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Abstract 9 

Using the time-series of significant wave height and the peak period between 1979 and 2009 10 

generated by SOWFIA project, some relevant statistical information about energy content 11 

available in ocean waves in Cape-Verde is obtained.  The monthly and annual time-series of 12 

the average power are analysed and the confidence intervals for their values are defined. 13 

Considering all of the 31 years of data, the results show that the most energetic month, from 14 

the average power point of view is January (23.49 kW/m) and the least energetic month is 15 

July (15.04 kW/m). In fact, the monthly average power decays from January to July and 16 

increases from July to December (21.21 kW/m). The annual average power exhibits a clear 17 

attenuation over the 31 years analysed, the reason for which is not yet clear to us. However, 18 

using the appropriate Autoregressive Integrated Moving Average (ARIMA) model it is 19 

possible to estimate that future values of the annual average power tend to oscillate around 20 

18.2 kW/m. Through the Coefficient of Variation of Power (COVP), obtained by dividing the 21 

standard deviation of the power time-series by the average power, it is possible to conclude 22 

that the wave resource is stable, with COVP between 0.46 and 0.66. The values of the 23 

Monthly Variation Index (MVI), the maximum range of the monthly mean wave power 24 

relative to the yearly mean level, show that the resource is relatively stable, with MVI < 1.2. 25 

The present work calculates the available power input into the Natural Caves (NCs) in Cape 26 

Verde Islands, through a rigorous analysis of the wave climate that excites them. The 27 

minimum sampling size and the corresponding numbers of days of measurements per month, 28 
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are also estimated.  1 

1 Introduction 2 

Ocean waves constitute one of the renewable sources of energy that are gradually entering the 3 

market of clean and sustainable energy worldwide. The global theoretical energy from ocean 4 

wave is estimated in 8 x106 Twh/year (Boyle, 2004). Many countries around world have been 5 

investing on this natural resource to produce useful and sustainable energy. Portugal (Pelamis 6 

and Pico Plant Projects.), Australia (CETO and OCEANLIX projects), France (SEAREV 7 

project), UK (OYSTER WEC and Limpet projects) and Holland (AWS project) are examples 8 

of some countries that have recognized the feasibility of harvesting this source of energy 9 

(ABP, 2004). According to the International Renewable Energy Agency (Monford et al., 10 

2014), around 64 % of the Wave Energy Converters (WECs) has been projected for offshore 11 

application and 36% for near-shore and onshore operation. Some full-scale operational tests 12 

have been realized. These include the OYSTER device from Aquamarine Power, the Wave 13 

Roller from AW-Energy, Pelamis P2 from the Pelamis Wave Power, the Seabased and the 14 

Sea-Tricity devices. Magagna (2011) has identified, in 2011, over 100 wave energy 15 

developers. Yet, EMEC (2014) has listed 170 wave energy developers worldwide. About 45% 16 

of the wave energy developers are based in or are currently developing projects in the 17 

European Union (EU) regions. The global installed capacity of wave energy remains low and 18 

the technologies are still at an advanced R&D stage. Just a few machines have sustained long 19 

operational hours, such as the Aquamarine OYSTER (>20000 hours) and Pelamis (cumulative 20 

> 10000 hours) (Scottish Renewable, 2014). The growth of the wave energy sector is lower 21 

than expected and this situation may affect the confidence of investors in this area. Success in 22 

attracting future Original Equipment Manufacturer investments will depend on the capacity of 23 

the developers in improving performance, reducing cost and validating wave energy 24 

technologies. The long-term global wave energy is expected to become cost competitive and 25 

provide an alternative to other Renewable Energy Sources and conventional energy resources. 26 

Through a review of the existing data available, the different cost components in the Capital 27 

Expenditure (CAPEX) estimate for wave energy have been identified as follows (Table 1): 28 

 29 

 30 
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Table1. Costs components estimate for wave energy extraction (JRC, 2014). 1 

Civil and Structural costs  38% 

Major Equipment costs  42% 

Electrical and I&C supply and installation costs  8% 

Project indirect cost  7% 

Development cost  5% 

 2 

Thus, the main contributors to the CAPEX are mechanical equipment, civil and structural 3 

costs. In this context, the developers of wave energy technologies must undertake efforts and 4 

strategies aimed at reducing mainly the two above mentioned costs.  5 

SOWFIA-Streamlining of Ocean Wave Farm Impact Assessment is an EU Intelligent Energy 6 

