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Abstract. A new method for isolating the sea surface height signals associated with equatorial

Kelvin and Rossby waves is presented and applied to altimetric sea level anomaly (SLA) observa-

tions in the tropical Indian and Pacific oceans. The method projects wave functions representing

propagating equatorial wave modes onto the SLA data. Each wave function is three-dimensional:

the product of a meridional profile for a given wave mode derived from shallow-water theory, and5

a harmonic function that propagates zonally within a phase speed range close to that of the wave

mode. Moreover, the wave functions are tapered within the zonal domain, to approximate the forcing

and dissipation of waves within the domain, and to minimize aliasing of waves that only propa-

gate across part of the ocean basin. After projections in all three dimensions have been carried

out, least-squares methods are applied to recover the non-orthogonal wave function coefficients and10

minimize the misfit of their along-waveguide forcing and dissipation. The result of these calculations

are mode-associated SLA fields associated with Kelvin waves and with the first 5 meridional Rossby

wave modes, which can be used as a proxy for the waves’ amplitude.

The mode SLA field results are validated by correlation with the original SLA data over a 23-year

period, as well as by correlation with the residual SLA field from removing the mode SLA. The spatial15

distribution of the 1st meridional mode Rossby wave correlations also confirms our choices for the

value of c, the (1st baroclinic) Kelvin wave phase speed. Compared to earlier methods that used only

the meridional structure to decompose equatorial wave modes, the mode SLA clarifies the signals

from freely-propagating intraseasonal waves, such as those that are forced by MJO-related winds.

As this method of decomposition favors propagating waves but does not constrain their phase speed20

to a specific value, the mode SLA may provide the opportunity to study weakly nonlinear aspects of

these waves by comparison with linear models.

1 Introduction

The quantification of ocean variability associated with equatorial long waves is a topic of great im-

portance for understanding the tropical ocean and its role in climate. Since the advent of satellite25
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altimetry, the surface manifestations of these waves and the wind forcing driving them have been

tracked in datasets that now comprise over 20 years of continuous global coverage (e.g., Delcroix

et al., 1994; Susanto et al., 1998; Boulanger and Menkes, 1999; Drushka et al., 2010). However, to

use these observations to better understand the behavior of these planetary waves and their relation-

ship to climate variability, analysis techniques are needed that target the specific signatures of Kelvin30

and Rossby waves in satellite observations.

A variety of techniques have been employed to quantify equatorial long wave activity from satel-

lite observations; these range from the application of sophisticated data assimilation techniques to

meridional projections of sea level anomaly (SLA) data. The data assimilation approaches generally

use a linear wave-propagation model, along with Kalman filters (e.g., Miller and Cane, 1989; Fu35

et al., 1993) or adjoints (e.g., Thacker and Long, 1988; Long and Thacker, 1989a, b) to incorpo-

rate observations. These techniques are particularly useful for cases where observations are sparse

and error–prone, as is often the case for in-situ measurements, and also during the earlier years of

satellite observations when spatial resolution was low (e.g., Geosat). As the spatial and temporal

coverage of altimeter-derived remote sensing data increased, it was conceivable to estimate Kelvin40

and Rossby wave activity using solely meridional projections of SLA data, or a combination of SLA

and current observations. Cane and Sarachik (1981) showed that vectors containing SLA and sur-

face current profiles associated with a given vertical Kelvin wave mode and its associated meridional

Rossby wave modes are orthogonal; this orthogonality provided the basis for an equatorial wave de-

composition in numerous studies (e.g., Delcroix et al., 1994; Yuan et al., 2004; Yuan and Liu, 2009).45

Boulanger and Menkes (1995, 1999), BM9599 hereafter, also carried out a decomposition using

only meridional projections of SLA data that were reasonably consistent with projections derived

from in-situ moorings. However, the decomposition of Kelvin and Rossby wave modes based on

meridional projections of SLA alone are not orthogonal, and as Yuan et al. (2004) notes, this ne-

cessitates the inversion of an ill-conditioned matrix. An alternative approach used complex EOFs50

of SLA to separate Rossby and Kelvin wave signals in the equatorial Pacific (Susanto et al., 1998);

one limitation of this method is that complex EOFs by definition constrain the along-waveguide

and across-waveguide length scales of the waves, while shallow-water theory only constrains the

across-waveguide length scale.

