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Abstract

We present a new equation describing the hydrodynamics in infinitely long tidal chan-
nels (i.e., no reflection) under the influence of oceanic forcing. The proposed equation
is a simple relationship between partial derivatives of water level and velocity. It is
formally derived for a progressive wave in a frictionless, prismatic, tidal channel with a5

horizontal bed. Assessment of a large number of numerical simulations, where an open
boundary condition is posed at a certain distance landward, suggests that it can also
be considered accurate in the more natural case of converging estuaries with nonlinear
friction and a bed slope. The equation follows from the open boundary condition and
is therefore a part of the problem formulation for an infinite tidal channel. This finding10

provides a practical tool for evaluating tidal wave dynamics, by reconstructing the tem-
poral variation of the velocity based on local observations of the water level, providing
a fully local open boundary condition and allowing for local friction calibration.

1 Introduction

The behavior of tidal waves in natural estuaries has been the subject of numerous15

studies with different degrees of complexity. For rapid assessment, the tidal dynamics
in these estuaries may be described as one-dimensional, whereby the standard Saint-
Venant shallow water equations are used as the governing equations. For long waves,
one-dimensional descriptions are appropriate in long water bodies, where the length is
much larger than the width.20

De Saint-Venant (1871) formulated the governing equations in the Eulerian reference
frame, which has the advantage that the reference frame does not move. An exact ana-
lytical solution of such equations is not available, so various approximations have been
proposed. Perturbation methods (e.g., Hunt, 1964; Jay, 1991; Friedrichs and Aubrey,
1994) are particularly useful to this aim, since they can capture the approximate dy-25

namics conceptually. The Eulerian reference frame is also convenient for numerical
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methods, where a grid has to be defined and a non-moving grid has a clear advan-
tage. These numerical approximations may not provide conceptual relations between
parameters, but they do permit the analysis of complex geometries and retain the full
nonlinear behavior. In addition to the Eulerian perspective, we may rewrite the govern-
ing equations in the Lagrangean reference frame, where an observer moves with the5

speed of the water particle. This provides additional insight in the wave character and
allows for a different approximate analytical approach (Savenije, 2005, 2012). There
the structure of the solution is assumed a priori in the form of a sinusoidal function, but
nonlinear terms in advection and friction can be retained. A third perspective is that of
the “Riemann invariants” (Riemann, 1859), or “method of characteristics”, where the10

observer moves with the propagation speed of disturbances. For long estuaries, this
“celerity” is a main parameter in most analytical approximate solutions. Moreover, the
Riemann perspective provides approximations for open boundaries.

Analytical descriptions can easily treat infinitely long channels, whereas numerical
models require an artificial “open” boundary condition (Orlanski, 1976), where the prop-15

agating wave exits a limited domain unaffected. Such a boundary can also be referred
to as “absorbing” (Engquist and Majda, 1977), since waves that hit this boundary are
absorbed instead of reflected (as would be the case when they hit a closed boundary),
or as “non-reflective” (Keller and Voli, 1989). Perfectly functioning open boundaries in
numerical tidal hydraulics have yet to be defined, so a small part of the wave is always20

reflected. Yet, a perfect open boundary condition is required for long estuaries where
the examined domain is limited. Using an open boundary, the domain can be split into
multiple reaches to be solved subsequently (e.g., Keller and Voli, 1989; Toffolon and
Savenije, 2011). Theoretically, with this splitting method the domain can be divided into
an infinite number of reaches. Since the open boundary condition is applied at each25

location in the domain, this condition becomes an equation. Here we present the “open
boundary equation”.

The Riemann invariants suggest that any solution for sub-critical flow is composed
of pieces of information that are advected in positive and negative direction. This also

927

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/12/925/2015/osd-12-925-2015-print.pdf
http://www.ocean-sci-discuss.net/12/925/2015/osd-12-925-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
12, 925–958, 2015

Open boundary
equation

D. Diederen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

applies for a wave which physically seems to move only in one direction. However, the
tidal wave character is usually described as either a single incident wave or the super-
position of an incident and a reflected wave. This superposition finds its origin in linear
wave theory, specifically for frictionless, prismatic, horizontal channels with a closed
landward boundary, where the incident wave and its reflection have the same strength.5