European Project with the goal of sharing and consolidating pan-European experience and 7 

best practices for consenting processes and environmental and socio-economic impact 8 

assessment (IA) for offshore wave energy conversion developments. This project brings 9 

together ten partners across eight EU Member States actively involved in planned wave farm 10 

test centers and aims at providing recommendations for streamlining of IA approval processes 11 

with the purpose of removing legal, environmental and socio-economic barriers associated 12 

with development of the wave energy farms.  13 

Cape-Verde is an archipelago of ten islands in the Atlantic Ocean, off the West Coast of 14 

Africa, with roughly half million people. The country is totally dependent on oil to produce 15 

electricity, having one of the most expensive cost of electricity in Africa, around 0.28 16 

Euro/kWh (Electra, 2012) versus 0.17 Euro/kWh (Senelec, 2015) at Senegal, a continental 17 

neighbour. Some investments were made by the Government with the purpose of introducing 18 

renewable sources of energy in the country, basically solar and wind energy. The Government 19 

has defined an ambitious goal that consists in achieving 50% of Renewable Energy 20 

penetration in the country by 2020 (GESTO, 2011). Some research on using ocean energy 21 

through the OTEC – Ocean Thermal Energy Conversion system and WaveStar technology 22 

(Wave energy) was initiated in the country but these projects still lack feasibility studies. 23 

Ocean Sci. Discuss., doi:10.5194/os-2015-108, 2016
Manuscript under review for journal Ocean Sci.
Published: 20 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 

 

However, four projects for offshore wave energy conversion based on the Pelamis technology 1 

were proposed for four of the islands (GESTO, 2011): Sal (3.7 MW), S. Antão (3.7 MW), 2 

S.Vicente (3.7 MW) and Boavista (3.5 MW). 3 

Being composed of islands, most of Cape-Verde’s economic activities (around 90%) are 4 

concentrated on coastal areas (Carvalho, 2013). In this context, it makes sense to use wave 5 

energy for producing electricity locally. A clear alternative is harvesting Natural Caves 6 

existing just below the rocky shore, with fountain-like structures (Fig. 1). 7 

NCs are caverns that form naturally under the rocky shorelines, inside of which there is an air 8 

layer. This air layer acts like an air pump as the wave enters and leaves these natural 9 

infrastructures. As a result, the air is forced to go in and out of the NCs, through surface holes 10 

that exist on top of the cave. Fig. 2 shows a Natural Caves with two holes in operation. 11 

Monteiro and Sarmento (2015) carried out a study aiming at characterizing the NCs in the 12 

context of wave energy extraction. 13 

 14 

 

Figure 1. Activity in a Natural Cave. 

 

Figure 2. Activity in a NCs with two holes. 

 15 

The Principles of NCs operations are similar to the man-made Oscillating Water Column 16 

device, projected for onshore application.  17 

The justification for the idea of using the NCs is the possible cost reduction on the Civil and 18 

Structural components, which are, as mentioned before, one of the most important costs 19 

associated with building wave energy devices to produce electricity, and also to minimize the 20 
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risks of collapse, by taking advantage of the sturdiness of the natural rocky structure, time 1 

tested by the waves and storms.  2 

To evaluate the potential of NCs for electricity production, it is necessary to estimate its 3 

output power. To do this, a set of experiments aimed at determining the values of some 4 

important physics parameters of NCs operations need to be conducted. Monteiro and 5 

Sarmento (2015) carried out the analytical modelling of the NCs operations as a function of 6 

their functioning physical parameters. The present study is part of a deeper work aimed at 7 

quantifying the output power of NCs and to project an adequate power take-off system to be 8 

adapted on their holes, for electricity production.  9 

Since the excitation waves are irregular, non-linear and non-stationary phenomenon it is very 10 

important to determine beforehand the sampling size, i.e. how long it takes to carry out the 11 

experiments on NCs to guarantee the time representativeness of its output power. To achieve 12 

this goal, some statistical analysis has to be carried on the wave energy input regime.   13 