Here we outline a method that projects three-dimensional propagating wave functions on SLA val-55

ues, to estimate the components of equatorial wave modes in the SLA field. In contrast with the work

of BM9599 which projected one-dimensional meridional profiles onto SLA, our projection method

simultaneously uses the meridional profile and the phase speed of each wave mode to isolate its

SLA signal. The method requires only the SLA data as input, and the resulting mode SLA highlights

intraseasonal propagating features. The paper is structured as follows: Section 2 describes the data60

and the harmonic projection and least-squares method used to obtain the mode SLA field. Section 3

assesses the spatial distribution of the relationship between the mode SLA computed and the original
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SLA field, examining where inaccuracies in the estimation of mode amplitudes may exist. Section 4

illustrates characteristics of the mode SLA fields in the two ocean basins, and compares the ampli-

tudes to those obtained by Boulanger and Menkes (1999). Section 5 summarizes the strengths and65

weaknesses of the method, and considers possible applications and adjustments to the method in

future studies.

2 Method

2.1 Data

In this study, our methodology is applied to AVISO Ssalto/Duacs gridded maps of absolute dynamic70

topography (MADT), which are available at 1/4◦ spatial resolution and daily temporal resolution

from the Centre National d’Études Spatiales (Ducet et al., 2000). The analysis discussed here uses

the delayed-time, merged product which is produced from all the available altimetry data starting in

1993; we make use of the data from January 1993 to December 2015. The resolution of this dataset is

more than sufficient to track the equatorial long waves targeted in this study, whose maxima/minima75

generally have meridional scales >1◦, zonal scales >5◦, and monthly or longer temporal scales (e.g.,

Boulanger and Menkes, 1999; Nagura and McPhaden, 2012). However, we note that the projections

as described in Section 2.2 could be applied to a non-gridded (e.g., alongtrack) dataset as well,

provided the data have sufficient spatiotemporal resolution and coverage.

Before the projections are applied, the absolute dynamic topography data have their meridional80

mean and trend between 15◦S and 15◦N removed at each longitude and time, to obtain the detrended

SLA data values ηd; this excludes signals from large-scale meridional pressure gradients that are

unrelated to equatorial wave activity. The SLA data are then band-passed to create a low-passed

and a high-passed SLA field; the projections and least-squares deconvolution are applied to the low-

passed and high-passed fields separately. The lower-frequency wave functions are projected onto85

the full 23-year low-passed SLA field before the least-squares deconvolution is carried out, while

the higher-frequency intraseasonal wave functions are projected onto the high-passed SLA field and

deconvolved in overlapping 2-year segments (1993–1994, 1994–1995, 1995–1996, etc.). At the end

of the analysis, the low- and high-passed mode SLA components are summed together, with the

results from the high-frequency 2-year segments combined by tapering the overlapping segments90

together.

3



2.2 SLA projections

The distinctive feature of this equatorial wave analysis compared to previous decompositions (e.g.,

Delcroix et al., 1994, BM9599) is the use of three-dimensional harmonic “wave” functions to be

projected onto the detrended SLA. Each wave function F qm,n,ς,s is the product of three components95

F qm,n,ς,s(x,y, t) = φq(y)Gm,n,ς(x,t)Hs(x) (1)

namely, the meridional structure function φq(y) for meridional mode q, zonally-propagating har-

monic functions Gm,n,ς(x,t), and a taper function Hs(x). The parameters m, n, and ς indicate

respectively the wavenumber, frequency, and phase of the function, while s indicates the tapering

location of the function as will be discussed in Section 2.2.3. (The coordinates x, y, and t are the

zonal, meridional, and time coordinates respectively.) Each wave function is projected onto the SLA100

data between latitudes 15◦S and 15◦N, to resolve the meridional structures of equatorial Kelvin

waves and the first 5 meridional Rossby wave modes.