In that basic scenario a phase lag of 90◦ can be observed between the water depth
and the velocity. Interestingly, a phase lag can also be observed in long, converging
estuaries, where there is no such closed boundary. The terminology to describe the
tidal wave character in such natural estuaries appears to be subject to debate. Is the
phase lag, which is observed in long converging estuaries, similar to the phase lag that10

is caused by the reflection of a closed landward boundary? In other words, should we
call it “reflection”? Hunt (1964) warned that the use of the classical terms “progressive
wave” and “standing wave” to a frictional situation should be treated with “considerable
caution”. He prefers the description by a single wave over the description by a super-
imposed incident and reflected wave, and he calls this single wave standing when it15

shows a phase lag. Jay (1991) argued that the use of descriptions like “progressive”
and “standing” should not be used in convergent estuaries, for two reasons. First, fric-
tion and convergence play a large role in estuaries and so even perfect reflection by
a barrier would lead to a standing wave only at the point of reflection. Second, any
phase lag from 0 to 90◦ can occur for a single incident wave. Friedrichs and Aubrey20

(1994) found that a single incident wave in a converging estuary can have a 90◦ phase
lag, but can have a celerity close to that of a frictionless progressive wave. Savenije
et al. (2008) described that a wave with a mixed character occurs in convergent estu-
aries and attributes this to convergence and friction. They also showed that the wave
character depends on the phase speed, which in turn depends on the phase lag. Nev-25

ertheless, all these authors concluded that the “apparent reflection” in an estuary is
different from the “classical reflection” produced by a closed boundary.

In this paper we consider a long, exponentially converging estuary, where the in-
fluence of the landward boundary condition is negligible so that the reflected wave is
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negligible. This is quite a common case in real alluvial estuaries, and can be approxi-
mated as an “infinitely long” channel, where the reflected wave is non-existent. Here we
derive a new, additional equation, which appears to be a part of the problem formula-
tion. First we derive the equation exactly in a frictionless, prismatic, horizontal channel
in Sect. 2.3, then we test the performance of the equation in numerical simulations5

with friction and convergence in Sect. 3. We discuss the origin of the new equation in
Sect. 4. Then we present a new method to look at the tidal wave character in Sect. 5.
Finally, we propose applications of the new equation for hydrological and hydraulic pur-
poses in Sect. 6.

2 Formulation of the problem10

2.1 Eulerian perspective

The Saint-Venant equations are generally used to analyze water flow in channels and
estuaries. Together the mass balance (Eq. 1) and momentum balance (Eq. 2) describe
the movement of the water, where, within the Eulerian perspective, the subscripts refer
to partial derivatives in space and time. These equations are useful for an observer at15

a given location along the channel,

ht +uhx +hux −βuh = 0, (1)

ut +uux +gζx +W = 0, (2)

h = ζ −Z , β = −
Bx
B

, (3)

where x is the longitudinal coordinate (positive landward), t is the time, g is the ac-20

celeration due to gravity, u(x,t) is the cross-sectional average flow velocity, h(x,t) is
the water depth, ζ (x,t) is the water level, Z(x) is the bed level, B(x) is the width and
W (x,t) is the frictional term.

929
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2.2 Riemann perspective

The observer can also choose to move with the wave, for which rewriting Eqs. (1) and
(2) into the Riemann perspective of invariants is convenient,

R1,t + (u+c)R1,x = βuc−gZx −W , (4)

R2,t + (u−c)R2,x = −βuc−gZx −W , (5)5

where the Riemann invariants are defined by

R1 = u+2c , R2 = u−2c , (6)

and c =
√
gh is the long wave celerity for small amplitudes.

In this paper we restrict our focus on sub-critical flow since this is the typical case
in tidal flows. Hence, the Froude number |u|/c < 1, so that one invariant is advected in10

the positive direction and the other in the negative direction, as can be seen in Eqs. (4)
and (5).

2.3 Analytical derivation for a “perfect channel”

The first step towards the open boundary equation is to derive it analytically for a “per-
fect channel”, which we specify as an infinitely long, prismatic channel where conver-15

gence and friction are zero and the bed is horizontal, hence Bx = 0,W = 0 and hx = ζx.
The basic equations in Eulerian form (Eqs. 1 and 2), and in Riemann form (Eqs. 4 and
5) then reduce to:

ht +uhx +hux = 0, (7)

ut +uux +ghx = 0, (8)20

R1,t + (u+c)R1,x = 0, (9)

R2,t + (u−c)R2,x = 0 . (10)
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We assume an infinite domain from x = 0 to x =∞ to avoid reflection from a closed
landward boundary. We put a forcing boundary condition seaward. As initial condi-
tion, we impose a constant R2(x,0) = C, where starting with a constant velocity (e.g.
u(x,0) = 0) and a constant water level (e.g. ζ (x,0) = 0) is the easiest option.

