

1 Statistical Analysis of Wave Energy Resources Available

- **2** for Conversion at Natural Caves of Cape-Verde Islands.
- 3

4 W. M.L. Monteiro¹ A. J. Sarmento², A.J. Fernandes¹ and J.M. Fernandes¹

5 [1]{Department of Science and Technology, University of Cape-Verde, Praia, Cape-Verde}

6 [2] {Lisbon High Technical Institute, Technical University of Lisbon, Lisbon, Portugal}

7 Correspondence to: W. M.L. Monteiro (wilson.monteiro@docente.unicv.edu.cv)

8

9 Abstract

10 Using the time-series of significant wave height and the peak period between 1979 and 2009 11 generated by SOWFIA project, some relevant statistical information about energy content 12 available in ocean waves in Cape-Verde is obtained. The monthly and annual time-series of 13 the average power are analysed and the confidence intervals for their values are defined. 14 Considering all of the 31 years of data, the results show that the most energetic month, from 15 the average power point of view is January (23.49 kW/m) and the least energetic month is 16 July (15.04 kW/m). In fact, the monthly average power decays from January to July and 17 increases from July to December (21.21 kW/m). The annual average power exhibits a clear 18 attenuation over the 31 years analysed, the reason for which is not yet clear to us. However, 19 using the appropriate Autoregressive Integrated Moving Average (ARIMA) model it is 20 possible to estimate that future values of the annual average power tend to oscillate around 21 18.2 kW/m. Through the Coefficient of Variation of Power (COVP), obtained by dividing the 22 standard deviation of the power time-series by the average power, it is possible to conclude 23 that the wave resource is stable, with COVP between 0.46 and 0.66. The values of the 24 Monthly Variation Index (MVI), the maximum range of the monthly mean wave power 25 relative to the yearly mean level, show that the resource is relatively stable, with MVI < 1.2. 26 The present work calculates the available power input into the Natural Caves (NCs) in Cape 27 Verde Islands, through a rigorous analysis of the wave climate that excites them. The 28 minimum sampling size and the corresponding numbers of days of measurements per month,

1 are also estimated.

2 1 Introduction

3 Ocean waves constitute one of the renewable sources of energy that are gradually entering the market of clean and sustainable energy worldwide. The global theoretical energy from ocean 4 wave is estimated in 8 $\times 10^6$ Twh/year (Boyle, 2004). Many countries around world have been 5 investing on this natural resource to produce useful and sustainable energy. Portugal (Pelamis 6 7 and Pico Plant Projects.), Australia (CETO and OCEANLIX projects), France (SEAREV 8 project), UK (OYSTER WEC and Limpet projects) and Holland (AWS project) are examples 9 of some countries that have recognized the feasibility of harvesting this source of energy 10 (ABP, 2004). According to the International Renewable Energy Agency (Monford et al., 11 2014), around 64 % of the Wave Energy Converters (WECs) has been projected for offshore 12 application and 36% for near-shore and onshore operation. Some full-scale operational tests 13 have been realized. These include the OYSTER device from Aquamarine Power, the Wave 14 Roller from AW-Energy, Pelamis P2 from the Pelamis Wave Power, the Seabased and the 15 Sea-Tricity devices. Magagna (2011) has identified, in 2011, over 100 wave energy 16 developers. Yet, EMEC (2014) has listed 170 wave energy developers worldwide. About 45% 17 of the wave energy developers are based in or are currently developing projects in the 18 European Union (EU) regions. The global installed capacity of wave energy remains low and 19 the technologies are still at an advanced R&D stage. Just a few machines have sustained long 20 operational hours, such as the Aquamarine OYSTER (>20000 hours) and Pelamis (cumulative 21 > 10000 hours) (Scottish Renewable, 2014). The growth of the wave energy sector is lower 22 than expected and this situation may affect the confidence of investors in this area. Success in 23 attracting future Original Equipment Manufacturer investments will depend on the capacity of 24 the developers in improving performance, reducing cost and validating wave energy 25 technologies. The long-term global wave energy is expected to become cost competitive and 26 provide an alternative to other Renewable Energy Sources and conventional energy resources. 27 Through a review of the existing data available, the different cost components in the Capital 28 Expenditure (CAPEX) estimate for wave energy have been identified as follows (Table 1):

29

1 Table1. Costs components estimate for wave energy extraction (JRC, 2014).

Civil and Structural costs	38%
Major Equipment costs	42%
Electrical and I&C supply and installation costs	8%
Project indirect cost	7%
Development cost	5%

2

Thus, the main contributors to the CAPEX are mechanical equipment, civil and structural costs. In this context, the developers of wave energy technologies must undertake efforts and strategies aimed at reducing mainly the two above mentioned costs.

