This manuscript attempts to derive meaningful indices for Kelvin wave activity along
the equatorial and coastal waveguide in the Indian Ocean. It is a worthwhile goal, and
the authors have certainly invested a great deal of effort in the pursuit, but I regret that
I cannot recommend the manuscript for publication. There are too many unsupportable
and erroneous mathematical manipulations that don’t do what the authors intend them
to, and I cannot come up with suggestions for straightforward corrections that would fix
the problems. Below I will list problems as they arise in the manuscript, but this list is not
necessarily comprehensive. By the point in the manuscript where the list stops, I could no
longer believe in the product of the manipulations.

1) Line 58: The authors claim to be building on the methodology of Boulanger and
Menkes, 1995, 1999, but this is not true. The problem with deducing equatorial wave
amplitudes from only Sea Level Anomalies (SLAs) is that the signals of separate wave
modes are not orthogonal (as the authors acknowledge). The individual wave amplitudes
could only be deduced if the observed meridional profile of SLA were composed of only a
finite number of modes. Boulanger and Menkes made the reasonable approximation that
MOST of the SLA profile could be described by a large but finite number of modes (21)
and then they derived an approximate solution for the singular matrix associated with
projections onto all these modes. This manuscript only attempts a projection onto the
lowest Hermite function, which if done properly, would not be able to distinguish between
the amplitudes of the Kelvin wave and the first meridional mode long-Rossby wave; both
of which can be expected to be present in the SLA signal. Presumably, these can be
separated later by separating the eastward from the westward propagating signals, but
the ambiguity should be acknowledged up front. It is misleading to call the projection
attempted in equation (2) the “Kelvin wave y-projection.”

2) The “projections” in (2) and (3) are not really projections, the mathematical forms
and the choice of integration limits are puzzling, and the authors provide no justification
for their choices. In Fourier analysis it is common to subtract the mean of a data set prior
to projecting onto the sines and cosines, but this works because the basis functions all have
zero mean. This is not true of the Hermite functions, and it is not true of the exponential
profile of the coastal wave. Subtracting the means before integration introduces extra terms
that have nothing to do with the desired projection, and limiting the integration limits to
5 degrees latitude ensures that the Kelvin wave structure will not even be orthogonal to
structures that it should be orthogonal to.

I'll use a simple idealized situation to illustrate the problems with (2). On an unbounded
equatorial S-plane, the orthonormal Hermite functions, ¥,(y), n =0,1,2,---, provide a
complete basis. The argument of the Hermite function is the latitude normalized by the
deformation radius: ¢ = y/L., with L, = \/0/76 ~ 3° latitude for ¢ = 2.5 m/s. Even in
a bounded basin like the Indian Ocean, a truncated set of these functions does a decent
job of describing meridional structures while remaining approximately orthonormal. An
exception might be the region just south of Sri Lanka, but this is only a small part of the
longitudinal span of the basin.

The meridional structure of an equatorial Kelvin wave’s SLA is 1)y: the Gaussian part of



the authors’ equation (1), with a normalizing factor of 77%/4 (so that [ 2 dj = 1). The
structure of the mode-1 long-Rossby wave’s SLA is (271245 + /). Suppose the measured
equatorial SLA contains only a Kelvin wave of amplitude Ag, a 1st mode long-Rossby wave
of amplitude A; and a background of other variability that is orthogonal to the Kelvin
wave: B(y) = X2 ,b,¢,. A true projection onto the Kelvin wave structure would be
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This demonstrates the non-orthogonality of the pressure structures of equatorial waves,
but at least we're only left with two modes to be sorted out later. If the integration limits
are reduced to +10°, the results are essentially the same, with only a small error. At the
authors’ chosen integration limit of 5° latitude, however, the Kelvin wave structure is still
almost 25% of it’s maximum value, and over this interval it is not even approximately
orthogonal to any of the other even Hermite functions. In this case, a proper attempt at
a projection would yield:
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The additional terms may be individually small, but a realistic background would contain
a large number of them, and they can add up to a significant number that has nothing
to do with the Kelvin wave amplitude, all because the integration was not carried to a
latitude where the Kelvin wave is truly insignificant.

An even worse situation arises when the means are subtracted prior to the integration,
as in the manuscript’s equation (2). I will continue to integrate in the nondimensional
coordinate g for consistency with the above equations, but note that with the exception
of a normalizing constant, the “projection” below is identical to (2) in the manuscript.
Integrating over ¢, the authors’ definition of mean becomes
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and the “projection” in their equation (2) is
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Using the manuscript’s values of r and ¢, the equation is
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The first term on the right-hand-side is half of the true projection of the SLA onto the
Kelvin wave structure (which includes the mode-1 Rossby wave amplitude), except that it
will contain the extraneous terms noted above because the value r = 5° is too small. The
second term is a fraction of the mean SLA and has nothing to do with the Kelvin wave
amplitude. Furthermore, the factor in front of hgps asymptotes to 0.94 as r/L. — oo.
This term cannot be removed by choosing larger integration limits. It is the consequence
of erroneously subtracting the means of hgya and v in (2).