In sub-critical flow the two invariants R1 and R2 are transported in opposite direction.5

Tracking the seaward propagating invariant R2(x2,t2) back in time from a location x2
within the domain, eventually the trajectory will lead back to an initial condition R2(x1,0).
This arrival point x1 will also be in the infinite domain, because in sub-critical flow the
celerity (u−c) of R2 is negative, so that x1 > x2.

If we integrate Eq. (10) along the pathway of R2 from x1 to x2,10

R2(x2,t2) = R2(x1,0)+

t2∫
0

dR2

dt
dt , (11)

where the operator d/dt = ∂/∂t+ (u−c)∂/∂x represents the full Riemann derivative
for R2, we find that R2(x2,t2) = R2(x1,0) (hence the term invariant). Since x2 can be
any location in the domain and t2 can be any time, the initial condition R2(x,0) = C in
an infinitely long channel with sub-critical flow leads to R2(x,t) = C.15

This means that if we differentiate Eq. (6b) in space and in time, we obtain

R2,x = 0, (12)

R2,t = 0, (13)

so that√
hux =

√
ghx , (14)20 √

hut =
√
ght . (15)

By combining Eq. (14) with Eq. (15) we obtain

htux = uthx , (16)
931
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and

hutux = ghthx . (17)

Moreover, from the Lagrangean perspective we find

Dh
Dt
ux =

Du
Dt
hx , (18)√

h
Du
Dt

=
√
g

Dh
Dt

, (19)5

where the operator D/Dt = ∂/∂t+u∂/∂x represents the full Lagrangean derivative.
From the Riemann perspective we find

R1,tR2,x = R2,tR1,x , (20)

R1,tR2,x = −R2,tR1,x , (21)

which seem to indicate a contradiction. However, this is not the case since one of the10

invariants is constant in space and time, so the contradiction is removed by triviality, as
zero is zero.

These equations all contain the same latent information for a “perfect channel”, i.e.
if one applies, so do the others. What is enclosed in these equations is the infinite
domain, which implies they are also valid for a simulation with a finite domain and an15

open landward boundary condition. We further discuss this in Sect. 4.
Since for a horizontal bed ζx = hx, we rewrite Eq. (16) to

ζtux = utζx , (22)

which we call “the open boundary equation”. This way the latent information is ex-
pressed independent of the geometry. Examples to derive Eq. (22) from simple analyt-20

ical approximations are presented in Appendix A. Could it be that Eq. (22) also applies
more generally, in estuaries with friction, convergence and a bed slope?

932
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3 Testing the open boundary equation

3.1 Frictional and convergent estuaries

Man-made channels may be straight, but natural estuaries usually converge in land-
ward direction, so that β 6= 0 in the mass balance (Eq. 1). The change of width of alluvial
estuaries can be well described by an exponential function (e.g., Savenije, 2012),5

B = B∞ + (B0 −B∞)exp
(
−x
b

)
, (23)

where B0 is the width at the mouth of the estuary, B∞ is the asymptotic value of the
width and b is the convergence length of the width. Additionally, an exponentially con-
verging bed level is assumed, with

Z = −h0 exp
(
−x
d

)
, (24)10

where h0 is the average depth at the mouth and d is the convergence length of the
bed. Since there is a bed slope: hx = ζx −Zx. As in reality there will always be friction
in the momentum balance (Eq. 2), we apply the empirical formula

W = g
u|u|

K 2h4/3
, (25)

where K is the Strickler coefficient.15

So what happens with Eq. (22) when there is convergence of width, a bed slope and
friction? These terms do not appear in Eq. (22), so might it still hold?

We assume that Eq. (22) holds in frictional, convergent estuaries, in order to see if we
can reason back analytically to confirm that it actually holds. In Sect. 2.3, where a “per-
fect channel” was analyzed, derivation of the negative invariant R2 in space and time20

led to the two ordinary differential Eqs. (14) and (15). We can obtain similar ordinary
933
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differential equations by combining Eqs. (1), (2) and (22), which yields the following two
equations:

hux
2 − (Zx +βh)uux = gζx

2 +W ζx , (26)

hut
2 +
(
hW +βhu2 +u2Zx

)
ut = ght

2 − (W +βgh+gZx)uht . (27)

Since these ordinary differential equations are highly nonlinear, we cannot simply inte-5

grate back to the negative invariant R2, which would be the inverse route as applied in
Sect. 2.3. Therefore, we think it is not possible to check for correctness analytically, so
we resort to numerical testing.