 14 

2 Methodology 15 

Calculation of the wave energy input regime is carried out using principles and parameters 16 

described below.   17 

2.1 Average Power 18 

In deep water, where the depth is greater than a half of the wavelength, the average wave 19 

power can be determined through the following equation, applied only for unidirectional 20 

Pierson-Moskowitz wave spectrum. 21 

e

S T
Hg

P



64

22

                                                                                                                           (1) 22 

Where, SH  is significant wave height, eT is energy period, defined in terms of the spectral 23 

momentum by the following relation: 24 
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in which, 1m  is the spectral momentum of order -1, 0m is the spectral momentum of order 0, 2 

f   is the frequency,  fS  is the spectral density function and    is the direction of the 3 

energy propagation (Dean and Dalrymple, 1991). 4 

The characterization of the wave climate is made by the combination of the significant wave 5 

height SH  and peak period 
PT  or the zero-crossing period 

ZT  parameters. The energy period 6 

determined by the Eq.(2) require the knowledge of the form of energy spectrum. When the 7 

form of the energy spectrum is unknown it can be approximated by the some model as for 8 

example, the Pierson-Moskowitz spectrum. This is the approximation used on the elaboration 9 

of the Marine Atlas of Renewable Resources in UK (ABP, 2004).   Another approximation 10 

commonly used for eT  is represented by Pe TT  , where   is an empirical parameter. For 11 

Pierson-Moskowitz spectrum, 86.0  (Dean and Dalrymple, 1991). To evaluate the wave 12 

resource for South of New England, Hagernam (2001) used the approximation Pe TT   and 13 

considered this approximation very appropriate to make a preliminary analysis of wave 14 

energy resource. 15 

Using the monthly series of the available power in waves it is possible to define the annual 16 

time-series of this parameter through the following expressions: 17 

12

11






monthinitial

monthinitiali

ij

aj

P

P                                                                                                                      (3) 18 

In the above equation ajP  is the average power for year j , ijP  is   the average power for the 19 

month i   and year j . In this way, the monthly time-series begin on January and ends on 20 

December of each year. 21 

It is important to note that there is no physical justification for wave power to be monthly 22 

periodic, but since the sun-cycle is the underlying cause for atmospheric pressure distribution 23 

and wind patterns over the ocean, most likely it will be yearly periodic. 24 
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The reason to calculate monthly series of available power is just related to how data is 1 

collected and made available at SOWFIA. 2 

2.2 Monthly Variation Index (MVI) 3 

The temporal variability of the wave resources is a key factor that affects decisively the 4 

feasibility of wave energy projects. In this sense, the regions of the ocean where the resources 5 

are stable are more attractive for all possible investors. Naturally, the level of the average 6 

power is another important factor for viability of wave energy harvesting.  The Monthly 7 

Variation Index is defined as the ratio of the differences between the maximum and minimum 8 

values of the monthly average wave power in year j by the corresponding annual average 9 

wave power (Cornett, 2008). That is.  10 

 
aj

j

j
P

PP
MVI

minmax                                                                                                               (4) 11 

where maxP and minP  are, respectively, the maximum and minimum values of the monthly 12 

average power in year j .   13 

2.3 Coefficient of Variation of Power (COVP) 14 

COVP is another very important parameter used to evaluate the temporal variability of wave 15 

resources. This quantity is defined by the ratio between the standard deviation of the wave 16 

power and the respective annual average wave power in year j (Cornett, 2008). 17 

    
aj

j

j
P

tP
COVP


                                                                                                                (5) 18 

In the Eq.(5),   
jtP  represent the standard deviation of temporal series of wave power, 19 

 tP , for year j , and  ajP  is the respective annual average wave power. According to Cornett 20 

(2008), small values of COVP means that the wave resources are stable. For 21 

9.08.0 COVP  the wave resources can be considered moderately instable. Therefore, for 22 

9.0COVP  the resource is unstable. 23 
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2.4 Statistical analysis  1 

The wave climate at a certain location is well characterized by the time-series of significant 2 

wave height and the peak period. Through these parameters that are recorded for each 3 hour 3 

