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Abstract 9 

Using the time-series of significant wave height and the peak period between 1979 and 2009, 10 

generated by SOWFIA - Streamlining of Ocean Wave Farm Impact Assessment, some 11 

relevant statistical information about energy content available in ocean waves in Cape-Verde 12 

is obtained.  The monthly and inter-annual time-series of the average power are analysed and 13 

the confidence intervals for their values are defined. Considering all of the 31 years of data, 14 

the results show that the most energetic month, from the average power point of view is 15 

January (23.49 kW/m) and the least energetic month is July (15.04 kW/m). In fact, the 16 

monthly average power decays from January to July and increases from July to December 17 

(21.21 kW/m). The inter-annual average power for the 31 years of data exhibits a weak 18 

attenuation caused by data aggregation. However, using the moving average smoothing curve 19 

it is possible to note that, between 1999 and 2009, the values of this parameter seems to 20 

stabilize around 18 kW/m. Using the appropriate Autoregressive Integrated Moving Average 21 

(ARIMA) model we verified that the future values of the inter-annual average power tend to 22 

oscillate around the same level of average power (18 kW/m).The outliers present in time-23 

series of annual average power were identified and their influence in the value of inter-annual 24 

average power was quantified. Removing outliers from the annual time-series of power 25 

caused a maximum relative attenuation in the values of the inter-annual average power 26 

between 1.85 and 13%. Through the Coefficient of Variation of Power (COVP), obtained by 27 

dividing the standard deviation of the power time-series by the average power, it is possible to 28 
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conclude that the wave resource is stable, with COVP between 0.46 and 0.66. The values of 1 

the Monthly Variation Index (MVI), the maximum range of the monthly mean wave power 2 

relative to the yearly mean level, show that the resource is relatively stable, with MVI < 1.2. 3 

The present work calculates the deep water power available for the Natural Caves (NCs) in 4 

Cape Verde Islands, through a rigorous analysis of the wave climate that excites them. The 5 

minimum sampling size and the corresponding numbers of days of measurements per month 6 

are also estimated. The results show that the number of days of measurements is lower in 7 

spring (March to May) and summer (June to August). This is due to the lower level dispersion 8 

of wave data for these seasons, in comparison with the rest of the months.  9 

 10 

1 Introduction 11 

Ocean waves constitute one of the renewable sources of energy that are gradually entering the 12 

market of clean and sustainable energy worldwide. The global theoretical energy from ocean 13 

wave is estimated in 17500 TWh/year (Boyle, 2004). Many countries around world have been 14 

investing on this natural resource to produce useful and sustainable energy. Portugal (Pelamis 15 

and Pico Plant Projects.), Australia (CETO and OCEANLIX projects), France (SEAREV 16 

project), UK (OYSTER WEC and Limpet projects) and Holland (AWS project) are examples 17 

of some of countries that have recognized the feasibility of harvesting this source of energy 18 

(ABP, 2004). According to the International Renewable Energy Agency (Monford et al., 19 

2014), around 64 % of the Wave Energy Converters (WECs) has been projected for offshore 20 

application and 36% for near-shore and onshore operation. Some full-scale operational tests 21 

have been realized. These include the OYSTER device from Aquamarine Power, the Wave 22 

Roller from AW-Energy, Pelamis P2 from the Pelamis Wave Power, the Seabased and the 23 

Sea-Tricity devices. Magagna (2011) has identified, in 2011, over 100 wave energy 24 

developers. Yet, EMEC (2014) has listed 170 wave energy developers worldwide. About 45% 25 

of the wave energy developers are based in or are currently developing projects in the 26 

European Union (EU) regions. The global installed capacity of wave energy remains low and 27 

the technologies are still at an advanced R&D stage. Just a few machines have sustained long 28 

operational hours, such as the Aquamarine OYSTER (>20000 hours) and Pelamis (cumulative 29 

> 10000 hours) (Scottish Renewable, 2014). The growth of the wave energy sector is lower 30 

than expected and this fact may affect the confidence of investors in this area. Success in 31 
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attracting future Original Equipment Manufacturer investments will depend on the capacity of 1 

the developers in improving performance, reducing cost and validating wave energy 2 

technologies. The long-term global wave energy is expected to become cost competitive and 3 

provide an alternative to other Renewable Energy Sources and conventional energy resources. 4 

Through a review of the existing data available, the different cost components in the Capital 5 

Expenditure (CAPEX) estimate for wave energy extraction have been identified as follows 6 

(Table 1): 7 

 8 

Table1. Costs components estimate for wave energy extraction (JRC, 2014). 9 

Civil and Structural costs  38% 

Mechanical Equipment costs  42% 

Electrical and I&C supply and installation costs  8% 

Project indirect cost  7% 

Development cost  5% 

 10 

Thus, the main components of CAPEX are mechanical equipment, civil and structural costs. 11 

In this context, the developers of wave energy technologies must undertake efforts and 12 

strategies aimed at reducing the two above mentioned costs and the risks associated with the 13 

operation of these equipment out-shore or close to shore. 14 

1.1 Natural Caves 15 

Natural Caves (NC) are caverns formed naturally under the rocky shorelines, inside of which 16 

there is an air layer (Fig.1). This air layer acts like an air pump against the cave ceiling, as the 17 

wave enters and exits these natural infrastructures, forcing the compressed air to go in and out 18 

of the NC, through surface holes at the top of the cave. Fig. 2 shows NCs with one and two 19 

holes.   20 
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Figure 1. Activity in a Natural Cave. 

 

Figure 2. Activity in a NCs with two holes. 