6 SOWFIA-Streamlining of Ocean Wave Farm Impact Assessment is an EU Intelligent Energy 7 European Project with the goal of sharing and consolidating pan-European experience and 8 best practices for consenting processes and environmental and socio-economic impact 9 assessment (IA) for offshore wave energy conversion developments. This project brings 10 together ten partners across eight EU Member States actively involved in planned wave farm 11 test centers and aims at providing recommendations for streamlining of IA approval processes 12 with the purpose of removing legal, environmental and socio-economic barriers associated 13 with development of the wave energy farms.

Cape-Verde is an archipelago of ten islands in the Atlantic Ocean, off the West Coast of 14 15 Africa, with roughly half million people. The country is totally dependent on oil to produce 16 electricity, having one of the most expensive cost of electricity in Africa, around 0.28 17 Euro/kWh (Electra, 2012) versus 0.17 Euro/kWh (Senelec, 2015) at Senegal, a continental 18 neighbour. Some investments were made by the Government with the purpose of introducing renewable sources of energy in the country, basically solar and wind energy. The Government 19 20 has defined an ambitious goal that consists in achieving 50% of Renewable Energy 21 penetration in the country by 2020 (GESTO, 2011). Some research on using ocean energy 22 through the OTEC - Ocean Thermal Energy Conversion system and WaveStar technology 23 (Wave energy) was initiated in the country but these projects still lack feasibility studies.

- 1 However, four projects for offshore wave energy conversion based on the Pelamis technology
- 2 were proposed for four of the islands (GESTO, 2011): Sal (3.7 MW), S. Antão (3.7 MW),
- 3 S.Vicente (3.7 MW) and Boavista (3.5 MW).

Being composed of islands, most of Cape-Verde's economic activities (around 90%) are
concentrated on coastal areas (Carvalho, 2013). In this context, it makes sense to use wave
energy for producing electricity locally. A clear alternative is harvesting Natural Caves
existing just below the rocky shore, with fountain-like structures (Fig. 1).

8 NCs are caverns that form naturally under the rocky shorelines, inside of which there is an air 9 layer. This air layer acts like an air pump as the wave enters and leaves these natural 10 infrastructures. As a result, the air is forced to go in and out of the NCs, through surface holes 11 that exist on top of the cave. Fig. 2 shows a Natural Caves with two holes in operation. 12 Monteiro and Sarmento (2015) carried out a study aiming at characterizing the NCs in the 13 context of wave energy extraction.

14

Figure 1. Activity in a Natural Cave.

Figure 2. Activity in a NCs with two holes.

- 16 The Principles of NCs operations are similar to the man-made Oscillating Water Column 17 device, projected for onshore application.
- 18 The justification for the idea of using the NCs is the possible cost reduction on the Civil and
- 19 Structural components, which are, as mentioned before, one of the most important costs
- 20 associated with building wave energy devices to produce electricity, and also to minimize the

1 risks of collapse, by taking advantage of the sturdiness of the natural rocky structure, time

- 2 tested by the waves and storms.
- To evaluate the potential of NCs for electricity production, it is necessary to estimate its output power. To do this, a set of experiments aimed at determining the values of some important physics parameters of NCs operations need to be conducted. Monteiro and Sarmento (2015) carried out the analytical modelling of the NCs operations as a function of their functioning physical parameters. The present study is part of a deeper work aimed at quantifying the output power of NCs and to project an adequate power take-off system to be adapted on their holes, for electricity production.
- Since the excitation waves are irregular, non-linear and non-stationary phenomenon it is very important to determine beforehand the sampling size, i.e. how long it takes to carry out the experiments on NCs to guarantee the time representativeness of its output power. To achieve this goal, some statistical analysis has to be carried on the wave energy input regime.

14

15 2 Methodology

16 Calculation of the wave energy input regime is carried out using principles and parameters17 described below.

18 2.1 Average Power

In deep water, where the depth is greater than a half of the wavelength, the average wave
power can be determined through the following equation, applied only for unidirectional
Pierson-Moskowitz wave spectrum.

22
$$P = \frac{\rho g^2 H_s^2}{64\pi} T_e$$
(1)

Where, H_s is significant wave height, T_e is energy period, defined in terms of the spectral momentum by the following relation:

(2)

1
$$T_e = \frac{m_{-1}}{m_0} = \frac{\int_{0}^{2\pi} \int_{0}^{\infty} f^{-1}S(f)dfd\theta}{\int_{0}^{2\pi} \int_{0}^{2\pi} S(f)dfd\theta}$$

2 in which, m_{-1} is the spectral momentum of order -1, m_0 is the spectral momentum of order 0, 3 f is the frequency, S(f) is the spectral density function and θ is the direction of the 4 energy propagation (Dean and Dalrymple, 1991).