3.2 Numerical modeling

Numerical results cannot prove analytical equations to be correct, as they are single10

realizations that cannot be used to extrapolate general results. Moreover, they are ap-
proximations that contain numerical errors. However, the validity of a given relationship
can be tested by running a large number of numerical simulations: if the results are
not contradicting it, the argument supporting its validity becomes stronger as the range
of the conditions tested becomes wider. Therefore, we use numerical experiments to15

estimate the difference between the left hand and the right hand sides of the equations,
and check if they differ within acceptable thresholds. If so, they can be tested for practi-
cal applications. Moreover, if the agreement appears to be consistent, further attempts
to find formal proof could also be encouraged.

Simulations are performed by solving Eqs. (1) and (2) with the numerical model de-20

scribed in Toffolon et al. (2006). A sinusoidal periodic oscillation of the water level is
imposed at the seaward boundary with an amplitude η and a period T = 12.41h corre-
sponding to a dominant M2 tide. The width at the mouth B0 is fixed at 10 km and the
asymptotic value B∞ is fixed at 10 m. The length of the domain L is chosen as twice the

wavelength L0 = c0T , where c0 =
√
gh0 is the linearized tidal wave celerity in “perfect25

934
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channels” and T is the tidal period. Starting from the initial conditions ζ (x,0) = 0 and
u(x,0) = 0, the simulations last until an approximate periodic equilibrium is reached.

The governing equations (Eqs. 1 and 2) are evaluated, so we can choose to check
Eqs. (22), (26) or (27). We start with time series analysis of a single simulation for
Eq. (26) in Fig. 2, which contains friction W , convergence β and bed slope Zx. In5

a single wave period, two peaks occur in the squared terms, where the larger peak
is the steeper wave front and the smaller peak is the rear. The size of these peaks is
mostly influenced by the amplitude-to-depth ratio, which in this case has been chosen
small. This way it can easily be observed that good agreement of the left hand side
of Eq. (26) and the right hand side can be found when the terms containing the width10

convergence, the friction and the bed slope are not negligible in size compared to the
larger squared terms.

Figure 3 illustrates the longitudinal variation of the Pearson correlation coefficient
ρ, which correlates time series of the left hand side of Eq. (22) and the right hand
side. It suggests that the validity of the proposed equation is asymptotically reached,15

with a clear effect of the seaward boundary, where a higher amplitude-to-depth ratio
starts with a lower correlation, but converges faster. It should be observed that the
imposed seaward boundary is not a naturally occurring relationship between water
level and flow, and therefore is not consistent with Eq. (22). The disturbance created by
the seaward boundary condition requires a certain length for the tidal wave to adjust.20

There also is a clear effect of the landward boundary, as a result of the weakly reflective
numerical boundary condition. For horizontal estuaries, this effect disappears quickly
in seaward direction due to channel convergence and friction, but a bed slope severely
increases the length of this effect.

The positive result for Eq. (22) in a single estuary does not mean it applies in general.25

Therefore, we have analyzed the effect of friction, convergence and amplitude-to-depth
ratio for a large number of different cases by extracting values in a wide range of the
parameters. In order to define reasonable values for different estuaries, we introduce
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three dimensionless parameters (Toffolon et al., 2006)

α =
η

h0

, γb =
c0

bω
, γd =

c0

d ω
, (28)

where η and h0 are the reference values at the mouth of the estuary and ω = 2πT−1

is the tidal frequency. For each simulation, a random value of the following parameters
has been selected from a uniform distribution in the range defined in Table 1. We note5

that h0 is selected in a dimensional range because it provides the physical size of the
estuary, and K as well to avoid unrealistic friction.

The result of several typical cases is shown in Fig. 4. Each point represents a calcu-
lation at a certain location and time in the estuary of Eq. (22), which has been made
dimensionless by dividing by the scale factor Fsc = η

2/(h0 T
2) to get points of as many10

different scenarios as possible in a single figure. Small values of Eq. (22) demonstrate
considerable scatter, which may be explained by numerical errors, which are relatively
large in this range. Large values give an almost perfect agreement.

4 Interpretation of the new equation

4.1 Simulating an open boundary condition15

The objective of an “open” or “absorbing” boundary condition in wave theory is to not
create reflection. It is appropriately used when posed far enough from a reflecting phys-
ical boundary, since otherwise physical reflection should be accounted for. It can be ap-
plied in sub-critical flow, where information travels in two directions: positive (R1) and
negative (R2).20

The length of influence of a reflection depends on several parameters, such as fric-
tion, convergence, bed slope and amplitude-to-depth ratio. Mathematically, the only
way to be certain that there is no reflection is to simulate an infinitely long channel. In
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fact this means that the perfect open boundary condition implies that behind it there is
an infinitely long channel.