The principles of NCs operations are similar to the man-made Oscillating Water Column 1 

device, projected for onshore application.  2 

Justification for using the NCs for wave energy conversion is a possible cost reduction on the 3 

Civil and Structural cost components, which, as mentioned before, are the most significant 4 

costs associated with building wave energy devices to produce electricity. Furthermore, the 5 

risk of the device collapsing is minimized, by taking advantage of the sturdiness of the natural 6 

rocky structure, time tested by the waves and storms.  7 

To evaluate the potential of NCs for electricity production, it is necessary to estimate its 8 

output power. To do this, a set of experiments aimed at determining the values of some 9 

important physics parameters of NCs operations need to be conducted. Monteiro and 10 

Sarmento (2015) carried out the analytical modelling of the NCs operations as a function of 11 

their functioning physical parameters. The present study is part of a deeper work aimed at 12 

quantifying the output power of NCs and to project an adequate power take-off system to be 13 

adapted on their holes, for energy extraction. 14 

Since the excitation waves are irregular, non-linear and non-stationary phenomenon it is very 15 

important to determine beforehand the sampling size, i.e. how long it takes to carry out the 16 

experiments (number of days of measurements) on a NCs, in order to guarantee the time 17 

representativeness of its output power. To achieve this goal, some statistical analysis has to be 18 

carried on the wave energy input regime.   19 
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1.2 Wave Energy in Cape-Verde: the state of the art 1 

Cape-Verde is an archipelago of ten islands in the Atlantic Ocean, off the West Coast of 2 

Africa, with roughly half million people. The country is totally dependent on oil to produce 3 

electricity, having one of the most expensive cost of electricity in Africa, around 0.28 4 

Euro/kWh (Electra, 2012) versus 0.17 Euro/kWh (Senelec, 2015) at Senegal, a continental 5 

neighbour. Some investments were made by the Government of Cape-Verde aimed to 6 

introducing renewable sources of energy in the country, mainly solar and wind energy. The 7 

Renewable Energy Plan for Cape-Verde (ERPCV)  has defined an ambitious goal of  8 

achieving 50% of Renewable Energy penetration in the country by 2020 (GESTO, 2011). As 9 

a results of the ERPCV, there are in the country  four wind energy farms with a total annual 10 

production between 80 and 110 GWh and two solar energy farms with 7.5 MWp (MWp- 11 

Mega Watt Peak) (GESTO, 2011). In 1999, some research projects on ocean energy were 12 

initiated in the country, directed at Ocean Thermal Energy Conversion (OTEC) system and 13 

WaveStar technology (Wave energy). Unfortunately, these projects did not produced any 14 

visible results since they lacked a institutional framework on which to develop. 15 

Because of its insular nature, most of Cape-Verde’s economic activities (around 90%) are 16 

concentrated on coastal areas (Carvalho, 2013). In this context, it makes sense to use wave 17 

energy for producing electricity locally. A clear alternative is harvesting the energy from 18 

ocean waves. The evaluation of the wave energy resources and the feasibility study associated 19 

with its utilization in Cape-Verde need to be assessed in more detail. Before 2009, some pilot 20 

projects for wave energy conversion at southern of Santiago Island were conceived but never 21 

implemented and worst yet, never went beyond pre-feasibility studies (DGE, 2009). In 2009 22 

an attempt was made to deploy the WaveStar device, developed by Danish company 23 

WaveStar Energy, at Sal Island. This project forecasted the wave energy resources in some 24 

regions around the Island, using measurements gathered by a wave buoy installed in place. 25 

Unfortunately, the project failed to achieve its goals and the buoy was abandoned at the 26 

Instituto de Meteorologia e Geofisica de Cabo-Verde, in Sal Island (DGE, 2009). In 2011, 27 

GESTO Energy, a Portuguese company, carried out an evaluation of the wave resources in 28 

Cape-Verde based on eleven years of data produced by meteorological wave model 29 

worldwide. The data of direction, period and significant wave height were characterized and 30 

the values of these parameters were used for calculate the offshore annual average wave 31 
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power (GESTO, 2011). According to this study, the islands that present the best potential for 1 

wave energy exploration are Sal, S. Antão, S. Vicente and Boa Vista. In fact, four projects for 2 

offshore wave energy conversion based on the Pelamis technology were proposed for these 3 

islands (GESTO, 2011): Sal (3.7 MW), S. Antão (3.7 MW), S.Vicente (3.7 MW) and 4 

Boavista (3.5MW). The study was commissioned by the Ministry of Turism, Industry and 5 

Energy of Cape-Verde and, unfortunately, the scientific results of the study are unknown 6 

since it was never published in any scientific journal or conference proceedings.   7 

As there are no scientific data available on wave energy resources for Cape Verde Islands, the 8 

present work brings to light the real potential for wave energy harvesting and constitutes a 9 

significant contribution to authorities on which to base any decision about forthcoming 10 

investments on wave energy conversion. However, more detailed information will be needed 11 

in order to accurately validate the result of this study, as will be shown in next section.   12 

 13 

2 Data  14 

Knowledge of wave energy resource at a certain location is required by developers of Wave 15 

Energy Converters projects in order to allow them to select the most favourable sites for 16 

achieving optimal power capture and economic performance from their devices. Three main 17 

categories of data are available for wave energy resources assessment: In-situ measurements 18 

(buoy, pressure transducers, wave staff, ship-borne wave recorders), remote sensing (satellite 19 

radar Altimetry RA, Synthetic Aperture Radar SAR, Marine Wave Radar), numerical models 20 

for deep-water (WAM and WaveWatch 3) and for shallow-water (SWAN, TOMAWAC and 21 

MIKE21).    22 

SOWFIA-Streamlining of Ocean Wave Farm Impact Assessment is an EU Intelligent Energy 23 

Europe Project with the goal of sharing and consolidating pan-European experience and best 24 

practices for consenting processes and environmental and socio-economic impact assessment 25 

(IA) for offshore wave energy conversion developments (Mora-Figueroa et al., 2011). This 26 

project brings together ten partners across eight EU Member States actively involved in 27 

planned wave farm test centres and aims at providing recommendations for streamlining of IA 28 

approval processes with the purpose of removing legal, environmental and socio-economic 29 

barriers associated with development of the wave energy farms. The SOWFIA project uses 30 
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data obtained from direct measurements (wave buoy) of the wave climate, carried out at the 1 

seven European wave energy test centres, through the Data Management Platform (DMP) 2 

tool. DMP is an interactive tool designed to assist in the decision making process, providing 3 

information on different wave energy monitoring activities at different test centres and 4 

allowing direct visualization and downloading of relevant data. The DMP is publically 5 

available on the SOWFIA website. The seven European test centres involved in the SOWFIA 6 

project are the AMETTS (Ireland), BIMEP (Spain), Lysekil (Sweden), Ocean Plug (Portugal), 7 

SEAREV (France), Wave Hub (United Kingdom) and EMEC (Scotland) (Mora-Figueroa et 8 

al., 2011). 9 

For others regions of the ocean, where there are no in situ data measurements, the SOWFIA 10 

project uses data produced by WaveWatch 3 (WW3) wave model. The WW3 is phase-11 

average model that solves the spectral action density balance equation for wavenumber-12 

direction spectra. The Governing equation includes refraction due to the temporal and spatial 13 

variation of the mean water depth and current. The source terms include nonlinear 14 

interactions, dissipation due to the white capping, bottom friction, wind wave growth and 15 

decay (Tolman, 1999). An important constraint of the formulation of the WW3 is that the 16 

parameterizations of the physical process included in the model do not address conditions 17 

where the waves are strongly depth-limited. This constraint implies that the model is 18 

generally applied on spatial scales between 20 and 100 km outside of surf zone (Tolman, 19 