2.2.1 Meridional structure function

The meridional structure functions are derived from the eigenfunction solutions of the shallow-water

momentum and mass conservation equations, with the Coriolis parameter f varying as a function105

of y (e.g., Matsuno, 1966; Moore, 1968; Gill and Clarke, 1974). The form that these solutions take

for pressure perturbations (and therefore for SLA) is

φ−1(y) =
1√
2
ψ0 (2)

φq(y) =

√
q(q+ 1)

2(2q+ 1)

(
ψq+1√
q+ 1

+
ψq−1√
q

)
forq > 0 (3)

after Boulanger and Menkes (1995), with ψq a solution (bounded as y→±∞) to the eigenvalue

problem posed by the shallow-water equation for meridional velocity v

∂2v

∂y∗2
+ (2q+ 1− y2

∗)v = 0 (4)

with β = ∂f/∂y and non-dimensional y∗ = (β/c)1/2y. (The trivial solution v = 0 for (4) corre-110

sponds to q =−1, the Kelvin wave mode.) The value of the equatorial Kelvin wave phase speed c

was taken to be 2.5 m s−1 in the Indian Ocean, based on earlier observational estimates for the

first baroclinic wave phase speed (e.g., Nagura and McPhaden, 2012). In the Pacific Ocean, c is

taken to be 2.5 m s−1 in the western part of the basin (e.g., Kessler and McPhaden, 1995; Hendon
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et al., 1998), but east of 180◦ longitude this value is gradually decreased to 2.0 m s−1 at the eastern115

boundary due to the decrease in phase speed from the shoaling of the thermocline (e.g., Giese and

Harrison, 1990). More details on the derivation of these structure functions are available from other

sources (e.g., Matsuno, 1966; Boulanger and Menkes, 1995, , Sec. A1). The analytical form of ψq

for constant β values can also be expressed in terms of Hermite polynomials (e.g., Matsuno, 1966);

in our case ψq were solved for numerically, with β values allowed to vary slightly as a function of120

latitude.

2.2.2 Zonally-propagating harmonic functions

The zonally-propagating harmonic functions Gm,n,ς(x,t) take the form

Gm,n,1(x,t) = cos [2π (kmx− fnt)] (5)

Gm,n,2(x,t) = sin[2π (kmx− fnt)] (6)

with ς = 1 indicating a cosine function (i.e. phase = 0◦), and ς = 2 indicating a sine function (i.e.

phase = 90◦). Values of km can vary in the range km = 0,±1/(xL + ∆x),±2/(xL + ∆x), ... for125

|km| ≤ 1/∆x, with xL equal to the span of the ocean basin at the equator, and ∆x= 5◦. (∆x is

chosen to be much larger than the actual zonal resolution of the data, as the long waves of interest

in this study generally have large zonal scales.) The wave functions are projected on to the low- and

high-passed SLA data separately as described in Section 2.1. For projections onto the low-passed

SLA data, values of fn can vary in the range fn = 0, 1/tL, 2/tL, ... for fn ≤ 1/∆t, with tL = 23130

years (the time span of the entire dataset) and ∆t = 2/9 years≈ 81 days (sufficient to resolve periods

longer than 162 days, or semiannual and lower frequencies). For the high-passed data, which are

projected in 2-year segments, tL = 2 years and fn varies at intervals of 1/tL in the frequency range

corresponding to periods of approximately 20–150 days (the intraseasonal frequency band), with

∆t = 10 days. As with ∆x, ∆t can be longer than the actual time resolution of the data.135

2.2.3 Taper functions

Lastly, the taper functionsHs(x) are included to improve the representation of waves that are forced

and dissipate within the ocean basin. This is particularly important for equatorial long waves whose

zonal wavelength may be as long or longer than the width of the ocean basin. When propagating

waves change amplitude, a portion of the wave activity is aliased into adjacent wavenumbers and140

frequencies; this presents a potential issue for correctly identifying the mode of low-wavenumber

equatorial long waves. The tapers help ensure that a low-wavenumber, eastward-propagating Kelvin
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wave generated in the middle of the basin is identified as such. The taper functions (Figure 1) take

the form

Hs(x) =


0, x≤ xs−∆x(
1− xs−x

∆x

)
, xs−∆x < x < xs

1, x≥ xs

(7)

The tapering location xs is varied within the range xs = 0,∆x, 2∆x, .... for xs ≤ xL. (The analysis145

is carried out with two different x-coordinates: x= 0 at the western boundary and x increases

eastward, and x= 0 at eastern boundary and x increases westward. The mode SLA obtained using

the two coordinate systems are averaged at the end of the analysis; this approach is used to minimize

any bias that would be introduced at either the western or eastern boundary due to the technique.)