As shown in Fig. 5, in sub-critical flow the solution can depend on: (i) two boundary
conditions (point A); (ii) one boundary value and one initial condition (B, C); or (iii)
two initial conditions (D). An open boundary, which is represented by the dash-dot5

line, turns point A into the second option, and point B into the third option through the
extension by the dashed lines.

A local open boundary should mimic the information that otherwise would have come
from outside the domain. This is simple and well known for a “perfect channel”, where
as initial condition outside the domain R2 is assumed to be constant and where the10

value of R2 does not change along its trajectory (as Eq. 10 implies).
However, it is more difficult to reproduce this condition when additional terms like

friction, convergence and bed slope are accounted for as in Eq. (5), whereby the val-
ues of the invariants change along their trajectories. In other words, then the term
“invariants” is no longer appropriate. The changes in value of R2 along its trajectory15

and the trajectory itself depend on the local solution of the water depth h and the ve-
locity u, which cannot be calculated on a part of the trajectory (see the dashed lines
in Fig. 5), since that part lies outside the domain. Approximations for open boundaries
exist for linearized cases (e.g., Engquist and Majda, 1977) or with non-local formulas
(e.g., Keller and Voli, 1989).20

4.2 Domain-splitting and internal open boundaries

The simulation of a progressive wave in a computational domain can be divided into
sub-domains with internal boundary conditions (Keller and Voli, 1989; Toffolon and
Savenije, 2011). The sub-domains can be explicitly solved from left to right if the re-
flected wave does not exist or can be neglected, so that the landward boundary can25

be seen as open. Hence, the solution at the open boundary of each sub-domain can
be used as the seaward boundary condition for the next sub-domain (see Fig. 6). Sim-
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ulation with sub-domains should result in the same physical simulation as when using
a single domain.

Let us assume that it is generally possible to define such internal open boundaries
for estuaries with friction, convergence and a bed slope (and not merely for a “perfect
channel”). Each internal open boundary should then contain the same information in5

the sense that behind the boundary lies an infinitely long channel with the same friction
and convergence properties as in the entire domain. This implies that the total domain
can be described by an infinite number of subdomains, and therefore by an infinite
number of open boundaries (see Fig. 6), all containing the same physical information.
The boundary condition, which applies locally, becomes an additional equation valid10

at each location in the domain. This means that instead of an open boundary condi-
tion, the additional Eq. (22) is part of the problem formulation for an infinite channel.
Similarly, an additional equation (see (A12) in the Appendix) was applied by Savenije
(2012), where he assumed a proportional damping equation to represent the open
boundary equation, valid for long open boundary estuaries.15

5 Wave character in convergent estuaries

5.1 Phase lag and reflection

Descriptions of waves as “progressive” or “standing” originate from the analysis of
channels which are frictionless, prismatic and horizontal. The primary indicator for
these classifications is the phase lag between the water height h and the velocity u,20

which is 0◦ for a perfect progressive wave and 90◦ for a perfect standing wave. In
Sect. 2.3 such a “perfect channel” was analyzed, with an infinite length and therefore
no physical, closed boundary. The absence of reflection allows a progressive wave to
occur. If such a channel has a closed boundary, full reflection will cause a standing
wave to occur.25
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Clearly, reflection leads to a phase lag. However, we also expect a phase lag in
a converging estuary with an open boundary. Moreover, friction and bed slope will
influence the phase lag. If we observe a phase lag, does this mean there is reflection?

5.2 Lagrangean analysis

When we follow a fixed volume that moves through a horizontal channel with a varying5

width, it is compressed in both longitudinal and lateral direction. Dictated by the mass
balance, the variation of the water depth follows from this compression. To be able to
follow a particle with a given volume of water in a converging estuary, Eq. (1) is rewritten
in the Lagrangean perspective (Savenije, 1992),

1
h

Dh
Dt

+ux −βu = 0 . (29)10

This equation shows that the relative change of the depth of a water volume is deter-
mined by the velocity gradient and the convergence. When tracking this fixed volume,
the displacement S can be obtained by

S =

t∫
0

uDt . (30)