(time interval necessary for verifying significant change in wave spectrum) other parameters 4 

such as the time-series of the average available power in waves can be defined. To understand 5 

the time-series behavior of some important wave parameters, to calculate the confidence 6 

interval, the smoothing curves, and the forecast of its values, many statistics tools of analysis 7 

are used. In this context, some well known statistics software such as XLSTAT and Minitab 8 

are used. Aspects such as the trend analysis, stationarity and normality tests of the average 9 

power are here analysed. To perform the forecast of the average power in waves, the 10 

Autoregressive Integrated Moving Average (ARIMA) model is used. Non-seasonal ARIMA 11 

model is generally represented as ARIMA (p,d,q) where, p is the order of the Autoregressive 12 

Model, d is the degree of differencing and q is the order of the Moving Average Model 13 

(Bisgaard and Kulahci, 2011).  14 

Finally, the wave histogram is a table that lists the occurrence of the sea-states in terms of 15 

significant wave height and peak period or mean up-crossing period. It is the long-term 16 

statistical representation of sea states. Using the information in the wave histogram it is 17 

possible to identify the most common sea states in a certain region. 18 

2.5 Representativeness of the monthly average output power from the NCs 19 

The energy that excites the NCs is a function of the local wave regime, while its output 20 

energy depends on the input energy (wave regime) and on the geometry of the NCs (Fig. 3). 21 

For each NC the geometry is fixed, hence the output energy is directly influenced by the local 22 

wave regime. This mean that the variation in the output energy content is just caused by the 23 

variation in the input energy content, that is by the variation of the local wave regime. In this 24 

context, it is reasonable to assume that the minimum sampling size necessary for 25 

characterizing the input energy content is equal to the minimum sampling size needed to 26 

characterize the output energy from the NCs. The calculation of the minimum sampling size 27 

for characterizing the input energy into the cave is done using the Minitab Software. For three  28 

hours time interval between successive readings, the total number of data points acquired 29 

during one day is eight. So, if this minimum sampling size is represented by Nin, the 30 
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correspondent minimum time duration for data acquisition to achieve the representativeness 1 

of the input power is Nin/8 days. Therefore, to guarantee the representativeness of the output 2 

energy from the NCs the duration necessary to realize the experimental study on these natural 3 

infrastructure is equal to Nin/8 days. 4 

 5 

 6 

Figure 3. Energy production system by NCs. 7 

 8 

3 Results  9 

 The information about the significant wave height (Hs) and peak period (Tp) for the wave 10 

regime in Cape-Verde is obtained for the location characterized by the coordinate 16ºN-24ºW, 11 

where the water depth is around 3.7 km   (NOAA, 2015), using the SOWFIA project and is 12 

presented in Fig. 4. Data was gathered for period between 1979 and 2009 and the values of Hs 13 

and Tp are recorded every 3 hours.  14 

The histogram and the time-series of average power available in waves were calculated and 15 

shown in Table 2 and Fig. 5, respectively.  16 

As the histogram shows, the largest number of occurrence is 18854, representing 20.81% of 17 

all occurrences and featuring peak period from 6-9 s and significant wave height from 1.5-2 18 

m.  19 
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Also, 78.03 % of the waves present significant wave height between 1-2 m.  1 

The minimum and maximum values of significant wave height and peak period recorded are, 2 

respectively 0.59 m and 3.82 m and 2.85s and 22.12 s.  3 

 4 

 5 

Figure 4. Time-series of significant wave height and peak period between 1979 and 2009 6 

(SOWFIA Project). 7 

The histogram presented in Table 2 shows two local maxima for the peak period, 6–9s and 8 

12–15s, for significant wave height between 1.5–2.5 m. This bimodal distribution indicates a 9 

superposition of two distinct wave regime, the first with origin in a region of a shorter fetch 10 

(smaller period) and the second with origin in a region of longer fetch (longer period). We 11 

suspect that the former is generated during early-year (winter) storms in the North-Atlantic 12 

and the latter during the end-year (autumn) storms in the South-Atlantic.  13 

This is consistent with later findings in this paper that January and December are the most 14 

energetic months and July is the least energetic month.  15 

 16 
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Table 2.Histogram. 1 
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 2 