5 The characterization of the wave climate is made by the combination of the significant wave 6 height H_s and peak period T_p or the zero-crossing period T_z parameters. The energy period 7 determined by the Eq.(2) require the knowledge of the form of energy spectrum. When the 8 form of the energy spectrum is unknown it can be approximated by the some model as for 9 example, the Pierson-Moskowitz spectrum. This is the approximation used on the elaboration 10 of the Marine Atlas of Renewable Resources in UK (ABP, 2004). Another approximation 11 commonly used for T_e is represented by $T_e \approx \alpha T_P$, where α is an empirical parameter. For 12 Pierson-Moskowitz spectrum, $\alpha = 0.86$ (Dean and Dalrymple, 1991). To evaluate the wave 13 resource for South of New England, Hagernam (2001) used the approximation $T_e = T_p$ and 14 considered this approximation very appropriate to make a preliminary analysis of wave 15 energy resource.

16 Using the monthly series of the available power in waves it is possible to define the annual 17 time-series of this parameter through the following expressions:

$$P_{aj} = \frac{\sum_{i=initial month}^{initial month + 11} P_{ij}}{12}$$
(3)

In the above equation P_{aj} is the average power for year j, P_{ij} is the average power for the month i and year j. In this way, the monthly time-series begin on January and ends on December of each year.

It is important to note that there is no physical justification for wave power to be monthly periodic, but since the sun-cycle is the underlying cause for atmospheric pressure distribution and wind patterns over the ocean, most likely it will be yearly periodic.

1 The reason to calculate monthly series of available power is just related to how data is

2 collected and made available at SOWFIA.

3 2.2 Monthly Variation Index (MVI)

4 The temporal variability of the wave resources is a key factor that affects decisively the 5 feasibility of wave energy projects. In this sense, the regions of the ocean where the resources 6 are stable are more attractive for all possible investors. Naturally, the level of the average 7 power is another important factor for viability of wave energy harvesting. The Monthly 8 Variation Index is defined as the ratio of the differences between the maximum and minimum 9 values of the monthly average wave power in year j by the corresponding annual average 10 wave power (Cornett, 2008). That is.

11
$$MVI_{j} = \frac{\left(P_{\max} - P_{\min}\right)_{j}}{P_{aj}}$$
(4)

12 where P_{max} and P_{min} are, respectively, the maximum and minimum values of the monthly 13 average power in year j.

14 2.3 Coefficient of Variation of Power (COVP)

15 COVP is another very important parameter used to evaluate the temporal variability of wave 16 resources. This quantity is defined by the ratio between the standard deviation of the wave 17 power and the respective annual average wave power in year j (Cornett, 2008).

18
$$(COVP)_j = \frac{\sigma(P(t))_j}{P_{aj}}$$
 (5)

In the Eq.(5), $\sigma(P(t))_j$ represent the standard deviation of temporal series of wave power, P(t), for year *j*, and P_{aj} is the respective annual average wave power. According to Cornett (2008), small values of COVP means that the wave resources are stable. For $0.8 \le COVP \le 0.9$ the wave resources can be considered moderately instable. Therefore, for COVP > 0.9 the resource is unstable.

1 2.4 Statistical analysis

2 The wave climate at a certain location is well characterized by the time-series of significant 3 wave height and the peak period. Through these parameters that are recorded for each 3 hour (time interval necessary for verifying significant change in wave spectrum) other parameters 4 5 such as the time-series of the average available power in waves can be defined. To understand 6 the time-series behavior of some important wave parameters, to calculate the confidence 7 interval, the smoothing curves, and the forecast of its values, many statistics tools of analysis 8 are used. In this context, some well known statistics software such as XLSTAT and Minitab 9 are used. Aspects such as the trend analysis, stationarity and normality tests of the average 10 power are here analysed. To perform the forecast of the average power in waves, the 11 Autoregressive Integrated Moving Average (ARIMA) model is used. Non-seasonal ARIMA 12 model is generally represented as ARIMA (p,d,q) where, p is the order of the Autoregressive 13 Model, d is the degree of differencing and q is the order of the Moving Average Model 14 (Bisgaard and Kulahci, 2011).

Finally, the wave histogram is a table that lists the occurrence of the sea-states in terms of significant wave height and peak period or mean up-crossing period. It is the long-term statistical representation of sea states. Using the information in the wave histogram it is possible to identify the most common sea states in a certain region.

19 2.5 Representativeness of the monthly average output power from the NCs

20 The energy that excites the NCs is a function of the local wave regime, while its output 21 energy depends on the input energy (wave regime) and on the geometry of the NCs (Fig. 3). 22 For each NC the geometry is fixed, hence the output energy is directly influenced by the local 23 wave regime. This mean that the variation in the output energy content is just caused by the 24 variation in the input energy content, that is by the variation of the local wave regime. In this 25 context, it is reasonable to assume that the minimum sampling size necessary for 26 characterizing the input energy content is equal to the minimum sampling size needed to 27 characterize the output energy from the NCs. The calculation of the minimum sampling size 28 for characterizing the input energy into the cave is done using the Minitab Software. For three 29 hours time interval between successive readings, the total number of data points acquired 30 during one day is eight. So, if this minimum sampling size is represented by Nin, the

- 1 correspondent minimum time duration for data acquisition to achieve the representativeness 2 of the input power is $N_{in}/8$ days. Therefore, to guarantee the representativeness of the output 3 energy from the NCs the duration necessary to realize the experimental study on these natural
- 4 infrastructure is equal to N_{in}/8 days.