The general solution of the mass balance (Eq. 29) for a converging estuary is15

h = hi exp
(∫
−uxDt

)
exp
(∫
βuDt

)
, (31)

where hi is the initial condition. The first integral represents the longitudinal compres-
sion due to the velocity gradient and the second integral the lateral compression due to
convergence. Combining Eqs. (30) and (31), for the case that the convergence degree
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β remains constant (= b−1 as for a purely exponential decrease), gives:

h = hi exp
(∫
−uxDt

)
exp(βS) . (32)

We introduce the auxiliary variable

hp = hexp(−βS) , (33)

which represents the water depth compensated for the lateral compression due to width5

convergence. It then follows that the variation of the water depth due to the velocity
gradient can be represented as

hp = hi exp
(∫
−uxDt

)
. (34)

This equation can be tested by means of the numerical model. The lateral compres-
sion due to the varying width can be removed, using numerical particle tracking for the10

particle displacement S. After applying Eq. (33), the transformed water depth hp can
be compared to the velocity u.

Lagrangean time series of h, hp and u are plotted in Fig. 7 , together with the La-
grangean tidal ellipse in terms of horizontal and vertical displacements. It can be ob-
served that there is a clear phase lag between h and u. However hp has no phase15

lag with u, suggesting that hp resembles a progressive wave. This resemblance is
strongest in an “ideal” estuary, where convergence and friction are balanced so that
there is no damping of the amplitude of the tidal wave. So an “apparently standing”
wave in an “ideal” estuary (expressed in h and u) may also be described as a “progres-
sive wave” (expressed in hp and u) if we look at longitudinal compression only, as is20

the case in a prismatic channel where there is no lateral compression.
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5.3 Classical vs. apparently standing waves

The open boundary Eq. (22) has been derived in Sect. 2.3 for a “perfect channel”.
However, if there is a closed boundary, then at this boundary the velocity will remain
zero but the water level will change in time. Therefore neither invariant (see Eq. 6) will
be constant in time at this location. Hence, it can be concluded that Eq. (22) cannot5

apply to a standing wave in a finite, frictionless, prismatic, horizontal channel.
Equation (22) does appear to hold in simulations of converging channels with open

boundaries, as shown in Sect. 3, even though in these estuaries a clear phase lag
can be observed. It does not hold in such converging estuaries if there is a closed
boundary.10

Since it appears to be the “classical reflection” which occurs at a closed boundary
that causes Eq. (22) not to hold, it can be reasoned that if Eq. (22) does hold in con-
verging estuaries with an open boundary, there is no such reflection. So the numerical
results in Sect. 3 confirm that the phenomenon of “apparent reflection” (by conver-
gence, friction and bed slope) is fundamentally different from “classical reflection” (by15

a closed boundary), as already noted in the literature (Hunt, 1964; Jay, 1991; Friedrichs
and Aubrey, 1994; Toffolon and Savenije, 2011; Savenije, 2012).

6 Applications

6.1 Reconstructing the velocity

Through substitution of Eqs. (1) and (2) in Eq. (22), the spatial and temporal derivatives20

of the velocity can be removed, yielding a second order equation in u:

f1u
2 + f2u+ f3 = 0, (35)
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where

f1 = ζx (hx −βh± fW h) ,

f2 = ht hx +ht ζx −htβh ,

f3 = ht
2 −ghζx2 ,

fW =
W
u|u|

. (36)5

If convergence, friction and bed slope are known, Eq. (35) can be used to compute
the velocity u directly out of observation of the water depth (h, ht and hx). But there are
some issues that have to be addressed.

1. Observations cannot be completely local since spatial derivatives are required.

2. The specific friction term fW has to be determined, which requires the local friction10

coefficient K to be estimated, or calibrated as discussed in Sect. 6.2. Here it
is assumed that in open channels the full friction term W contains a quadratic
velocity component, which is positive or negative depending on the flow direction.

3. Since this equation is of second order, it contains a part that can either be positive
or negative, which changes within each simulation in a wave-like behavior.15

Figure 8 illustrates the application of Eq. (35), in which the sign of the specific fric-
tion term ±fW is taken from the numerical velocity and the sign of the quadratic root
switches at the vertical asymptote. As can be observed, large spikes occur, which seem
to introduce errors that dampen, but remain until the next spike.

