8). Namely, the misfit for the tapers that span the Lombok

Strait region could be weighted more heavily, so that there is less tendency for the model to continue

steady propagation of Kelvin waves past the strait. Additionally, a finer tapering scale (e.g., ∆x =

300 km instead of 600 km) could be adopted in this particular region, though errors due to altimetry370

interactions with land may still present challenges.
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The second issue is that this method was developed with the specific goal of isolating Kelvin

waves, while the SLA signal due to Rossby waves is treated as a residual. By contrast, linear wind–

forced models and prior studies that have used SLA projections have sought to quantify the activity

of Kelvin and gravest–mode equatorial Rossby waves simultaneously. The variance ratios (Fig. 7)375

and correlations (Fig. 8) suggest that the majority of the residual SLA field along the equator can

be attributed to Rossby wave activity, and in principle there is no reason why our method could not

be expanded to specifically target Rossby waves as well. One possible alteration to our method is to

carry out the y–projections and the x,t–projections simultaneously; i.e., link each propagating basis

function to the y–profile of a Kelvin or Rossby wave mode depending on its phase speed. Isolating380

the SLA displacement associated with each mode would allow for a more complete picture of equa-

torial dynamics to be deduced from satellite altimetry, and this altered method will be explored in a

future study.
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Figure 1. AVISO gridded sea level anomaly (SLA) in the Indian Ocean basin, on (a) June 25, 1997 and (b)

July 16, 1997, with upwelling Kelvin waves (depressed SLA) peaking in the central Indian Ocean and along

the Sumatra/Java coasts respectively (green dashed ellipses). The brown dashed lines indicate the radii of defor-

mation for 1st baroclinic mode Kelvin waves, with the radius extended along the Indonesian coastal waveguide

south of the equator. The locations of Sumatra, Java, and Nusa Tenggara (NT) are also indicated.
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Figure 2. Schematic illustrating the use of tapered basis functions. (a) Profile of a non–tapered two–dimensional

basis function Am,n in x and t. (b) Profile of a tapered basis function Am,n,s, with tapering location x= xs

and a tapering window of ∆x. (c) Profile of two superimposed basis functionsAm,n,s−Am,n,s′ , with tapering

locations of x= xs and x= xs′ respectively; the superposition of two or more tapered basis functions allows

for the forcing and dissipation of waves.
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Figure 3. (a) Sea level anomaly (SLA) along the waveguide that crosses the equatorial Indian Ocean and follows

the coasts of Sumatra, Java, and Nusa Tenggara, during 1997. The data plotted are from the 1/3◦ gridded AVISO

product, in units of cm. (b) Kelvin wave y–projections Ky along the waveguide during 1997, derived from the

alongtrack SLA data collected by the TOPEX/Poseidon satellite during 1997, in units of 104 m2. (c) The Kelvin

wave coefficientK values during 1997, in units of 104 m2. The vertical dashed lines in each plot indicate (from

left to right) the locations of the equatorial–coastal transition (98◦E), the Sumatra–Java transition at Sunda

Strait (105◦E), and the Java–Nusa Tenggara transition at Lombok Strait (115.65◦E).

18

Ocean Sci. Discuss., doi:10.5194/os-2016-1, 2016
Manuscript under review for journal Ocean Sci.
Published: 12 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 4. Maps of (a)-(e) SLA and (f)-(j) reconstructed hK , the Kelvin–wave associated SLA, for snapshots

(dates in the top–right corner of each panel) over a 2–month period in 1997. As in Fig. 1, the brown dashed

lines indicate the radii of deformation for 1st baroclinic mode Kelvin waves.
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Figure 5. (a) Kelvin wave y–projection values Ky from year 5 of the Monte Carlo simulation, along the Indian

Ocean equatorial–coastal waveguide. (b) Kelvin wave coefficient values Ka priori generated in year 5 of the

Monte Carlo simulation. (c) Reconstructed Kelvin wave coefficient values Kreconst for year 5 of the Monte

Carlo simulation, obtained using the harmonic projection and least–squares method. All quantities are given in

units of 104 m2.
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Figure 6. (a) Normalized root–mean–square (RMS) error estimates for K as a function of longitude along the

waveguide, based on the 100–year Monte Carlo simulation and computed as 〈ε2〉1/2/〈K2〉1/2. The different

curves show the effect on RMS error of applying spatial and temporal moving average filters to the a priori

and reconstructed K values. (b) The probability distribution function (solid lines) and cumulative distribution

function (dashed–dotted lines) of normalized error, with a 20◦ longitude and 30 day moving average filter

applied prior to the error computation. The curves are shown for two different normalizations: (blue) normalized

by the standard deviation of K over all longitudes and times ε/σK , and (green) normalized by the filtered

reconstructed value Kreconst for each longitude and point in time ε/Kreconst; in the latter case errors associated

withe values of |Kreconst|< 0.3σK have been excluded.
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Figure 7. (a) The variance ratio of Kelvin wave–associated SLA to total SLA, 〈h2
K〉/〈h2

SLA〉. (b) The variance

ratio of the residual to total SLA, 〈h2
res〉/〈h2

SLA〉. The annual and semiannual harmonics have been removed by

linear regression.

Figure 8. (a) The correlation coefficient of Kelvin wave–associated SLA to total SLA,

〈hKhSLA〉/
[
〈h2

K〉〈h2
SLA〉

]1/2. (b) The correlation coefficient of Kelvin wave–associated SLA to the

residual, 〈hKhres〉/
[
〈h2

K〉〈h2
res〉

]1/2. The annual and semiannual harmonics have been removed by linear

regression. Only correlation coefficients exceeding the 95% confidence threshold for significance (based on a

Student’s t–distribution) are shaded.
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