1999). 20 

Like other sources of renewable energy, the nature of ocean waves is complex and impossible 21 

to be predicted precisely. The data produced by WW3 model must be, wherever possible, 22 

calibrated with in situ measurements using wave buoy or altimeter data. Both calibrations of 23 

the wave data and the estimation of the confidence bounds are made difficult by the complex 24 

structure of errors in the model data. Error in parameters from wave model show nonlinear 25 

dependence of variety of factors, seasonal and inter-annual changes in bias and short-term 26 

temporal correlation (Mackay et al., 2010). To assess the uncertainty associated with the 27 

estimation of energy yield from a wave energy converter (WEC), Mackay et al (2010) use two 28 

hindcasts from European Marine Energy Centre in Orkney. These hindcasts are produced by 29 

WAM (Komen et al., 1994) and WW3 wave models and calibrated using a Datawell 30 

Directional Waverider buoy moored in 50 m water depth at the EMEC site. The study show 31 
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that before wave data calibration, the estimation of the long-term mean WEC power from the 1 

two hindcasts differ by around 20%. After calibration this difference is reduced to 5%.   2 

Data produced by WW3 through the SOWFIA project is used to evaluate the wave energy 3 

resources at Cape-Verde. The data was gathered for period between 1979 and 2009, at 4 

coordinates 16ºN-24ºW, approximately at centre of the archipelago, where the water depth is 5 

around 3.7 km (NOAA, 2015). The WW3 produced information about the significant wave 6 

height (��), peak period ( �ܶ), peak direction (��) and wind velocity, every 3 hours. The data 7 

generated by a wave model, should have been calibrated against data collected in situ, but 8 

unfortunately, there is no in-situ calibration buoy in the region. Another factor which 9 

introduces some inaccuracy in the data, is the shadow effect caused by the own presence of 10 

the islands. According to Ponce de Léon et al. (2010) the shadow effect is not taken into 11 

account in wave models and can introduce inaccuracy in wave data, especially at the location 12 

where the wave regime is characterized by low values of ��.  Another important aspect that 13 

deserves mentioning is the location of the Natural Caves (inshore) relative to the location of 14 

the data acquisition (offshore). Further study on the wave transformation from deep to 15 

shallow water must be carried out using information about the local bathymetry. 16 

Unfortunately, detailed bathymetric data is only available for some bays and harbours. 17 

Therefore, further approximations of coastal bathymetry must be made in order to obtain a 18 

more realistic result of wave energy resources available at shorelines regions. 19 

The procedures and software available for mapping wave energy resources ignore, in general, 20 

some important statistical aspects that can lead to errors in wave energy assessment. The 21 

outliers that may be present in the time-series of wave data, as a result of a specific event such 22 

as extreme storms, could significantly influence the available average wave power. Yet, as the 23 

experimental study carried out by Mendes and Monteiro (2007) shows, some inshore WEC 24 

such as the OWC device, present serious handicaps when operating in high waves since these 25 

waves produce significant hydrodynamic loss associated with the interaction between waves 26 

and the caisson structure.   Thus, the present study introduces a novelty by using adequate 27 

statistical tools to identify possible outliers in time-series of wave data, and the subsequent 28 

analyses of their influence in the inter-annual average power calculation. Another subject 29 

barely mentioned in papers, that can lead to error in the wave energy resources 30 

characterization are the effects of data aggregation.  The information about the temporal 31 
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behaviour of the wave data are lost due to the aggregation effects. The present study shows 1 

that the aggregation effects may be a real problem that deserves to be taken into account when 2 

characterizing wave energy resources. Finally, based on the wave regime characteristics, this 3 

paper calculates the time duration necessary to carry on the experiments at Natural Caves 4 

aimed to quantify their output power with a minimum sample size that will guarantee its time 5 

representativeness. The estimation of the time duration is very important as it helps evaluate 6 

correctly the energetic performance of NCs. In fact, the statistical procedure presented in this 7 

paper for quantifying the time duration can be followed by other researchers to better 8 

understand the behaviour of their models of wave energy devices. 9 

 10 

3 Methodology 11 

Calculation of the wave energy input regime is carried out using principles and parameters 12 

described below.   13 

3.1 Average Power 14 

In deep water, where the depth is greater than a half of the wavelength, the average wave 15 

power can be determined through the following equation, applied only for unidirectional 16 

wave spectrum approximation. 17 

e

S T
Hg

P



64

22

                                                                                                                           (1) 18 

Where, SH  is significant wave height, eT is energy period, defined in terms of the spectral 19 

momentum by the following relations: 20 

�ܵ = Ͷ�Ͳͳ⁄ʹ                                                                                                                                (2) 21 

 

  

 





  







2

0 0

2

0 0

1

0

1

dfdfS

dfdfSf

m

m
Te                                                                                                    (3) 22 



10 

 

in which, 1m  is the spectral momentum of order -1, 0m is the spectral momentum of order 0, 1 

f   is the frequency,  fS  is the spectral density function and    is the direction of the 2 

energy propagation (Dean and Dalrymple, 1991). 3 

The characterization of the wave climate is made by the combination of the significant wave 4 

height SH and peak period PT  or the zero-crossing period ZT  parameters. The energy period 5 

determined by the Eq.(3) require the knowledge of the form of energy spectrum. When the 6 

form of the energy spectrum is unknown it can be approximated by any of the many model 7 

available (Dean and Dalrymple, 1991). This is the approximation used on the elaboration of 8 

the Marine Atlas of Renewable Resources in UK (ABP, 2004).   Another approximation 9 

commonly used for eT  is represented by Pe TT  , where   is an empirical parameter. The 10 

approximation Te = Tpused to evaluate the wave resource for Cape-Verde was considered, by 11 

Hagernam (2001), very appropriate to make a preliminary analysis of wave energy resource. 12 

Using the monthly series of the available power in waves it is possible to define the annual 13 

time-series of this parameter through the following expressions: 14 

12
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P

P                                                                                                                      (4) 15 