7 Figure 3. Energy production system by NCs.

8

9 Results 3

10 The information about the significant wave height (Hs) and peak period (Tp) for the wave 11 regime in Cape-Verde is obtained for the location characterized by the coordinate 16°N-24°W, 12 where the water depth is around 3.7 km (NOAA, 2015), using the SOWFIA project and is 13 presented in Fig. 4. Data was gathered for period between 1979 and 2009 and the values of Hs 14 and Tp are recorded every 3 hours.

15 The histogram and the time-series of average power available in waves were calculated and 16 shown in Table 2 and Fig. 5, respectively.

As the histogram shows, the largest number of occurrence is 18854, representing 20.81% of 17 18 all occurrences and featuring peak period from 6-9 s and significant wave height from 1.5-2 19 m.

- 1 Also, 78.03 % of the waves present significant wave height between 1-2 m.
- 2 The minimum and maximum values of significant wave height and peak period recorded are,
- 3 respectively 0.59 m and 3.82 m and 2.85s and 22.12 s.
- 4

Figure 4. Time-series of significant wave height and peak period between 1979 and 2009(SOWFIA Project).

8 The histogram presented in Table 2 shows two local maxima for the peak period, 6–9s and 9 12–15s, for significant wave height between 1.5–2.5 m. This bimodal distribution indicates a 10 superposition of two distinct wave regime, the first with origin in a region of a shorter fetch 11 (smaller period) and the second with origin in a region of longer fetch (longer period). We 12 suspect that the former is generated during early-year (winter) storms in the North-Atlantic 13 and the latter during the end-year (autumn) storms in the South-Atlantic.

14 This is consistent with later findings in this paper that January and December are the most 15 energetic months and July is the least energetic month.

1 Table 2.Histogram.

		Peak Period, Tp[s]									
		1-3	3-6	6-9	9-12	12-15	15-18	18-21	21-24	Occurre nce of Hs	%Occurr ence of Hs
	0-0.5	0	0	0	0	0	0	0	0	0	0.00
[u	0.5-1	1	3	170	427	141	29	6	0	777	0.86
, Hs [ı	1-1.5	0	572	8307	9194	7288	1742	127	4	27234	30.07
leight	1.5-2	0	730	18854	7590	12783	3315	171	2	43445	47.96
ave H	2-2.5	0	20	8482	2072	3329	1355	85	0	15343	16.94
ant W	2.5-3	0	0	1657	731	431	293	25	0	3137	3.46
gnifica	3-3.5	0	0	254	219	51	47	7	0	578	0.64
Si	3.5-4	0	0	28	29	3	8	1	0	69	0.08
	>4	0	0	0	0	0	0	0	0	0	0.00
	Occurrenc e of Tp	1	1325	37752	20262	24026	6789	422	6	90583	100
	%Occurre nce of Tp	0.00	1.46	41.68	22.37	26.52	7.49	0.47	0.01	100	

2

4 Figure 5. Time-series of mean power available on waves between 1979 and 2009.

- 1 The curves on Fig. 6 show no clear trend on the time-series of the monthly average power,
- 2 over the years. This fact is confirmed by the Mann-Kendal test (Mann, 1945) whose results
- 3 are presented at Table 3. The Mann-Kendal test (at 5% level of significance) was done using a
- 4 commercially available software (XLSTAT, 2015). The results show that these monthly time-
- 5 series can be considered trendless over the years, except for September and October with low
- 6 p-values of 3.8% (September) and 1.8% (October) implying a trend.

Months	J	F	М	A	М	J	J	A	s	0	N	D
p-values	0.946	0.176	0.696	0.311	0.825	0.302	0.424	0.199	0.038	0.018	0.866	0.176
Decision	Without Trend	With Trend	With Trend	Without Trend	Without Trend							

7 Table 3. The Mann-Kendall Trend test for monthly average time-series.

8

Fig. 7 shows the minimum, average and maximum power available on waves which has been
calculated for each month of the 31 year long record. The graph clearly shows that the most
energetic month is January (23.49 kW/m) and the least energetic month is July (15.04 kW/m).
In fact the average power decays from January to July and increases from July to December
(21.21 kW/m).

Figure 6. Time-series of monthly average power.

Figure 7. Statistics of monthly average power for 31 years of data.