2.2.4 Projecting wave functions for each mode150

The wave functions F qm,n,ς,s for the Kelvin wave mode q = 0 and the first five meridional Rossby

wave modes q = 1, ..., 5 are projected onto the detrended SLA. The wave functions for each mode q

consist of the corresponding meridional structure function φq , a full range of possible taper functions

Hs as described in Section 2.2.3, and the propagating harmonic functions Gm,n,ς that have phase

speeds fn/km within the ranges given in Table 1. (Note: in the Pacific, where the input phase speed155

c varies across the basin, cmin is computed using c = 2.0 m s−1, and cmax is computed using c =

2.5 m s−1. Hence the ranges specified in Table 1 will have some overlap, but the associated wave

functions are still distinct because of their meridional structures.)

As part of the signal for fast-propagating waves is aliased into the zero wavenumber band,Gm,n,ς

functions for which km = 0 are also projected for frequency values fn <∆k|cmax|, with ∆k =160

1/(xL + ∆x) the lowest-magnitude non-zero wavenumber resolved in this analysis, and cmax the

maximum (magnitude) phase speed for that mode as given in Table 1.

Prior to projecting, each wave function F qm,n,ς,s has the meridional mean and trend removed in

the same way that the SLA data are processed. Then the projection of each wave function onto the

SLA data is carried out, point-by-point in the x, y, t domain. If d is a vector consisting of all of165

the x, y, t meridionally-detrended SLA data point values ηd, and F is a matrix with each column

consisting of the x, y, t values of a wave function F qm,n,ς,s, then the projection value for column α

of F (i.e., Fα) is given by

pα =
[
(Fα)

T
Fα

]−2

(Fα)
T
d (8)
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with the first part of the right-hand side (containing the exponent -2) normalizing the projection. The

resulting scalars pα are the elements of a vector p containing the projection values. Alternatively170

(8) can be expressed in terms of a projection operator P

p = Pd (9)

We note that if all of the wave functions (i.e., the columns of F) were independent, then (8) would

be equivalent to a linear regression of each wave function onto the SLA data, yielding coefficients

that could be used to compute the SLA associated with each mode. However, the wave functions are

not independent; furthermore, a linear regression applied directly to the SLA data weights the misfit175

to points far from the equator (where wave amplitudes are negligible) just as heavily as points near

the equator where these waves constitute a large fraction of the SLA variance. Instead of regressing

the SLA data directly, a cost function of the misfit to projection values in p is minimized to find

optimal coefficients for the wave functions, as described in Section 2.3.

2.3 Least-squares deconvolution of wave function coefficients180

Given the projection values based on the SLA data, the next objective is to find a set of “true”

wave function coefficients m that can most accurately account for the observation-based projection

values in p, within desired parameters. To achieve this, we seek to solve the system Fm = d for the

coefficients m, such that the following cost function is minimized

L= [DP(Fm)−Dp]
T

[DP(Fm)−Dp] + [w (P(Fm)−p)]
T

[w (P(Fm)−p)] +
[
(Λm)

T
m
]

(10)

There are three parts to this cost function. The first part minimizes the misfit to the change in the185

projection values along the waveguide Dp, the second part minimizes the misfit to the projection

values p, and the third part establishes a preference for values of m that are not too large. The

matrix D is the finite difference operator for s > 1 projections, and the identity operator for s= 1

projections (i.e., the finite difference between zero and the s= 1 projection value). The scalar value

w and the diagonal matrix Λ are both adjustable parameters that set the relative weighting of the190

parts of the cost function. A number of possible combinations of these parameters were tested to

determine which values generated the solution that explains the most SLA variance. The optimal

value chosen for w is 0.2; the diagonal of Λ has values of 2 for entries corresponding to s= 1

wave functions (i.e., the functions that span the entire ocean basin). For the s > 1 wave functions,

values of 20 are used in the Indian Ocean, and 5 in the Pacific Ocean. The different values in the195

two basins are likely needed to suppress high-wavenumber variability in the Indian Ocean that is
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not well described by the low-wavenumber limits of the equatorial wave dispersion relation (e.g.