In the above equation ajP  is the average power for year j , ijP  is   the average power for the 16 

month and year. In this way, the monthly time-series begin on January and ends on December 17 

of each year. 18 

It is important to note that there is no physical justification for wave power to be monthly 19 

periodic, but since the sun-cycle is the underlying cause for atmospheric pressure distribution 20 

and wind patterns over the ocean, most likely it will be yearly periodic. 21 

The reason to calculate monthly series of available power is just related to how data is 22 

collected and made available at SOWFIA. 23 

3.2 Monthly Variation Index (MVI) 24 

The temporal variability of the wave resources is a key factor that affects decisively the 25 

feasibility of wave energy projects. In this sense, the regions of the ocean where the resources 26 
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are stable are more attractive for any possible investors. Naturally, the level of the average 1 

power is another important factor for viability of wave energy harvesting.  The Monthly 2 

Variation Index is defined as the ratio of the differences between the maximum and minimum 3 

values of the monthly average wave power in year j by the corresponding annual average 4 

wave power (Cornett, 2008). That is,  5 

 
aj

j

j
P

PP
MVI

minmax                                                                                                               (5) 6 

where maxP and minP  are, respectively, the maximum and minimum values of the monthly 7 

average power in year j .   8 

3.3 Coefficient of Variation of Power (COVP) 9 

COVP is another very important parameter used to evaluate the temporal variability of wave 10 

resources. This quantity is defined by the ratio between the standard deviation of the wave 11 

power and the respective annual average wave power in year j (Cornett, 2008). 12 
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
                                                                                                                (6) 13 

In the Eq.(6),    jtP  represent the standard deviation of temporal series of wave power, 14 

 tP , for year j , and  ajP  is the respective annual average wave power. According to Cornett 15 

(2008), small values of COVP mean that the wave resources are stable. For 16 

9.08.0 COVP  the wave resources can be considered moderately instable. Therefore, for 17 

9.0COVP  the resource is unstable. 18 

3.4 Statistical analysis  19 

The wave climate at a certain location is well characterized by the time-series of significant 20 

wave height and the peak period, which are recorded every 3 hour (time interval necessary for 21 

verifying significant change in wave spectrum). Using these parameters, other statistics such 22 

as the average available power in waves can be calculated. To understand the time-series 23 

behaviour of some important wave parameters, to calculate the confidence interval, the 24 

smoothing curves, and the forecast of its values, some statistical tools of analysis are used. In 25 
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this context, some well known statistics software such as R software (Kuhnert and Venables, 1 

2005), gretl software (Cottrell and Lucchetti, 2008), XLSTAT (XLSTAT, 2015) and Minitab 2 

(Minitab, 2010) are used. Aspects such as the trend analysis, stationarity and normality tests 3 

of the average power are here analysed. To perform the forecast of the average power in 4 

waves, the Autoregressive Integrated Moving Average (ARIMA) model is used. Non-5 

seasonal ARIMA model is generally represented as ARIMA (p,d,q) where, p is the order of 6 

the Autoregressive Model, d is the degree of differencing and q is the order of the Moving 7 

Average Model (Bisgaard and Kulahci, 2011). 8 

Finally, the most commom sea-states in Cape-Verde can be shown through the wave 9 

histogram.  The wave histogram is a table that lists the occurrence of the sea-states in terms of 10 

significant wave height and peak period or mean up-crossing period. It is the long-term 11 

statistical representation of sea states. Using the information in the wave histogram it is 12 

possible to identify the most common sea states in a certain region. 13 

3.5 Representativeness of the monthly average output power from the NCs 14 

The energy that excites the NCs is a function of the local wave regime, while its output 15 

energy depends on the input energy (wave regime) and on the geometry of the NCs (Fig. 3). 16 

For each NC the geometry is fixed, hence the output energy is directly determined by the 17 

local wave regime. This mean that the variation in the output energy content is caused by the 18 

variation in the input energy content, that is by the variation of the local wave regime. In this 19 

context, it is reasonable to assume that the minimum sampling size necessary for 20 

characterizing the input energy content is equal to the minimum sampling size needed to 21 

characterize the output energy from the NCs. The calculation of the minimum sampling size 22 

for characterizing the input energy into the cave is done using the Minitab Software. For three  23 

hours time interval between successive readings, the total number of data points acquired 24 

during one day is eight. So, if this minimum sampling size is represented by Nin, the 25 

correspondent minimum time duration for data acquisition to achieve the representativeness 26 

of the input power is Nin/8 days. Therefore, to guarantee the representativeness of the output 27 

energy from the NCs the duration necessary to realize the experimental study on these natural 28 

infrastructure is equal to Nin/8 days. 29 

 30 
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 1 

Figure 3.Energy production system by NCs. 2 

 3 

4 Results  4 

Table 2 shows the histogram of wave regime, where 78.03 % of the waves have significant 5 

wave height of 1-2 m and 20.81% of all occurrences feature peak period from 6-9 s and 6 

significant wave height from 1.5-2 m. The minimum and maximum values of significant 7 

wave height and peak period recorded are, respectively 0.59 m and 3.82 m and 2.85s and 8 

22.12 s. Yet, the histogram presented in Table 2 shows two local maxima for the peak period 9 

6 to 9s and 12 to 15s, for significant wave height between 1.5 and 2.5 m. This bimodal 10 

distribution indicates a superposition of two distinct wave regimes, the first with origin in a 11 

region of a shorter fetch (smaller period) and the second with origin in a region of longer 12 

fetch (longer period). Fig.4 shows the wave rose diagram obtained for these two wave 13 

regimes. The first diagram (A) represents the predominant direction for peak periods between 14 

6s and 9s. These waves are generated by the predominant winds, blowing constantly 15 

throughout the year, from NNE direction. Since there is not enough fetch length between 16 

Cape Verde Islands and the African continent (600 Km), the wave regime do not fully 17 

develop and remains with a peak period between 6 and 9 seconds. 18 

The second diagram (B) represents the predominant direction for peak periods between 12s 19 

and 15s and shows a superposition of waves from two origins:  20 

 NNW waves which are generated during early-year winter storms in the North-21 

Atlantic 22 
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 SSW waves which are in turn generated during the end-year autumn storms in the 1 

South-Atlantic. 2 

Both regions have sufficient fetch length to fully develop the wave regime, and it may be 3 

possible to observe outliers of 17s – 18s generated in South-Atlantic. 4 

This is consistent with later findings in this paper that January and December are the most 5 

energetic months and July is the least energetic month.  6 

 7 

 

A 

 

B 

Figure 4. Wind rose for two local maxima characterized by the peaks periods between 6 and 

9 s (A) and between 12 and 15 s (B). 