1

The increase of the annual average power, between 1979 and 2009 is shown in Fig. 8, 2 3 together with its exponential and linear smoothing curves (Hyndmann et al., 2008). The Dickey-Fuller test helps us to verify if there are upward or downward trends in the time-series 4 5 of the annual average power (Kirchgassner and Wolters, 2008). According to this statistical 6 test (p- values equal to 0.475 and significance level of 5 %), the time-series of the annual 7 average power is a non-stationary time-series and presents a downward trend, as it is possible 8 to see by the two smoothing curves . We could not find any plausible explanation for this 9 downward trend. In this context, it is worth making a forecast of the annual increase of 10 average power for the next 15 years to see the trend for its predictable values. To achieve this 11 goal, it is necessary to calculate the best ARIMA model.

12

13 Figure 8. Time-series of annual average power, between 1979 and 2009.

14 According to the Dickey-Fuller test, the original time-series of the annual average power is 15 non stationary. The first difference (P-1) is stationary as its possible to see through the values 16 of the Autocorrelation Factor (ACF) and of Partial Autocorrelation Factor (PACF), that are 17 statistically equal to zero, as they are less than 0.35, after Lag = 1 (for ACF) and Lag = 2 (for 18 PACF). ACF and PACF are two statistical measures that show how the observations in a 19 time-series are related to each other. Thus, to determine a proper model for a given time-20 series, it is necessary to carry out the analysis of these parameters (Frain, 1999). Table 4 shows 21 the values of these quantities under analysis. In the present case, the original time-series is 22 converted into stationary time-series after the first differencing (d = 1).

1

2 Table 4. The ACF and PACF values for P-1 (generated by NCSS10 Software)

ACF								
Lag	Correlation	Lag	Correlation	Lag	Correlation	Lag	Correlation	
1	-0.41	8	-0.02	15	-0.02	22	-0.11	
2	-0.28	9	-0.25	16	-0.17	23	-0.00	
3	0.33	10	0.17	17	0.15	24	0.05	
4	-0.04	11	0.02	18	0.09	25	0.10	
5	-0.06	12	-0.06	19	-0.27	26	-0.15	
6	-0.14	13	0.01	20	0.17	27	0.04	
7	0.27	14	0.06	21	0.01	28	0.05	
PAC	F							
1	-0.41	8	0.07	15	0.03	22	-0.03	
2	-0.55	9	-0.00	16	-0.18	23	-0.10	
3	-0.13	10	-0.08	17	-0.08	24	-0.05	
4	-0.08	11	-0.09	18	0.09	25	-0.04	
5	0.08	12	-0.02	19	-0.11	26	0.04	
6	-0.27	13	0.08	20	0.00	27	0.09	
7	0.09	14	0.12	21	-0.13	28	0.02	
Signif	Significant if Correlation > 0.35							

3

Accornding to Hintze (2007) the value of p is determined from the PACF of the appropriate
differenced time-series. If the PACF cuts off after a few Lags, the last Lag with a large value
would be the estimate for p. Therefore, p is equal to 2 (Table 4). The value of q is estimated,
following the same procedure, using the values of the ACF parameter shown in Table 4. So,
q=1 and, the best ARIMA model to make the forecast is ARIMA (2, 1, 1).

9 The following table shows the results of the forecast for the annual average power, achieved 10 using the NCSS Software (NCSSLLS,1981). According to the forecast, the predicted time-11 series of the annual average power oscillates, without any trend, around its average value

- 1 (18.2 kW/m). This value is very close to the one presented by Falnes. J. (2007), for the most
- 2 tropical waters, where Cape-Verde Island is located.
- 3 Table 5. Forecast of Annual Average Power (generated by NCSS10 Software)

Forecast				
Row	Date	Forecast	Lower 95% Limit	Upper 95% Limit
33	2011	18.05	15.69	20.41
34	2012	17.75	15.40	20.11
35	2013	18.53	15.87	21.18
36	2014	18.33	15.55	21.11
37	2015	18.01	15.20	20.82
38	2016	18.26	15.35	21.18
39	2017	18.32	15.28	21.35
40	2018	18.16	15.07	21.25
41	2019	18.20	15.04	21.36
42	2020	18.27	15.01	21.52
43	2021	18.21	14.89	21.54
44	2022	18.20	14.81	21.60
45	2023	18.24	14.77	21.70
46	2024	18.23	14.69	21.77
47	2025	18.21	14.61	21.82

4

5 According to the Portmanteau Test (Hintze, 2007), for a significance level of 5%, the 6 ARIMA model used to carry out the forecast is adequate, with p-value between 0.179 and 7 0.641, implying the acceptation of the forecast, as the p-values are higher than the 8 significance level.