 3 

Figure 5. Time-series of mean power available on waves between 1979 and 2009.  4 

 5 
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The curves on Fig. 6 show no clear trend on the time-series of the monthly average power, 1 

over the years. This fact is confirmed by the Mann-Kendal test (Mann, 1945) whose results 2 

are presented at Table 3. The Mann-Kendal test (at 5% level of significance) was done using a 3 

commercially available software (XLSTAT, 2015). The results show that these monthly time-4 

series can be considered trendless over the years, except for September and October with low 5 

p-values of 3.8% (September) and 1.8% (October) implying a trend.  6 

Table 3. The Mann-Kendall Trend test for monthly average time-series. 7 
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 8 

Fig. 7 shows the minimum, average and maximum power available on waves which has been 9 

calculated for each month of the 31 year long record. The graph clearly shows that the most 10 

energetic month is January (23.49 kW/m) and the least energetic month is July (15.04 kW/m). 11 

In fact the average power decays from January to July and increases from July to December 12 

(21.21 kW/m).  13 

 14 

 

Figure 6. Time-series of monthly average 

power. 

 

Figure 7. Statistics of monthly average power 

for 31 years of data. 
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 1 

The increase of the annual average power, between 1979 and 2009 is shown in Fig. 8, 2 

together with its exponential and linear smoothing curves (Hyndmann et al., 2008). The 3 

Dickey-Fuller test helps us to verify if there are upward or downward trends in the time-series 4 

of the annual average power (Kirchgassner and Wolters, 2008). According to this statistical 5 

test (p- values equal to 0.475 and significance level of 5 %), the time-series of the annual 6 

average power is a non-stationary time-series and presents a downward trend, as it is possible 7 

to see by the two smoothing curves . We could not find any plausible explanation for this 8 

downward trend. In this context, it is worth making a forecast of the annual increase of 9 

average power for the next 15 years to see the trend for its predictable values.  To achieve this 10 

goal, it is necessary to calculate the best ARIMA model.  11 

 12 

Figure 8. Time-series of annual average power, between 1979 and 2009. 13 

According to  the Dickey-Fuller test, the original time-series of the annual average power is 14 

non stationary. The first difference (P-1) is stationary as its possible to see through the values 15 

of the Autocorrelation Factor (ACF) and of Partial Autocorrelation Factor (PACF), that are 16 

statistically equal to zero, as they are less than 0.35, after Lag = 1 (for ACF) and Lag = 2 (for 17 

PACF). ACF and PACF are two statistical measures that show how the observations in a 18 

time-series are related to each other. Thus, to determine a proper model for a given time-19 

series, it is necessary to carry out the analysis of these parameters (Frain,1999). Table 4 shows 20 

the values of these quantities under analysis. In the present case, the original time-series is 21 

converted into stationary time-series after the first differencing (d = 1).  22 
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 1 

Table 4. The ACF and PACF values for P-1 (generated by NCSS10 Software) 2 

ACF  

Lag Correlation Lag Correlation Lag Correlation Lag Correlation  

1 -0.41 8 -0.02 15 -0.02 22 -0.11  

2 -0.28 9 -0.25 16 -0.17 23 -0.00  

3 0.33 10 0.17 17 0.15 24 0.05  

4 -0.04 11 0.02 18 0.09 25 0.10  

5 -0.06 12 -0.06 19 -0.27 26 -0.15  

6 -0.14 13 0.01 20 0.17 27 0.04  

7 0.27 14 0.06 21 0.01 28 0.05  

PACF  

1 -0.41 8 0.07 15 0.03 22 -0.03  

2 -0.55 9 -0.00 16 -0.18 23 -0.10  

3 -0.13 10 -0.08 17 -0.08 24 -0.05  

4 -0.08 11 -0.09 18 0.09 25 -0.04  

5 0.08 12 -0.02 19 -0.11 26 0.04  

6 -0.27 13 0.08 20 0.00 27 0.09  

7 0.09 14 0.12 21 -0.13 28 0.02  

Significant if |Correlation|> 0.35  

 3 

Accornding to Hintze (2007) the value of p is determined from the PACF of the appropriate 4 

differenced time-series. If the PACF cuts off after a few Lags, the last Lag with a large value 5 

would be the estimate for p. Therefore, p is equal to 2 (Table 4). The value of q is estimated,  6 

following the same procedure, using the values of the ACF parameter shown in Table 4. So, 7 