 8 

Table 2. Histogram. 9 

  Peak Period, Tp[s]   
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0-0.5 0 0 0 0 0 0 0 0 0 0.00 

0.5-1 1 3 170 427 141 29 6 0 777 0.86 
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1-1.5 0 572 8307 9194 7288 1742 127 4 27234 30.07 

1.5-2 0 730 18854 7590 12783 3315 171 2 43445 47.96 

2-2.5 0 20 8482 2072 3329 1355 85 0 15343 16.94 

2.5-3 0 0 1657 731 431 293 25 0 3137 3.46 

3-3.5 0 0 254 219 51 47 7 0 578 0.64 

3.5-4 0 0 28 29 3 8 1 0 69 0.08 

>4  0 0 0 0 0 0 0 0 0 0.00 

 Occurrenc

e of Tp 
1 1325 37752 20262 24026 6789 422 6 90583 

100 

 %Occurre

nce of Tp 
0.00 1.46 41.68 22.37 26.52 7.49 0.47 0.01 100 

 

 1 

The curves on Fig. 5 show no clear trend on the time-series of the monthly average power, 2 

over the years. This fact is confirmed by the Mann-Kendal test (Mann, 1945) whose results 3 

are presented at Table 3. The Mann-Kendal test (at 5% level of significance) was done using 4 

commercially available software (XLSTAT, 2015). The results show that these monthly time-5 

series can be considered trendless over the years, except for September and October with low 6 

p-values of 3.8% (September) and 1.8% (October). However, these trends should be the 7 

results of data aggregation error that will be reported in more detail later in this work.  8 

 9 

Table 3.The Mann-Kendall Trend test for monthly average time-series. 10 
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 1 

Figure 5.Time-series of monthly average power. 2 

 3 

Fig. 6 shows the minimum, average and maximum power available on waves which has been 4 

calculated for each month of the 31 year long record. The graph clearly shows that the most 5 

energetic month is January (23.49 kW/m) and the least energetic month is July (15.04 kW/m). 6 

In fact, the average power decays from January to July and increases from July to December 7 

(21.21 kW/m). The curves presented in Fig.6 show the same behaviour as those obtained by 8 

Mackay et.al (2010), for a region off the north coast of Scotland.  9 

 10 

 

 

Figure 6. Statistics of monthly average power for 31 years of data. 

 11 
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Fig.7 shows the inter-annual average values of significant wave height (Hsav) and peak 1 

period (Tpav), together with their moving average smoothing cuves (MASC) of seven periods 2 

7 (Hyndmann et al., 2008). According to this figure, the maximum and minimum inter-annual 3 

average values of the significant wave height are equal to 1.83 m and 1.61 m, recorded, 4 

respectively, in the years 1986/1997 and 2005. After 1990, the inter-annual average values of 5 

the significant wave height shows a rapid decay until 1998, after which it shows a quasi-6 

constant behavior around 1.68 m, until 2009. The inter-annual average values of the peak 7 

period has its maximum value of 11.00 s in 1997 and  minimum of 9.91 s, in 2007. The values 8 

of this parameter show a downward trend until 1994. Between 1994 and 2002 the inter-annual 9 

values of the peak period have an upward trend and after 2002 it shows a quasi-constant 10 

behaviour, around 10.5 s. Similar trend is observed for  the significant wave height parameter. 11 

 12 

Figure 7. Inter-annual average values of significant wave height and peak period. 13 

 14 

The inter-annual average values of power available in waves are shown in Fig.8. The 15 

maximum and minimum values of this parameter are 21.04 kW/m and 15.94kW/m attained, 16 

respectively, in 1982 and 2005.  The inter-annual average values of power show a downward 17 
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trend until 1998, after which it exhibits a quasi-constant behavior around 18 kW/m, until 1 

2009.  2 

 3 

 4 

Figure 8. Time-Series of inter-annual average power. 5 

 6 

For a more in depth analysis of the trend of the inter-annual average power time-series the 7 

Augmented Dikey-Fuller (ADF) trend test was used. As the Fig.8 shows, the time-series of 8 

the inter-annual average power shows an initial downward trend and a constant, as its values 9 

oscillate around a nonzero constant. Thus, in the ADF trend test we assume that there is a 10 

constant and a trend. Another aspect associated with the utilization of the ADF test is the 11 

calculation of the optimum Lag length. To do this, the calculation of the maximum Lag length 12 

(Lagmax) is necessary. This can be done using the equation Lagmax = int {ͳʹ(T ͳͲͲ⁄ )1 4⁄ },  13 

suggested by Schwert (1989).  In this equation, “int” means that we must accept the integer 14 

parts of the results produced by the equation and T is the dimension of sample. For our case 15 

study, T = ͵ͳ (for inter-annual time-series) observations and, therefore, the Lagmax = 9. 16 

Using the function “Var Lag” in gretl software, it is possible to calculate, automatically, the 17 

optimal Lag length, according to Akaike Information Criterion (AIC), Bayesian Information 18 

Criterion (BIC) and Hannan-Quinn Information Criterion (HQC) (Komm, 2015). The results 19 

produced by this procedure are presented in the following Table. 20 
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Table 4. The AIC, BIC and HQC values as a function of Lag length, for inter-annual average 1 

power time-series. 2 

Lags 1 2 3 4 5 6 7 8 9 

AIC 3.23* 3.27 3.29 3.33 3.42 3.48 3.41 3.50 3.49 

BIC 3.38* 3.47 3.54 3.63 3.76 3.88 3.86 3.99 4.03 

HQC 3.27* 3.32 3.35 3.40 3.50 3.57 3.51 3.62 3.62 

 3 

In Table 4, “*” means the best Lag length. Thus, the optimum Lag length is, then, Lag = ͳ, 4 

according to all the criteria mentioned before.  Using the gretl software for this optimal value 5 

of the Lag length and the for the assumptions of existence of constant and trend, as mentioned 6 

before, the ADF trend test produces a very low p − value = Ͳ.ͲͲͲͳ, in comparison with  the 7 

level of significance (α = Ͳ.Ͳͷ) used to perform the test. Therefore, the null hypotheses of 8 

non-stationarity must be rejected. Thus, the time-series present a deterministic trend that is, 9 

the inter-annual average time-series of power is a trend-stationary process (Stadnitski, 2009). 10 