9 The normality test of Anderson-Darling (Thode, 2002) shows that the annual average power 10 follows a normal distribution with p-value equal to 51.5% (Fig. 9). As this p-value is higher 11 than the significance level of 5%, the hypothesis of the normality distribution is accepted. 12 Fig.9 was generated by Minitab software and represents a summary report of the annual

- average power time-series. It shows, with a significance level equal to 0.05, the confidence
 intervals for the annual mean (17.981 kW/m 18.924 kW/m), for the annual median (17.879
 kW/m 19.186 kW/m) and for the annual Standard Deviation (1.028 kW/m 1.719 kW/m).
 Fig. 10 shows the normal probability plot for the annual average power. As it is possible to
 note in this figure, in general, the data follow the normal line. However, some deviataion from
 this normal line is registed between 16.99 kW/m and 17.09 kW/m.
- 7

Figure 9. Summary report of annual average power, between 1979 and 2009.

Figure 10. Normal probability plot.

8

9 The wave energy resources are stable with COVP less than 0.8, as it is possible to see in Fig. 10, which represents the time-series of the annual values of COVP. The MVI parameter 11 shows that the monthly wave energy resources can be considered relatively stable with MVI 12 values less than 1.2 (Fig. 11). This is a very attractive aspect associated with the utilization of 13 wave energy to produce electricity in Cape-Verde since it affects the useful life cycle of ocean 14 wave conversion equipment.

Defining a set of samples using all values of the significant wave height, peak period and the average power obtained for each month during the 31 years of data, the confidence intervals for all of these parameters were calculated, using the Minitab software and admitting a significance level of 5%. Before defining the referred confidence intervals the normality tests for all of these parameters were performed. Table 6 summarizes the statistical information

1 about the normality tests, average values and confidence intervals for each month. The data are non-normal, as it is possible to see through the values of the A-squared parameter. 2 3 According to D'Agostino (1986), the cricital value of the A-squared parameter, for a 95% 4 confidence level, is 0.752. The values of this parameter presented in Table 6 are higher than 5 this critical value. That is, there is a very strong evidency that the data is non-normal. This 6 result is confirmed by the p-values that are, in all cases, lower than 0.05 (significance level) 7 implying the rejection of the normality hypothesis. The Minitab software has a option to 8 calculate the confidence intervals for non-normal data. The reseults are presented in Table 6.

9

10 Table 6. Monthly statistical reports.

	Variable	Simple size. N	Anderson-Darling Nor	mality Test	Mean StDev SE Mean 95% CI
	Hs[m]	7687	A-Squared: 40.63	p-value <0.005	1.92191 0.50899 0.00581 (1.91053; 1.93329)
ſ	Tp[s]	7687	A-Squared: 170.24	p-value <0.005	10.7142 3.1631 0.0361 (10.6435; 10.7849)
	P [kW/m]	7687	A-Squared: 202.38	p-value <0.005	23.513 13.783 0.157 (23.205; 23.821)
	Hs [m]	7008	A-Squared: 15.53	p-value <0.005	1.87711 0.46451 0.00555 (1.86623; 1.88798)
Ĩ	Tp[s]	7008	A-Squared: 145.66	p-value <0.005	10.4387 3.0192 0.0361 (10.3680;10.5094)
	P [kW/m]	7008	A-Squared: 208.03	p-value <0.005	21.897 12.716 0.152 (21.599; 22.195)
	Hs [m]	7689	A-Squared: 21.63	p-value <0.005	1.80126 0.43902 0.00501 (1.79144; 1.81107)
Μ	Tp[s]	7689	A-Squared: 70.03	p-value <0.005	10.8515 2.8814 0.0329 (10.7871; 10.9159)
	P [kW/m]	7689	A-Squared: 131.79	p-value <0.005	20.780 10.801 0.123 (20.538; 21.021)
A	Hs[m]	7440	A-Squared: 36.30	p-value <0.005	1.80543 0.38490 0.00446 (1.79668; 1.81417)
	Tp[s]	7440	A-Squared: 118.55	p-value <0.005	10.3233 2.7986 0.0324 (10.2597;