q=1 and, the best ARIMA model to make the forecast is ARIMA (2, 1, 1).   8 

The following table shows the results of the forecast for the annual average power, achieved 9 

using the NCSS Software (NCSSLLS,1981) . According to the forecast, the predicted time-10 

series of the annual average power oscillates, without any trend, around its average value 11 
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(18.2 kW/m). This value is very close to the one presented by Falnes. J. (2007), for the most 1 

tropical waters, where Cape-Verde Island is located. 2 

Table 5. Forecast of Annual Average Power (generated by NCSS10 Software) 3 

Forecast  

Row Date Forecast Lower 95% Limit Upper 95% Limit 

33 2011 18.05 15.69 20.41 

34 2012 17.75 15.40 20.11 

35 2013 18.53 15.87 21.18 

36 2014 18.33 15.55 21.11 

37 2015 18.01 15.20 20.82 

38 2016 18.26 15.35 21.18 

39 2017 18.32 15.28 21.35 

40 2018 18.16 15.07 21.25 

41 2019 18.20 15.04 21.36 

42 2020 18.27 15.01 21.52 

43 2021 18.21 14.89 21.54 

44 2022 18.20 14.81 21.60 

45 2023 18.24 14.77 21.70 

46 2024 18.23 14.69 21.77 

47 2025 18.21 14.61 21.82 

 4 

According to the Portmanteau Test (Hintze, 2007), for a significance level of 5%,  the 5 

ARIMA model used to carry out the forecast is adequate, with p-value between 0.179 and 6 

0.641, implying the acceptation of the forecast, as the p-values are higher than the 7 

significance level. 8 

The normality test of Anderson-Darling (Thode, 2002) shows that the annual average power 9 

follows a normal distribution with p-value equal to 51.5% (Fig. 9). As this p-value is higher 10 

than the significance level of 5%, the hypothesis of the normality distribution is accepted. 11 

Fig.9 was generated by Minitab software and represents a summary report of the annual 12 

Ocean Sci. Discuss., doi:10.5194/os-2015-108, 2016
Manuscript under review for journal Ocean Sci.
Published: 20 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



16 

 

average power time-series. It shows, with a significance level equal to 0.05, the confidence 1 

intervals for the annual mean (17.981 kW/m – 18.924 kW/m), for the annual median (17.879 2 

kW/m – 19.186 kW/m) and for the annual Standard Deviation (1.028 kW/m – 1.719 kW/m).  3 

Fig. 10 shows the normal probability plot for the annual average power. As it is possible to 4 

note in this figure, in general, the data follow the normal line. However, some deviataion from 5 

this normal line is registed between 16.99 kW/m and 17.09 kW/m.   6 

 7 

 

Figure 9. Summary report of annual average 

power, between 1979 and 2009. 

 

Figure 10. Normal probability plot. 

 

 8 

The wave energy resources are stable with COVP less than 0.8, as it is possible to see in Fig. 9 

10, which represents the time-series of the annual values of COVP. The MVI parameter 10 

shows that the monthly wave energy resources can be considered relatively stable with MVI 11 

values less than 1.2 (Fig. 11). This is a very attractive aspect associated with the utilization of 12 

wave energy to produce electricity in Cape-Verde since it affects the useful life cycle of ocean 13 

wave conversion equipment. 14 

Defining a set of samples using all values of the significant wave height, peak period and the 15 

average power obtained for each month during the 31 years of data, the confidence intervals 16 

for all of these parameters were calculated, using the Minitab software and admitting a 17 

significance level of 5% . Before defining the referred confidence intervals the normality tests 18 

for all of these parameters were performed. Table 6 summarizes the statistical information 19 
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about the normality tests, average values and confidence intervals for each month. The data 1 

are non-normal, as it is possible to see through the values of the A-squared parameter. 2 

According to D’Agostino (1986), the cricital value of the  A-squared parameter, for  a 95% 3 

confidence level, is 0.752. The values of this parameter presented in Table 6 are higher than 4 

this critical value. That is, there is a very strong evidency that the data is non-normal. This 5 

result is confirmed by the p-values that are, in all cases, lower than 0.05 (significance level) 6 

implying the rejection of the normality hypothesis. The Minitab software has a option to 7 

calculate the  confidence intervals for non-normal data. The reseults are presented in Table 6. 8 