Matsuno, 1966).

The formula for the coefficients m that minimizes the cost function (10) is

m =
[
(DPF)

T
DFP + (wPF)

T
wPF + Λ

]−1 [
(DPF)

T
Dp + (wPF)

T
wp
]

(11)

Once the coefficients m are obtained, then the contribution to SLA from wave functions associated200

with each mode q can be summed up to yield the contribution to SLA from that mode ηq (the mode

SLA):

ηq(x,y, t) =
∑
q

mq
m,n,c,sF

q
m,n,ς,s(x,y, t) (12)

with mq
m,n,c,s the (scalar) coefficient from m that corresponds to the wave function F qm,n,ς,s. (Note:

the meridional structure functions within F qm,n,ς,s have their original meridional means and trends

added back to them before the mode SLA is calculated.)205

3 Validation and characteristics of the mode SLA

To assess how accurately the mode SLA represents the true contribution of each meridional mode to

the SLA field, two correlation metrics are computed. The first correlates the temporal variation of

SLA associated with each mode to that of the original, meridionally-detrended SLA r(ηq,ηd). Robust

values of this correlation at latitudes where the given wave mode q is known to make a leading-order210

contribution to SLA variability confirm that the sign and meridional structure of the wave mode is

well represented. The other metric is the correlation of the temporal variation of mode SLA to the

residual SLA ηr, which is ηd with the sum of the mode SLA from all of the projected modes removed

ηr(x,y, t) = ηd−
∑
q

ηq (13)

The temporal correlation r(ηq,ηr) assesses whether the mode SLA is accurately representing the

amplitude of the waves. If (1) the SLA signal actually associated with a given mode q is well repre-215

sented by the mode SLA, and (2) other signals are not significantly correlated with variations due

to mode q, then r(ηq,ηr) should be insignificant especially at latitudes where the wave amplitude

peaks. It is important to note that condition (2) may not be met, as other signals that were not pro-

jected in this method may have SLA variations that are correlated with the projected modes (e.g.,

higher-order meridional and baroclinic wave modes, MJO-related variations that do not project onto220

an equatorial wave mode but are coincident with mode forcing). However, it is expected that for the
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most part SLA signals near the equator will be explained either by the long (zonal) wavelength equa-

torial waves accounted for in this analysis, or shorter wavelength signals that are uncorrelated with

equatorial long wave activity.

These correlation analyses were used to tune the variable parameters w and Λ. The correlation225

values for the optimal parameters given in Section 2.3 are mapped for the equatorial Indian Ocean

in Figures 2 and 3. For the Kelvin wave mode (q =−1), the correlation r(ηq,ηd) is highest along

the equator (Fig. 2a), while for the Rossby wave mode q = 1 the correlation is highest near the

latitude of the wave’s peaks, 3◦–4◦ north and south of the equator (Fig. 2b). The SLA fields were

also bandpassed for intraseasonal frequencies (20–150 day periods) to focus on freely-propagating230

waves that are forced by and interact with MJO winds (e.g., Han et al., 2001). Compared to lower-

frequency equatorial waves, it is easier to resolve the zonal wavenumbers of intraseasonal equatorial

waves, and therefore their propagation characteristics. The correlations at these frequencies (Fig.