Since numerical evaluations of the governing equations contain numerical errors,20

substitution may reduce or amplify the numerical error. Even though the proposed
Eq. (35) is quite sensitive, in particular to small values of f1, it is an interesting method
to obtain the discharge flowing through the estuary from the easily observed water
depth. In this sense, it functions as a stage-discharge method for the tidal zone.
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6.2 Estimation of friction

A second application comes from removal of the spatial derivatives of both the water
depth and the velocity, again through substitution, in order to determine the friction
term W . Although the width convergence β and the bed slope Zx cannot be measured
locally, it is a large advantage of this method that only local time series are required of5

the water depth h and the velocity u. This can be done with

W =
f4 − f5f6
f7

, (37)

where

f4 = g(ht)
2 −h(ut)

2 , f5 = u (Zx +βh) ,

f6 =

(
u2

2
+gh

)
t

, f7 = (uh)t . (38)10

A numerical test is shown in Fig. 9. The friction term W from Eq. (37) is compared
to that obtained using Eq. (25) with three different values of the Strickler coefficient K .
As the friction relates to the square of the velocity, the signal also shows pronounced

spikes. The best agreement is found for K = 50m1/3 s−1, which is the value used in the
numerical simulation. Therefore Eq. (37) may be suitable for local friction calibration.15

7 Summary and conclusions

An exact “open boundary equation” (Eq. 22) has been derived for a progressive wave
in a frictionless, prismatic, horizontal and infinite channel, under sub-critical flow, which
is valid in the entire modeling domain. It was further investigated through numerical
simulations if this equation had more general validity in estuaries that experience con-20

vergence, friction and bed slope.
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Numerical simulations with a weakly reflective boundary yielded satisfactory results
for all amplitude-to-depth ratios, in weakly and in strongly converging estuaries, with
low and high friction and with bed slope, as long as Eq. (22) was evaluated at sufficient
distance from the imposed boundary conditions.

The additional equation is an integral part of the problem formulation, representing5

the information of the landward open boundary. In this way, the open boundary equation
is an additional third equation to the two balance equations (Eqs. 1 and 2), providing
limits to the solution space.

The open boundary equation does not work if there is “classical reflection” from
a closed boundary. However, it does work if there is “apparent reflection” (by conver-10

gence, friction and bed slope), which is fundamentally different from “classical reflec-
tion”.

The new equation can be used in practical applications, where it allows to remove two
partial derivatives in the temporal and spatial variations of water elevation or velocity.
In particular, removing the spatial derivatives of the velocity and water depth yields15

Eq. (27) for a fully absorbing, local boundary for the nonlinear Saint-Venant equations
accounting for both friction and convergence. Alternatively, removing the velocity space
and time derivative, Eq. (35) for the velocity u can be obtained from the water depth
h and its derivatives in time ht and space hx. Moreover, Eq. (37) is found with which
friction can be calibrated locally from time series observations of both velocity and20

water depth.
Although there are substantial hints that Eq. (22) is indeed valid for any infinite chan-

nel, also with friction and convergence, this cannot formally be proven yet. Numerical
simulations contain errors and can only examine an intrinsically limited region of the pa-
rameter space on a finite domain, so we recommend that further research is performed25

on this approach to look for formal proof.
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Appendix A: The open boundary equation in analytical approximations

In this section we consider some analytical approximations of progressive wave solu-
tions (e.g., Savenije, 2012), to verify if Eq. (22) holds, and under which conditions. Ω
and Ψ are any periodic function, η and υ are amplitudes of water level and velocity, ϕ
is the variable part of the argument which is the same for ζ and u, ε is the phase lag.5

A1 Progressive wave without damping

A progressive wave can be described by two generic periodic functions as

ζ (x,t) = ηΨ(ϕ(x,t)) , (A1)

u(x,t) = υΩ(ϕ(x,t)) , (A2)

whose partial derivatives are10

ζt = ηΨϕϕt , ζx = ηΨϕϕx ,

ut = υΩϕϕt , ux = υΩϕϕx . (A3)

By multiplying the crossed partial derivatives it is straightforward to obtain that

ζtux = utζx , (A4)

thus demonstrating the validity of Eq. (22) in this case.15

A2 Mixed wave with damping

In a damped wave, the amplitudes change along x. Considering a generic wave allow-
ing for tidal damping/amplification, friction and convergence:

ζ (x,t) = η(x)Ψ(ϕ(x,t)+ε(x)) , (A5)

u(x,t) = υ(x)Ω(ϕ(x,t)) . (A6)20
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The derivatives now read

ζt = ηΨϕϕt , ζx = ηΨϕ (ϕx +εx)+ηxΨ ,

ut = υΩϕϕt , ux = υΩϕϕx +υxΩ . (A7)