 9 

Table 6. Monthly statistical reports. 10 

 Variable 
Simple 

size. N 
Anderson-Darling Normality Test  Mean     StDev   SE Mean        95% CI 

J
 

Hs[m] 7687 A-Squared: 40.63             p-value    <0.005 
 1.92191  0.50899  0.00581  (1.91053; 

1.93329) 

Tp[s] 7687 A-Squared: 170.24            p-value <0.005 
10.7142   3.1631   0.0361  (10.6435; 

10.7849) 

P 

[kW/m] 
7687 A-Squared: 202.38            p-value <0.005 

23.513   13.783    0.157  ( 23.205;  

23.821) 

F
 

Hs [m] 7008 A-Squared: 15.53             p-value <0.005 
1.87711  0.46451  0.00555  (1.86623; 

1.88798) 

Tp[s] 7008 A-Squared: 145.66            p-value <0.005 
10.4387   3.0192   0.0361  

(10.3680;10.5094) 

P 

[kW/m] 
7008 A-Squared: 208.03            p-value <0.005 

21.897   12.716    0.152  ( 21.599;  

22.195) 

M
 

Hs  [m] 7689 A-Squared: 21.63             p-value <0.005 
1.80126  0.43902  0.00501  (1.79144; 

1.81107) 

Tp[s] 7689 A-Squared: 70.03             p-value <0.005 
10.8515   2.8814   0.0329  (10.7871; 

10.9159) 

P 

[kW/m] 
7689 A-Squared: 131.79            p-value <0.005 

20.780   10.801    0.123  ( 20.538;  

21.021) 

A
 Hs[m] 7440 A-Squared: 36.30             p-value <0.005 

1.80543  0.38490  0.00446  (1.79668; 

1.81417) 

Tp[s] 7440 A-Squared: 118.55            p-value <0.005 10.3233   2.7986   0.0324  (10.2597; 
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10.3869) 

P[kW/m] 7440 A-Squared: 161.64            p-value <0.005 
19.763    9.983    0.116  ( 19.536;  

19.990) 

M
 

Hs[m] 15376 A-Squared: 29.32             p-value <0.005 
1.73386  0.31984  0.00258  (1.72881; 

1.73892) 

Tp [s] 15376 A-Squared: 491.92            p-value <0.005 
10.2287   3.0524   0.0246  (10.1804; 

10.2769) 

P[kW/m] 15376 A-Squared: 258.45            p-value <0.005 
17.8068   7.9966   0.0645  (17.6804; 

17.9332) 

J
 

Hs[m] 14880 A-Squared: 29.78             p-value <0.005 
1.64809  0.30307  0.00248  (1.64322; 

1.65296) 

Tp [s] 14880 A-Squared: 618.05            p-value <0.005 
10.1125   3.0069   0.0246  (10.0642; 

10.1608) 

P[kW/m] 14880 A-Squared: 291.89            p-value <0.005 
16.0597   7.4576   0.0611  (15.9399; 

16.1795) 

J
 

Hs[m] 15376 A-Squared: 46.52             p-value <0.005 
1.59065  0.26830  0.00216  (1.58640; 

1.59489) 

Tp [s] 15376 A-Squared: 849.41            p-value <0.005 
10.1592   2.8717   0.0232  (10.1138; 

10.2046) 

P[kW/m] 15376 A-Squared: 254.08            p-value <0.005 
15.0375   6.6470   0.0536  (14.9324; 

15.1425) 

A
 

Hs[m] 7688 A-Squared: 27.43             p-value <0.005 
1.57631  0.26316  0.00300  (1.57043; 

1.58219) 

Tp[s] 7688 A-Squared: 337.55            p-value <0.005 
10.2906   2.9649   0.0338  (10.2243; 

10.3569) 

P[kW/m] 7688 A-Squared: 174.44            p-value <0.005 
15.1119   7.2471   0.0827  (14.9499; 

15.2740) 

S
 

Hs[m] 7440 A-Squared: 13.53             p-value <0.005 
1.59887  0.27965  0.00324  (1.59251; 

1.60522) 

Tp[s] 7440 A-Squared: 204.76            p-value <0.005 
10.2960   2.8409   0.0329  (10.2315; 

10.3606) 