2c,d) are slightly lower in magnitude than for the non-bandpassed mode SLA, but still peak at the

expected latitudes, confirming that c = 2.5 m s−1 is a suitable choice for defining the meridional235

structure of these lowest-mode waves. Moreover, the non-bandpassed q = 1 correlations have some

maxima slightly equatorward of their expected latitudes (Fig. 2b), but the bandpassed correlation

maxima track the expected latitudes for c = 2.5 m s−1 nearly exactly (Fig. 2d). The 2.5 m s−1 phase

speed is consistent with the Argo-based 1st baroclinic mode phase speed estimate by Nagura and

McPhaden (2012); according to the estimate by Drushka et al. (2010), also based on Argo data, this240

value would lie between the 1st and 2nd baroclinic mode Kelvin wave phase speeds (2.8 and 1.8 m

s−1 respectively). As Drushka et al. (2010) and others have found, the first and second baroclinic

modes make substantial contributions to intraseasonal wave activity in the equatorial Indian Ocean,

so the 2.5 m s−1 phase speed value may represent waves that contain both baroclinic modes.

The Kelvin and q = 1 Rossby mode SLA correlations with the residual SLA (Figure 3) suggest245

that a consideration of timescales is important when tuning the parameters w and Λ to optimize the

accuracy of the mode SLA. The non-bandpassed Kelvin wave mode SLA correlation in particular

(Fig. 3a) indicate banded features in the northwest Indian Ocean that have little to do with the

Kelvin wave structure; it turns out that these are mostly a result of the annual and semiannual

signals associated with monsoonal wind reversals. By focusing on correlations with intraseasonal250

mode SLA (Fig. 3c,d) it is possible to obtain mode SLA values that are not significantly correlated

(or only weakly correlated) with the residual SLA near the peak amplitude axes of the waves. The

intraseasonal Kelvin wave SLA is slightly positively correlated with the residual SLA along most of

the equator, and negatively correlated just off the equator (Fig. 3c); on balance this suggests that

there is little bias in the mode SLA estimations of the waves’ amplitude. Weak positive or insignificant255

correlations are also found along the q = 1 Rossby wave peak amplitude axes, with negative SLA

correlations elsewhere. The exception is north of the equator and west of the longitudes of India/Sri

Lanka, where correlations are almost uniformly negative. The negative correlations would imply
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that the amplitude of the q = 1 Rossby waves are being overestimated in this region, though these

inaccuracies in the mode SLA might be explained by interference from the landmasses of Sri Lanka260

and India.

4 Mode SLA representations of the equatorial ocean

The mode SLA produced by this method has several desirable features compared to earlier tech-

niques used to describe equatorial wave activity. These features include zonal wave propagation

that is constrained (though weakly) to within phase speed ranges predicted by theory, and a more265

active intraseasonal wave field than BM9599 that still has sufficiently long wavelengths (> 10◦ lon-

gitude) to fall within the essentially non-dispersive range of long equatorial wave propagation (e.g.

Matsuno, 1966). Figure 4 shows a snapshot of the progression of Kelvin and mode 1 Rossby waves

across the Indian Ocean, as tracked by mode SLA during the active El Niño and positive IOD year

1997. During May-July 1997, the period portrayed in Fig. 4, westerly winds along the equator tran-270

sitioned to anomalously strong easterly winds, forcing an upwelling Kelvin wave along the equator

as indicated by negative values of mode SLA (Fig. 4g,h). The reflection of a downwelling Kelvin

wave at the eastern boundary (Fig. 4e) is seen as a mode 1 Rossby wave that propagates westward

from the boundary to the center of the Indian Ocean (Fig. 4j-l). Furthermore, the propagation char-

acteristics of these waves can be much more readily observed in the mode SLA compared to the raw275

SLA data.

Hovmöller diagrams of mode SLA amplitudes during 1993–1997 in the equatorial Indian (Figure

5) and Pacific (Figure 6) oceans illustrate wave variations at intraseasonal, annual, and interannual

timescales. In the Indian Ocean, Kelvin wave activity largely reflects the annual cycle forced by wind

reversals between the northeast and southwest phases of the South Asian monsoon (Fig. 5a); these280

waves are then generally reflected at the eastern boundary as q = 1 Rossby waves (Fig. 5b). The

Pacific Ocean Hovmöller diagrams indicate a large amount of interannual as well as intraseasonal

wave activity; the dominant signals during the 1997 El Niño (and during the weaker 1994 El Niño

before it) are the downwelling Kelvin waves generated, then reflected as downwelling q = 1 Rossby

waves (Fig. 6a,b). Notably, in the q = 3 mode, the Indian and Pacific Ocean basins have overwhelm-285

ingly downwelling and upwelling waves respectively during the 1997 El Niño and positive IOD event

(Fig. 5d, 6d). This anomaly is not shown consistently in the q = 1 modes for each basin (Fig. 5b, 6b),

suggesting that the third meridional Rossby wave mode may be as important as the first mode in

determining the evolution of the extreme 1997 event.