Similar issues arise with the “projection” in (3) onto the coastal Kelvin wave structure,
but T won’t go into detail. Even without the problem of subtracting the means, the
exponential decay of the coastal wave would project onto just about anything. K, would
likely include contributions that have nothing to do with the Kelvin wave or even the
Rossby waves represented by their limited set of x — ¢ “basis” functions. To repeat, the
“projections” in (2) and (3) are not really projections onto Kelvin wave structures, and they
are not reliable measures of either the Kelvin wave or low-mode Rossby wave amplitudes.

3) Lines 124-127: The authors note that the amplitude of a coastal Kelvin wave in-
creases as the wave propagates poleward in the absence of dissipation, and this is correct.
They claim, however, that the integral of the Kelvin wave’s SLA structure is thus a better
measure of the wave, and this is not true. What remains constant with changing latitude
is the energy flux, and this is proportional to the integral of the squared SLA structure
(which obviously includes the squared amplitude).

4) Equation (1) is not quite correct for Kelvin waves propagating meridionally. This
may not matter given my next comment, but the authors should at least note the approx-
imation and cite a reference when they present the equation.

5) For a harmonic solution of given frequency, w, coastal Kelvin waves as described by
(1) in the manuscript do not technically exist equatorward of the turning latitudes

Y = 4/(w/B)” + (¢/2)2. (12)




Within these latitudes, Rossby waves can propagate freely, any meridional motions on an
eastern boundary will shed long Rossby waves, and the transfer of energy flux from an
equatorial Kelvin wave incident upon an eastern boundary to the outgoing coastal Kelvin
waves poleward of the turning latitudes is more complicated than the simple scenario
described by (1). For ¢ = 2.5 m/s and a period of 45 days, the turning latitudes are at
+7°, which is about the latitude of the southwestern tip of Java. For periods this long
or longer, it is not worth trying to describe a Kelvin wave propagating down the coast of
Sumatra from the equator.

The actual Kelvin waves are pulse-like and so contain a spectrum of frequencies, some
of which maybe high enough to sustain a true Kelvin wave along the coast of Sumatra, but
even if you could describe the alongshore energy flux of the entire pulse as a pseudo-Kelvin
wave, its energy flux would be decreasing steadily poleward as energy is shed westward
into Rossby modes. This loss of along-shore energy flux would be much different than that
produced by dissipation. The tapered pseudo-basis functions would not apply equally well
to both situations.

6) The x —t “basis” functions presume that all signals are moving along the coast in
one direction or the opposite, and the suite of functions is truncated to waves moving in
the Kelvin wave direction for a range of appropriate phase speeds and waves moving in the
opposite direction for a range of Rossby wave speeds. If a Kelvin wave could be described
along the coast of Sumatra, the Rossby waves would not propagate in the opposite direction
from the Kelvin wave. The basis function would be trying to isolate signals propagating
northwestward at the Rossby wave’s westward phase speed. The Rossby wave’s amplitude
is embedded in the K, vector, but the amplitude of the waves shedding westward at one
latitude does not match the amplitude of the wave shedding westward at a different latitude
in a way described by the basis function.

7) There is often an energetic eddy field south of Java and the Indonesian Islands that is
close enough to the coast to be captured by the K, integration in (3). This is a place where
the Kelvin and Rossby waves do propagate in opposite directions, but the manuscript limits
the westward propagating basis functions to phase speeds —1.2m/s< ¢, < —0.4 m/s.
The eddies propagate at -0.15 to -0.2 m/s (Feng and Wijfells, JPO, 2002), so even though
their SLA signal will be included in the K, vector, the basis functions will not be able to
filter them out through their propagation characteristics.

8) The “basis” functions are not truly basis functions - they do not constitute a complete
set. I would have to see more details of the mathematic involved in the “projections” onto
the tapered functions to asses the value of this step.

Unfortunately, at this point I have lost confidence in the authors’ understanding of
precisely what each of their calculations does. It feels like a series of flawed mathematical
manipulations that produces an answer of dubious value. The fact that their figures
qualitatively resemble the raw SLA plots is probably due to the robustness of the Kelvin
wave in this part of the world, but I can’t believe that the final K product has more
value than an amplitude derived by simply tracking alongshore time-longitude plots. The
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mathematical complexity of the procedure implies a rigor that is not really justified.

The authors have obviously put considerable effort into this procedure and it is possible
that with the above comments in mind and a more careful approach, they could rework
the procedure into something more meaningful. I can’t suggest an obvious way forward,
however, so I regret that I cannot recommend the present manuscript for publication.