This kind of trends is caused by a moving average component that is an explicit function of 11 

time. To better understand the nature of the trend, exhibit by the values of inter-annual 12 

average power, it would be worth to carry on the trend test of the original time-series of 13 

power. Fig.9 shows the original time-series of power, between 1979 and 2009 calculated for 14 

each 3h. Analyzing this figure becomes clear that the values of the power oscillate around a 15 

constant different from zero and there is no clear evidence of trend in the value of the referred 16 

parameter.  17 

 18 

 19 

Figure 9. The original time-series of annual power, between 1979 and 2009. 20 
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The optimum Lag length is calculated and is equal to Lag = ʹͳ (AIC), Lag = 7 BIC and 1 Lag = 9 (HQC). These different results for optimum Lag-length could be associated with the 2 

heterogeneity of our data. The ADF test was carried out for all three Lag lengths and all of 3 

them produced a rejection of null hypothesis of non-stationarity. So, the original time-series 4 

of power is stationary around a constant mean. These results lead us to conclude that the 5 

initial trend shown in the values of the inter-annual time-series of power could have been 6 

caused by two factors: the effects of aggregation (Clark et al., 1976) and the existence of the 7 

Outliers, defined as an observation in data set which appears to be inconsistent with 8 

remainder of that set of data (Johnson, 1992). These outliers could affect significantly the 9 

mean values of power.  According to Clark et al. (1976), aggregation problem can be defined 10 

as the information loss which occurs in the substitution of aggregate, or macro-level, data for 11 

individual, or micro-level, data. This undesirable effect reduces the variability of data. In fact, 12 

aggregating the values of the power into its inter-annual average values produce, in our case, a 13 

reduction of standard deviation parameter from 10.39 kW/m, in original time-series, to 1.29 14 

kW/m, in inter-annual time-series. This corresponding to a dramatic reduction of 87.5% of 15 

standard deviation in comparison with the value of this quantity for the original time-series, 16 

and it could introduce a high level of error associated with the aggregation effects.   17 

To analyze the implications of the outliers in our results, they were identified, through the box 18 

plot method (Ben-Gal, 2005), using, for the present study, the R software, and subsequently 19 

removed from the time-series. The numbers of the outliers found, in this way, for each time-20 

series of the annual average power, are presented in Table 5.  21 

Table 5. Numbers of outliers present in each annual time-series of power 22 
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 23 

As we mentioned before, all outliers are removed from the time-series of annual average 24 

power. Further, the time-series of the inter-annual average power is, then, calculated, and the 25 

results are plotted in Fig.10, together with the correspondent inter-annual average power 26 

including outliers. As the referred figure shows, the trend-stationarity process persists in the 27 
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time-series of the inter-annual average power even when removing the outliers. That is, the 1 

trend is not caused by the influence of outliers. But, they introduce a slightly relative variation 2 

in the values of inter-annual average power, which maximum varies between 1.85% and 13%. 3 

However, at sites of extreme stroms, severe outliers may appear.  In this context, it is worth  4 

analyzing the influence of these severe outliers in the context of wave energy resource 5 

characterization. Now, it is clear that the trend of the inter-annual average power is a result of 6 

the effect of data aggregation. 7 

 8 

Figure 10. The time-series of inter-annual average power, with and without outliers. 9 

 10 

To estimate the future behavoir of the values of the inter-annual average power a forecast for 11 

the next 10 years is performed. For this purpose, it is necessary to calculate the best ARIMA 12 

model.  13 

According to  the ADF trend test, the original time-series of the inter-annual average power is 14 

trend-stationary. The first difference (P-1) is stationary as it is possible to see through the 15 

values of the Autocorrelation Factor (ACF) and of Partial Autocorrelation Factor (PACF) 16 

presented in Fig.11, generated by gretl software. In fact, as shown in Fig. 11, the values of 17 

these parametersare statistically equal to zero, as they are less than 0.35, after Lag = 1 (for 18 

ACF) and Lag = 2 (for PACF). ACF and PACF are two statistical measures that show how 19 

the observations in a time-series are related to each other. Thus, to determine a proper model 20 

for a given time-series, it is necessary to carry out the analysis of these parameters 21 
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(Frain,1999). In the present case, the original time-series is converted into stationary time-1 

series after the first differencing (d = 1).  2 

 3 

Figure 11. The values of ACF and PACF parameters for the inter-annual average power time-4 

seires. 5 

 6 

Accornding to Hintze (2007) the value of p is determined from the PACF of the appropriate 7 

differenced time-series. If the PACF cuts off after a few Lags, the last Lag with a large value 8 

would be the estimate for p. Therefore, p is equal to 2 (Fig.11). The value of q is estimated,  9 

following the same procedure, using the values of the ACF parameter shown in Fig.11. So, 10 

q=1 and, the best ARIMA model to make the forecast is ARIMA (2, 1, 1).  However, using 11 

the R software it is possible to generate automatically, the best ARIMA model to make a 12 

forecast of a time-series. For our inter-annual average power time-series the R software 13 

produce the ARIMA (2,1,0). According to AIC and HQC criteria the ARIMA model 14 

generated by R software is better than ARIMA (2,1,1). In fact, the ARIMA (2,1,0) led to the 15 

lower values of AIC (103.78) and HQC (105.57) in comparision to which presented by 16 

ARIMA (2,1,1) that were, respectively, 104.83 for AIC and 107.07 for HQC.  Thus, in the 17 

present study, the forecast was made using the best ARIMA model, that is the ARIMA 18 

(2,1,0). 19 
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Fig.12 shows the results of the forecast for the inter-annual average power, achieved using the 1 

gretl software. As Fig.12 shows, the predicted time-series follows the observed time-series 2 

and produced a residual values that oscillate around zero (Fig.13), which shows that the  3 

predicted values tend to adjust to the observed values. According to the forecast, the predicted 4 

time-series of the inter-annual average power seems to oscillates, without any trend, around of 5 

18 kW/m, as was previousely predicted using the moving average smoothing curve. This 6 

value is very close to the one calculated by Falnes. J. (2007), for tropical regions, similar to 7 

Cape-Verde Island. 8 

 9 

Figure12. Forecast of Annual Average Power (generated by R software). 10 

 11 

 12 

Figure13. Residual values of the Forecasted inter-annual Average Power time-series 13 