					10.3869)
	P[kW/m]	7440	A-Squared: 161.64	p-value <0.005	19.763 9.983 0.116 (19.536; 19.990)
	Hs[m]	15376	A-Squared: 29.32	p-value <0.005	1.73386 0.31984 0.00258 (1.72881; 1.73892)
Μ	Tp [s]	15376	A-Squared: 491.92	p-value <0.005	10.2287 3.0524 0.0246 (10.1804; 10.2769)
	P[kW/m]	15376	A-Squared: 258.45	p-value <0.005	17.8068 7.9966 0.0645 (17.6804; 17.9332)
	Hs[m]	14880	A-Squared: 29.78	p-value <0.005	1.64809 0.30307 0.00248 (1.64322; 1.65296)
ſ	Tp [s]	14880	A-Squared: 618.05	p-value <0.005	10.1125 3.0069 0.0246 (10.0642; 10.1608)
	P[kW/m]	14880	A-Squared: 291.89	p-value <0.005	16.0597 7.4576 0.0611 (15.9399; 16.1795)
	Hs[m]	15376	A-Squared: 46.52	p-value <0.005	1.59065 0.26830 0.00216 (1.58640; 1.59489)
ſ	Tp [s]	15376	A-Squared: 849.41	p-value <0.005	10.1592 2.8717 0.0232 (10.1138; 10.2046)
	P[kW/m]	15376	A-Squared: 254.08	p-value <0.005	15.0375 6.6470 0.0536 (14.9324; 15.1425)
	Hs[m]	7688	A-Squared: 27.43	p-value <0.005	1.57631 0.26316 0.00300 (1.57043; 1.58219)
A	Tp[s]	7688	A-Squared: 337.55	p-value <0.005	10.2906 2.9649 0.0338 (10.2243; 10.3569)
	P[kW/m]	7688	A-Squared: 174.44	p-value <0.005	15.1119 7.2471 0.0827 (14.9499; 15.2740)
	Hs[m]	7440	A-Squared: 13.53	p-value <0.005	1.59887 0.27965 0.00324 (1.59251; 1.60522)
\mathbf{N}	Tp[s]	7440	A-Squared: 204.76	p-value <0.005	10.2960 2.8409 0.0329 (10.2315; 10.3606)
	P[kW/m]	7440	A-Squared: 143.42	p-value <0.005	15.4316 7.0104 0.0813 (15.2723; 15.5910)
0	Hs[m]	7687	A-Squared: 24.60	p-value <0.005	1.60069 0.33400 0.00381 (1.59322; 1.60816)

	Tp[s]	7687	A-Squared: 61.21	p-value <0.005	10.8908 2.8969 0.0330 (10.8261; 10.9556)
	P[kW/m]	7687	A-Squared: 188.74	p-value <0.005	16.5502 8.6290 0.0984 (16.3573; 16.7431)
	Hs[m]	7440	A-Squared: 45.13	p-value <0.005	1.65678 0.39347 0.00456 (1.64784; 1.66573)
Ζ	Tp[s]	7440	A-Squared: 47.37	p-value <0.005	11.0808 2.9679 0.0344 (11.0133; 11.1482)
	P[kW/m]	7440	A-Squared: 212.76	p-value <0.005	18.439 11.008 0.128 (18.189; 18.689)
	Hs[m]	7688	A-Squared: 65.15	p-value <0.005	1.80871 0.45569 0.00520 (1.79852; 1.81890)
D	Tp[s]	7688	A-Squared: 110.55	p-value <0.005	10.7810 3.1661 0.0361 (10.7102; 10.8518)
	P[kW/m]	7688	A-Squared: 298.54	p-value <0.005	21.21313.2520.151(20.917;21.509)

1

2 Using the Minitab software, the minimum number of sample points, for average monthly 3 power, was calculated admitting a 0.85 power factor, a significance level equal to 0.05 and a 4 value of 3kW/m for margin of error. This margin of error was assumed taking into account 5 the possibility of completing all measurements in one year. In this context, lower margin of error implies higher number of sample points. Table 7 show the standard deviations, the 6 7 minimum sampling size to guarantee the representativeness of the values of the monthly 8 average power and, consequently, the number of days to carry out the experiments on the 9 Natural Caves in order to ensure the correct values of the average power extracted from these 10 natural infrastructures.

11

12 Table 7. Minimum sampling size and the corresponding numbers of days of measurements

Power Factor: 0.85; Margin of Error: 3 kW/m; Significance level: $\alpha = 0.05$							
Months	Standard deviation, σ	Minimum sampling size, n	Numbers of days (for 3 h time step)				
J	13.25	178	23				
F	11.01	123	16				

М	8.63	77	10
Α	7.01	51	7
М	7.25	55	7
J	6.65	47	6
J	7.46	58	8
Α	7.99	66	9
S	9.98	102	13
0	10.80	119	15
Ν	12.78	165	21
D	13.78	192	24

1

2 Conclusion

The most common sea state in Cape-Verde occurs 20.81% of time, featuring peak periods from 6-9 s and significant wave height from 1.5-2 m. For period between 1979 and 2009,

5 78.03% of the waves present wave height between 1 and 2 m.

6 January and December are the most energetic months and July is the least energetic month.

7 The monthly wave power decreases from January to July and increases again to December.

8 Through the Coefficient of Variation of Power (COVP) it is possible to conclude that the 9 wave resource is stable, with COVP between 0.46 and 0.66.

The MVI parameter shows that the wave resource can be considered relatively stable (MVI
<1.2) from monthly average power point of view.

12 The monthly average time-series is stationary and has no trend over time. The confidence 13 intervals for all months were calculated using the Minitab software.

The time-series of annual average wave power is non-stationary and presents a visible attenuation over the years. However, by the use of an appropriate ARIMA model it was possible to verify that its values oscillate around its average (18.2 kW/m).