Multiplying the derivatives as in Eq. (22) yields more complex results,

ζtux = ηΨϕϕtυΩϕϕx +ηΨϕϕtυxΩ , (A8)5

utζx = υΩϕϕtηΨϕ (ϕx +εx)+υΩϕϕtηxΨ . (A9)

The validity of Eq. (22) in this case requires two conditions,

εx = 0, (A10)
1
η
ηx

1
Ω
Ωϕ =

1
υ
υx

1
Ψ
Ψϕ . (A11)

The first condition (A10) is valid for a purely progressive wave (ε = 0), but also for10

a mixed wave for which the phase between water level and velocity remains constant
along x, which is the case in an ideal estuary but also in the asymptotic situation of
alluvial estuaries (see Cai and Savenije, 2013)

The second condition requires more attention. If the structure of the two waves is
characterized by a proportionality, i.e. Ω= kΨ, as it is often assumed, then Eq. (A11)15

becomes

1
η
ηx =

1
υ
υx , (A12)

which represents a requirement on the degree of damping of the velocity and water
level amplitudes. In the case of linearized waves, this can be demonstrated to hold for
infinitely long channels (Toffolon and Savenije, 2011), but the assumption of propor-20

tional damping (Eq. A12) is also at the basis of Savenije’s approach (Savenije, 2012),
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which has proved to yield satisfactory results for nonlinear cases (Cai et al., 2012,
2014). Finally, we note that a mixed wave in an ideal estuary clearly satisfies Eq. (22),
since by definition in an ideal estuary the phase lag ε does not change (Eq. A10) and
no damping is present (Eq. A11).
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Table 1. Parameter range for numerical simulations.

Parameter Unit Range

h0 m 2–40
α – 0.01–0.6
γb – 0–5|a

γd – 0–0.5|b

K m1/3 s−1 20–80

a,b Approximately 15 % of the cases the
value 0 is chosen.
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x

B → ∞

Figure 1. Tidal forcing in a converging channel of infinite length.
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Figure 2. Time series are displayed of the terms in Eq. (26) at location x = 0.2L for an estuary
with η = 0.1 m, h0 = 10 m, b = 70 km, d = 200 km, K = 45 m1/3 s−1. In order to find good agree-
ment between the left hand side and the right hand side, none of the terms can be neglected.

951

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/12/925/2015/osd-12-925-2015-print.pdf
http://www.ocean-sci-discuss.net/12/925/2015/osd-12-925-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
12, 925–958, 2015

Open boundary
equation

D. Diederen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 0.5 1
0.9

1

x/L [−]

ρ 
[−

]

 

 

η=1m

η=2m

η=3m

η=4m

η=5m

η=6m

Figure 3. The Pearson coefficient ρ is displayed as a function of space, which correlates time
series of the left hand side and the right hand side of Eq. (22) for an estuary with h0 = 10 m,

b = 100 km, d = 250 km, K = 40 m1/3 s−1, L = 900 km and a varying amplitude η.
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Figure 4. A parity diagram between absolute values of the scaled left hand side of Eq. (22)
against the scaled right hand side, for 100 simulations in the range defined in Table 1. Each dot
represents a time in the tidal cycle on a different location in the estuary domain x = {0.3L,0.7L}.
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Figure 5. At each point (A, B, C, D) the solution for the water depth h and the velocity u depends
on the values of both Riemann invariants. Each trajectory (which is implicitly dependent on the
solution) leads back to an initial condition or a boundary condition.
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(a)                                                                                                  

→ ∞

(b)                                                                                                  

→ ∞

x

(c)                                                                                                  
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Figure 6. The same simulation is displayed on a domain with: (a) a single open boundary; (b)
two open boundaries; or (c) a large number (theoretically infinite) of open boundaries.
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Figure 7. Decomposition of the vertical tide h separating the effect of convergence by introduc-
ing the variable hp: (a) Lagrangean time series of h, hp and velocity u; (b) the same variables
as a function of the displacement. The used scenario is close to an ideal estuary, as η = 2 m,
h0 = 10 m, b = 70 km, K = 45 m1/3 s−1 and there is no bed slope.
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Figure 8. The resulting velocity from Eq. (35) is compared with the numerical velocity in time se-
ries. The parameters used in the simulation are η = 1.2 m, h0 = 28 m, b = 280 km, d = 1111 km,

K = 50 m1/3 s−1.
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Figure 9. The result of Eq. (37) is compared with three estimates of the friction term W from
Eq. (25), in which the numerical velocity has been used. The parameters are from the same
simulation as in Fig. 8.
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