(generated by R software). 14 
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The normality test of Anderson-Darling (Thode, 2002) shows that the inter-annual average 1 

power follows a normal distribution with p-value equal to 51.5% (Fig. 14). As this p-value is 2 

higher than the significance level of 5%, the hypothesis of the normality distribution is 3 

accepted. Fig.14 was generated by Minitab software and represents a summary report of the 4 

inter-annual average power time-series. It shows, with a significance level equal to 0.05, the 5 

confidence intervals for the inter-annual mean (17.981 kW/m – 18.924 kW/m), for the inter-6 

annual median (17.879 kW/m – 19.186 kW/m) and for the inter-annual Standard Deviation 7 

(1.028 kW/m – 1.719 kW/m). Fig. 15 shows the normal probability plot for the inter-annual 8 

average power. As it is possible to note in this figure, in general, the data follow the normal 9 

line. However, some deviation from this normal line is registed between 16.99 kW/m and 10 

17.09 kW/m.   11 

 12 

 

Figure 14. Summary report of inter-annual 

average power, between 1979 and 2009. 

 

Figure 15. Normal probability plot. 

 

 13 

The wave energy resources in Cape-Verde are stable with COVP less than 0.8, as it is 14 

possible to see in Fig. 16-A, which represents the time-series of the inter-annual values of 15 

COVP. The MVI parameter shows that the monthly wave energy resources can be considered 16 

relatively stable with MVI values less than 1.2 (Fig. 16-B). This is a very attractive aspect 17 

associated with the utilization of wave energy to produce electricity in Cape-Verde, since it 18 

affects the useful life cycle of ocean wave conversion equipment. 19 
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 1 

 

(A) 

 

(B) 

Figure 16. Temporal variability of wave resources. A – Coefficient of Variation of Power; B – 

Monthly Variation Index. 

Defining a set of samples using all values of the significant wave height, peak period and the 2 

average power obtained for each month during the 31 years of data, the confidence intervals 3 

for all of these parameters were calculated, using the Minitab software and admitting a 4 

significance level of 5%. Before defining the referred confidence intervals the normality tests 5 

for all of these parameters were performed. Table 6 summarizes the statistical information 6 

about the normality tests, average values and confidence intervals for each month. The values 7 

of the A-squared parameter shows that the data is non-normal (D’Agostino,1986). According 8 

to D’Agostino (1986), the cricital value of the  A-squared parameter, for  a 95% confidence 9 

level, is 0.752. The values of this parameter presented in Table 6 are higher than this critical 10 

value. So, there is a very strong evidency that the data is non-normal. This result is confirmed 11 

by the p-values that are, in all cases, lower than 0.05 (significance level) implying the 12 

rejection of the normality hypothesis. The Minitab software has an option to calculate the  13 

confidence intervals for non-normal data. The results are presented in Table 6. 14 

 15 

Table 6.Monthly statistical reports. 16 

 Variable 
Simple 

size. N 
Anderson-Darling Normality Test  Mean     StDev   SE Mean        95% CI 

J
 

Hs[m] 7687 A-Squared: 40.63             p-value    <0.005 
 1.92191  0.50899  0.00581  (1.91053; 

1.93329) 
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Tp[s] 7687 A-Squared: 170.24            p-value <0.005 
10.7142   3.1631   0.0361  (10.6435; 

10.7849) 

P 

[kW/m] 
7687 A-Squared: 202.38            p-value <0.005 

23.513   13.783    0.157  ( 23.205;  

23.821) 

F
 

Hs [m] 7008 A-Squared: 15.53             p-value <0.005 
1.87711  0.46451  0.00555  (1.86623; 

1.88798) 

Tp[s] 7008 A-Squared: 145.66            p-value <0.005 
10.4387   3.0192   0.0361  

(10.3680;10.5094) 

P 

[kW/m] 
7008 A-Squared: 208.03            p-value <0.005 

21.897   12.716    0.152  ( 21.599;  

22.195) 

M
 

Hs  [m] 7689 A-Squared: 21.63             p-value <0.005 
1.80126  0.43902  0.00501  (1.79144; 

1.81107) 

Tp[s] 7689 A-Squared: 70.03             p-value <0.005 
10.8515   2.8814   0.0329  (10.7871; 

10.9159) 

P 

[kW/m] 
7689 A-Squared: 131.79            p-value <0.005 

20.780   10.801    0.123  ( 20.538;  

21.021) 

A
 

Hs[m] 7440 A-Squared: 36.30             p-value <0.005 
1.80543  0.38490  0.00446  (1.79668; 

1.81417) 

Tp[s] 7440 A-Squared: 118.55            p-value <0.005 
10.3233   2.7986   0.0324  (10.2597; 

10.3869) 

P[kW/m] 7440 A-Squared: 161.64            p-value <0.005 
19.763    9.983    0.116  ( 19.536;  

19.990) 

M
 

Hs[m] 15376 A-Squared: 29.32             p-value <0.005 
1.73386  0.31984  0.00258  (1.72881; 

1.73892) 

Tp [s] 15376 A-Squared: 491.92            p-value <0.005 
10.2287   3.0524   0.0246  (10.1804; 

10.2769) 

P[kW/m] 15376 A-Squared: 258.45            p-value <0.005 
17.8068   7.9966   0.0645  (17.6804; 

17.9332) 

J
 

Hs[m] 14880 A-Squared: 29.78             p-value <0.005 
1.64809  0.30307  0.00248  (1.64322; 

1.65296) 

Tp [s] 14880 A-Squared: 618.05            p-value <0.005 
10.1125   3.0069   0.0246  (10.0642; 

10.1608) 

P[kW/m] 14880 A-Squared: 291.89            p-value <0.005 
16.0597   7.4576   0.0611  (15.9399; 

16.1795) 

J
 

Hs[m] 15376 A-Squared: 46.52             p-value <0.005 1.59065  0.26830  0.00216  (1.58640; 
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1.59489) 

Tp [s] 15376 A-Squared: 849.41            p-value <0.005 
10.1592   2.8717   0.0232  (10.1138; 

10.2046) 

P[kW/m] 15376 A-Squared: 254.08            p-value <0.005 
15.0375   6.6470   0.0536  (14.9324; 

15.1425) 

A
 

Hs[m] 7688 A-Squared: 27.43             p-value <0.005 
1.57631  0.26316  0.00300  (1.57043; 

1.58219) 

Tp[s] 7688 A-Squared: 337.55            p-value <0.005 
10.2906   2.9649   0.0338  (10.2243; 

10.3569) 