17 The minimum time recording of physical parameters associated with the NC operation are 18 determined, for each month, under the assumption that the minimum sampling size necessary 19 to characterize the monthly average power on waves is equal to the minimum sampling size to

- 1 characterize the monthly average power emanating from the NC. In this context and for the
- 2 Cape-Verde Wave Regime, the minimum sampling size and the corresponding numbers of
- 3 days of measurements are given in table 6.
- 4

5 Acknowledgements

6 We are grateful to Jackson Augusto Léger Monteiro for his important contribution to the 7 realization of this work.

8 References

- 9 ABP Marine Environmental Research Ltd.: Technical Report, Report No. R1106 prepared for
- 10 the UK Department of Trade and Industry, 2004.
- 11 Adinsoft, XLSTAT Data Analysis and Statistical Application for Microsoft Excel, Adinsoft,
- 12 New York, 2007.
- 13 Bisgaard, S. and Kulahci, M.: Time-series Analysis and Forecasting by Example. John Wiley
- 14 & Sons, Hoboken, New Jersey, 2011.
- 15 Boyle, G.: Renewable Energy: Power for a Sustainable Future. Oxford University Press,
- 16 United Kingdom, 2004.
- 17 Carvalho, J.M.C.: Elaboration of Third International Conference on Sustainable Development
- 18 in Small Island States in Development, United Nations Development Programme, National
- 19 Report, Republic of Cape-Verde, 2013.
- 20 Cornett, A.M.: A Global Wave Energy Resources Assessment. Proc. International Journal of
- 21 Offshore and Polar Engineering, Canada, 2008.
- 22 D'Agostino, R.B.: Test for Normal Distribution, Goodness-of-Fit Techniques. D'Agostino,
- 23 R.B. and Stephens, M.A., editors, New York, Marcel Dekker, ISBN 0-8247-7487-6.
- 24 Dean, R. G. and Dalrymple, R. A.: Water Waves Mechanics for Engineers and Scientists.
- 25 World Scientific Pub. Co., Teaneck, NJ, 1991.
- 26 Electra: Relatório de Contas 2012. Electra-Empresa de Electricidade e Água, Cabo-Verde,
- 27 2012. http://www.electra.cv/index.php/2014-05-20-15-47-04/relatorios-sarl.
- 28 EMEC. : Wave Developers. http://www.emec.org.uk/marine-energy/wave-developers, 2014.

- 1 Falnes, J.: A Review of Wave-Energy Extraction. Marine Structures 20, 2007.
- 2 GESTO: Plano Energético Renovável Cabo-Verde. Gesto-Energy Solutions, Algés, Portugal,
- 3 2011.
- 4 Hagernam, G.: Southern New England Wave Energy Resource Potential. Proc. Building
- 5 Energy'2001, Boston, USA, 2001.
- 6 Hintze, J.L.: NCSS User's Guide IV, Kaysville, Utah 84037, 2007.
- 7 Hyndmann, R. J., Koehler, A.B., Ord, J.K. and Snyder, R.D.: Forecasting With Exponential
- 8 Smoothing, Springer-Verlag, Berlin, Heidelberg, 2008.
- 9 JRC. JRC Ocean Energy Database, 2014.
- 10 Kirchgassner, G. and Wolters, J.: Introduction to Modern Time-series Analysis, Springer-
- 11 Verlag, Berlin, Heidelberg, 2008.
- 12 Magagna, D.: Oscillating Water Column Wave Pump: A Wave Energy Converter for Water
- 13 Delivery. Doctoral Thesis, Faculty of Engineering and the Environment, University of
- 14 Southampton, England, 2011.
- 15 Mann, H.B.: Nonparametric Tests against Trend, Econometrica, Vol.13, No.3 1945.
- 16 Monfor, L., Goldsmith, J. And Jones, F.: Ocean Energy Technology Readiness, Patent,
- Development Status and Outlook. International Renewable Energy Agency (IRENA), AbuDhabi, 2014.
- 19 Monteiro, W.M.L. and Sarmento, A.J.N.A.: Using the Natural Caves for Wave Energy
- 20 Extraction: Modelling the Airflow through its Superficial Cavities using a Bidirectional
- 21 Venturi Tube. Proc. EWTEC'2015, Nantes, 2015.
- 22 NCSSLLC.: NCSS 10 Computer Program for Statistical Data Analysis, NCSSLLC
 23 Company,1982.
- NOAA, National Oceanic and Atmospheric Administration, National Centers for
 Environmental Information, 2015 website: http://maps.ngdc.noaa.gov/viewers/bathymetry/
- Selenec.: Rapport Annuel 2015, Selenec –Société National d'Éléctricité du Sénégal, Senegal,
 2015.
- 28 Scottish Renewable: Marine Milestones Report. Scottish Renewables, Glasgow, 2014.

- 1 Thode Jr, H.C.: Testing for Normality, State University of New York, Marcel Dekker, New
- 2 York, 2002.
- 3 XLSTAT, 2015 website: https://www.xlstat.com/en/