The amplitudes of the Pacific mode SLA for Kelvin and q = 1 Rossby waves are also plotted to290

illustrate the reflection of equatorial waves at the boundaries (Figure 7). This figure takes the same

form and spans a similar time range to Figure 6 in Boulanger and Menkes (1999). In comparing Fig.

7 with the Boulanger and Menkes (1999) figure, it can be seen that the method used here highlights
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the higher-frequency intraseasonal wave activity more clearly, such as the downwelling Kelvin waves

at the end of 1996 and in early 1997 that initiated the El Niño state. By contrast, the Boulanger and295

Menkes (1999) wave coefficients contain some non-propagating structure not present in our Figure

7, such as the difference in sign between the western and eastern Pacific (for both Kelvin and Rossby

wave coefficients) at the height of the 1997 El Niño. It makes sense that incorporating the zonal

propagation of equatorial waves into an SLA projection method would be clearest at intraseasonal

frequencies. At annual and longer timescales, Kelvin and lowest-mode equatorial Rossby waves300

mostly exist as standing features with meridional structures, as the first baroclinic mode of these

waves may be in phase across most or all of the basin. But at intraseasonal timescales, the zonal

phase propagation is an essential characteristic that may aid in the separation of meridional (and

potentially baroclinic) modes of wave activity.

5 Conclusions305

The harmonic projection and least-squares method outlined here produces a measure of equatorial

wave activity that can be derived directly from satellite observations of SLA. The method projects

onto the data SLA field a set of wave functions that resemble zonally-propagating waveforms, then

minimizes a cost function to deconvolve the coefficients of the non-orthogonal wave functions. The

result of these calculations is a mode SLA field for equatorial Kelvin waves and the first lowest 5310

meridional Rossby wave modes. Correlations of the mode SLA fields with the data SLA and residual

SLA fields help to tune the variable parameters in the calculation, and confirm that c = 2.5 m s−1

is an accurate choice for the Indian Ocean (1st baroclinic) Kelvin wave phase speed. Compared to

the earlier SLA decomposition method used by BM9599 based solely on meridional profiles of the

waves, the SLA field generated by this method contains more variability at intraseasonal frequencies,315

and downplays the role of non-propagating meridional structure in the SLA field. Our method also

allows for some variation in the phase speed of the waves, so a comparison of the wave amplitudes

derived from mode SLA with the results of linear wind–forced models of equatorial waves (e.g.,

Yu and McPhaden, 1999; Nagura and McPhaden, 2010) may be useful in studying some weakly

nonlinear aspects of Kelvin waves.320

One caveat for the use of the mode SLA is that the method favors waveforms that vary at simi-

larly large scales across the ocean basin; near the boundaries or local bathymetric features, it may

be desirable to resolve smaller scales more accurately. While the reflection of equatorial waves is

quite apparent in our wave amplitude plots (Fig. 5–7), there are cases where an abrupt change in

sign occurs from the incoming to the reflected wave. An increase in resolution near the boundaries325

by incorporating more taper functions in the basis set used could be one way to improve represen-

tations of wave reflections. An advantage of the methodological framework described in Section 2

is that like most linear inverse methods it is very adaptable; any signal that has a fairly consistent
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structure in one (or two or three) dimensions and propagates in a favored direction could in theory

be represented by wave functions of the form given in equation (1). The accurate recovery of the330

signal using this framework depends on the choice of correct wave function structure and tuning of

the cost function against validation metrics.
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Figure 1. Schematic illustrating the use of taper functions. (a) Profile of a non–tapered harmonic function

Gm,n,ς in x and t. (b) Profile of the same harmonic function modified or “forced” by a taper function,

Gm,n,ςHs, with tapering location x= xs and a tapering window of ∆x. (c) Profile of a harmonic function

that is “forced” and “dissipated” by two taper functions Gm,n,ς(Hs −Hs′), with tapering locations of x= xs

and x= xs′ respectively.