P[kW/m] 7440 A-Squared: 143.42            p-value <0.005 
15.4316   7.0104   0.0813  (15.2723; 

15.5910) 

O
 

Hs[m] 7687 A-Squared: 24.60             p-value <0.005 
1.60069  0.33400  0.00381  (1.59322; 

1.60816) 
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Tp[s] 7687 A-Squared: 61.21             p-value <0.005 
10.8908   2.8969   0.0330  (10.8261; 

10.9556) 

P[kW/m] 7687 A-Squared: 188.74            p-value <0.005 
16.5502   8.6290   0.0984  (16.3573; 

16.7431) 

N
 

Hs[m] 7440 A-Squared: 45.13             p-value <0.005 
1.65678  0.39347  0.00456  (1.64784; 

1.66573) 

Tp[s] 7440 A-Squared: 47.37             p-value <0.005 
11.0808   2.9679   0.0344  (11.0133; 

11.1482) 

P[kW/m] 7440 A-Squared: 212.76            p-value <0.005 
18.439   11.008    0.128  ( 18.189;  

18.689) 

D
 

Hs[m] 7688 A-Squared: 65.15             p-value <0.005 
1.80871  0.45569  0.00520  (1.79852; 

1.81890) 

Tp[s] 7688 A-Squared: 110.55            p-value <0.005 
10.7810   3.1661   0.0361  (10.7102; 

10.8518) 

P[kW/m] 7688 A-Squared: 298.54            p-value <0.005 
21.213   13.252    0.151  ( 20.917;  

21.509) 

 1 

Using the Minitab software, the minimum number of sample points, for average monthly 2 

power, was calculated admitting a 0.85 power factor, a significance level equal to 0.05 and a 3 

value of 3kW/m for margin of error. This margin of error was assumed taking into account 4 

the possibility of completing all measurements in one year. In this context, lower margin of 5 

error implies higher number of sample points. Table 7 show the standard deviations, the 6 

minimum sampling size to guarantee the representativeness of the values of the monthly 7 

average power and, consequently, the number of days to carry out the experiments on the 8 

Natural Caves in order to ensure the correct values of the average power extracted from these 9 

natural infrastructures. 10 

 11 

Table 7. Minimum sampling size and the corresponding numbers of days of measurements 12 

Power Factor: 0.85; Margin of Error: 3 kW/m;  Significance level: α = 0.05 

Months Standard deviation, σ Minimum sampling size, n Numbers of days (for 3 h time step) 

J 13.25 178 23 

F 11.01 123 16 
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M 8.63 77 10 

A 7.01 51 7 

M 7.25 55 7 

J 6.65 47 6 

J 7.46 58 8 

A 7.99 66 9 

S 9.98 102 13 

O 10.80 119 15 

N 12.78 165 21 

D 13.78 192 24 

 1 

Conclusion 2 

The most common sea state in Cape-Verde occurs 20.81% of time, featuring peak periods 3 

from 6-9 s and significant wave height from 1.5-2 m. For period between 1979 and 2009, 4 

78.03% of the waves present wave height between 1 and 2 m.  5 

January and December are the most energetic months and July is the least energetic month. 6 

The monthly wave power decreases from January to July and increases again to December. 7 

Through the Coefficient of Variation of Power (COVP) it is possible to conclude that the 8 

wave resource is stable, with COVP between 0.46 and 0.66.   9 

The MVI parameter shows that the wave resource can be considered relatively stable (MVI 10 

<1.2) from monthly average power point of view.  11 

The monthly average time-series is stationary and has no trend over time. The confidence 12 

intervals for all months were calculated using the Minitab software.   13 

The time-series of annual average wave power is non-stationary and presents a visible 14 

attenuation over the years. However, by the use of an appropriate ARIMA model it was 15 

possible to verify that its values oscillate around its average (18.2 kW/m). 16 

The minimum time recording of physical parameters associated with the NC operation are 17 

determined, for each month, under the assumption that the minimum sampling size necessary 18 

to characterize the monthly average power on waves is equal to the minimum sampling size to 19 
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characterize the monthly average power emanating from the NC. In this context and for the 1 

Cape-Verde Wave Regime, the minimum sampling size and the corresponding numbers of 2 

days of measurements are given in table 6. 3 

 4 
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