P[kW/m] 7688 A-Squared: 174.44            p-value <0.005 
15.1119   7.2471   0.0827  (14.9499; 

15.2740) 

S
 

Hs[m] 7440 A-Squared: 13.53             p-value <0.005 
1.59887  0.27965  0.00324  (1.59251; 

1.60522) 

Tp[s] 7440 A-Squared: 204.76            p-value <0.005 
10.2960   2.8409   0.0329  (10.2315; 

10.3606) 

P[kW/m] 7440 A-Squared: 143.42            p-value <0.005 
15.4316   7.0104   0.0813  (15.2723; 

15.5910) 

O
 

Hs[m] 7687 A-Squared: 24.60             p-value <0.005 
1.60069  0.33400  0.00381  (1.59322; 

1.60816) 

Tp[s] 7687 A-Squared: 61.21             p-value <0.005 
10.8908   2.8969   0.0330  (10.8261; 

10.9556) 

P[kW/m] 7687 A-Squared: 188.74            p-value <0.005 
16.5502   8.6290   0.0984  (16.3573; 

16.7431) 

N
 

Hs[m] 7440 A-Squared: 45.13             p-value <0.005 
1.65678  0.39347  0.00456  (1.64784; 

1.66573) 

Tp[s] 7440 A-Squared: 47.37             p-value <0.005 
11.0808   2.9679   0.0344  (11.0133; 

11.1482) 

P[kW/m] 7440 A-Squared: 212.76            p-value <0.005 
18.439   11.008    0.128  ( 18.189;  

18.689) 

D
 

Hs[m] 7688 A-Squared: 65.15             p-value <0.005 
1.80871  0.45569  0.00520  (1.79852; 

1.81890) 

Tp[s] 7688 A-Squared: 110.55            p-value <0.005 
10.7810   3.1661   0.0361  (10.7102; 

10.8518) 

P[kW/m] 7688 A-Squared: 298.54            p-value <0.005 
21.213   13.252    0.151  ( 20.917;  

21.509) 
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The energy from NCs is a time-varying quantity. Thus, to estimate this parameter it is 1 

necessary to achieve the minimum sampling dimension to guarantee its temporal 2 

representativeness. As the wave regime is the only parameter that causes the variation in the 3 

energy content produced by NCs, we assume that the minimum sampling size necessary to 4 

characterize the monthly average power on waves is equal to the minimum sampling size to 5 

characterize the monthly average power emanating from the NC. Further, this minimum 6 

sampling dimension is converted in numbers of days for monitoring the NCs in order to 7 

achieve the temporal representativeness of the power data. In this way, using the Minitab 8 

software, the minimum number of sample points, for average monthly power, was calculated 9 

admitting a 0.85 power factor, a significance level equal to 0.05 and a value of 3kW/m for 10 

margin of error. This margin of error was assumed taking into account the possibility to 11 

completing all measurements in one year. In this context, lower margin of error implies higher 12 

number of sample points. Table 7 show the standard deviations, the minimum sampling size 13 

to guarantee the representativeness of the values of the monthly average power and, 14 

consequently, the number of days to carry out the experiments on the Natural Caves in order 15 

to ensure the correct values of the average power extracted from these natural infrastructures. 16 

It is important to note that during the spring (March to May) and summer (June to August) the 17 

minimum numbers of days of measurements are lowers in comparison with the rest of the 18 

months. The reason for this finding is associated with the nature of the wave data for the 19 

referred months. That is, during the spring and summer the wave data present low dispersion 20 

as it is possible to see through the values of the standard deviation in Table 7, indicating that 21 

the wave energy resources are most stable during these periods of the year. Therefore, the 22 

minimum sample size for characterizing these wave data is lower than the rest of the months 23 

for which the standard deviations are higher.    24 

 25 

Table 7. Minimum sampling size and the corresponding numbers of days of measurements 26 

Power Factor: 0.85; Margin of Error: 3 kW/m;  Significance level: α = 0.05 

Months Standard deviation, σ Minimum sampling size, n Numbers of days (for 3 h time step) 

J 13.25 178 23 

F 11.01 123 16 

M 8.63 77 10 
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A 7.01 51 7 

M 7.25 55 7 

J 6.65 47 6 

J 7.46 58 8 

A 7.99 66 9 

S 9.98 102 13 

O 10.80 119 15 

N 12.78 165 21 

D 13.78 192 24 

 1 

5 Conclusion 2 

The most common sea state in Cape-Verde occurs 20.81% of time, featuring peak periods 3 

from 6-9 s and significant wave height from 1.5-2 m. For period between 1979 and 2009, 4 

78.03% of the waves present wave height between 1 and 2 m.  5 

January and December are the most energetic months and July is the least energetic month. 6 

The monthly wave power decreases from January to July and increases again to December. 7 

Through the Coefficient of Variation of Power (COVP) it is possible to conclude that the 8 

wave resource is stable, with COVP between 0.46 and 0.66.  9 

The MVI parameter shows that the wave resource can be considered relatively stable (MVI 10 

<1.2) from monthly average power point of view.  11 

The monthly average and the annual time-series are stationeries over time. The confidence 12 

intervals for all months were calculated using the Minitab software.   13 

The time-series of inter-annual average wave power shows some attenuation over the years, 14 

due to the occurrence of effect of aggregation. However, using the smoothing moving average 15 

curve it is possible to verify that, from 1999, inter-annual average wave power oscillate 16 

around of 18 kW/m.   17 

This trend is confirmed by the analysis of 10 years of the inter-annual average power future 18 

values, using an appropriate ARIMA model generated automatically by R software.  19 
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The outliers, present in time-series of annual average power were identified and their 1 

influence in the value of inter-annual average power was quantified. Removing outliers from 2 

the annual time-series of power caused a maximum relative attenuation in the values of the 3 

inter-annual average power between 1.85 and 13%. 4 

The minimum recording time of physical parameters associated with the NC operation are 5 

determined, for each month, under the assumption that the minimum sampling size necessary 6 

to characterize the monthly average power on waves is equal to the minimum sampling size to 7 

characterize the monthly average power emanating from the NC. In this context and for the 8 

Cape-Verde Wave Regime, the minimum sampling size and the corresponding numbers of 9 

days of measurements are given in Table 7. During the spring and summer the wave resources 10 

are more stable than the rest of the year and, therefore, the minimum numbers of day for 11 

monitoring the NCs are lower, in comparison with the rest of period of time. 12 
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