Table 1. Phase speed ranges for zonally-propagating harmonic functions Gq
m,n,ς associated with mode q.

Positive (negative) values indicate eastward (westward) propagating harmonic functions. For each mode,

cmin and cmax are the minimum- and maximum-magnitude speeds in the range, regardless of direction, i.e.,

cmin ≤ fn/km ≤ cmax for Kelvin waves (q = −1) and cmax ≤ fn/km ≤ cmin for Rossby waves (q > 0).

Mode q cmin Theoretical cmax

phase speed

-1 +0.6c +c +1.4c

1 -c/4 -c/3 -c/2

2 -c/6 -c/5 -c/4

3 -c/8 -c/7 -c/6

4 -c/10 -c/9 -c/8

5 -c/12 -c/11 -c/10
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Figure 2. (a) Temporal correlation r(ηq,ηd) of the Kelvin wave mode SLA (q = −1) with the meridionally

detrended SLA from the AVISO 1/4◦ daily gridded product, for the time range 1993–2015. A zonal low-

pass filter is applied to ηd prior to computing the correlations, to remove wavelengths shorter than 10◦. Only

correlation coefficients surpassing the 95% confidence threshold for significance are shaded. (b) Same as (a),

but for the correlation of the first meridional mode Rossby wave SLA (q = 1) with the meridionally detrended

AVISO data. The horizontal dashed line indicates the latitude at which the peak amplitudes of the q = 1 Rossby

wave occur. (c)-(d) Same as (a)-(b) respectively, but the correlations are computed after bandpassing ηq and ηd

for intraseasonal frequencies in the 20–150 day period range.

16



Figure 3. (a) Temporal correlation r(ηq,ηr) of the Kelvin wave mode SLA (q = −1) with the residual SLA

unexplained by the Kelvin and Rossby wave mode SLA, for the time range 1993–2015. A zonal low-pass filter

is applied to ηr prior to computing the correlations, to remove wavelengths shorter than 10◦. Only correlation

coefficients surpassing the 95% confidence threshold for significance are shaded. (b) Same as (a), but for the

correlation of the first meridional mode Rossby wave SLA (q = 1) with the residual SLA. The horizontal dashed

line indicates the latitude at which the peak amplitudes of the q = 1 Rossby wave occur. (c)-(d) Same as (a)-(b)

respectively, but the correlations are computed after bandpassing ηq and ηr for intraseasonal frequencies in the

20–150 day period range.
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Figure 4. (a)-(d) Maps of the sea level anomaly in the Indian Ocean from AVISO, for a series of dates in May-

July 1997. (e)-(h) Maps of the Kelvin wave mode SLA (ηq with q = −1) for the same dates. (i)-(l) Maps of the

first meridional Rossby wave mode SLA (ηq with q = 1) for the same dates.

18



Figure 5. (a) Kelvin wave q = −1 mode SLA peak amplitudes (i.e., the mode SLA along the latitude where

the wave signal peaks) in the Indian Ocean, plotted from 1993 to 1997. (b) Rossby wave q = 1 mode SLA peak

amplitudes; in this plot the x-axis is reversed in direction to highlight wave reflection at the eastern boundary.

(c) Rossby wave q = 2 mode SLA peak amplitudes. (d) Rossby wave q = 3 mode SLA peak amplitudes.
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Figure 6. Same as Figure 5, but in the equatorial Pacific Ocean.
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Figure 7. (a) Kelvin wave q = −1 mode SLA amplitudes in the equatorial Pacific Ocean, plotted from 1993

to 1997 and normalized in the same way as in Boulanger and Menkes (1999) (1 BM99 unit = 0.32 cm wave

amplitude). (b) Rossby wave q = 1 mode SLA amplitudes with the x-axis direction reversed; 1 BM99 unit =

0.28 cm wave amplitude. (c) Same as (a). The layout of (a)-(c) highlights the reflection of waves at the eastern

and western boundaries; compare to Fig. 6 in Boulanger and Menkes (1999).
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