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Abstract

abstr An algorithm for computing ice drift from pairs of synthetic aperture radar (SAR) im-
ages covering a common area has been developed at FMI. The algorithm has been developed
based on the C-band SAR data over the Baltic Sea. It is based on phase correlation in two
scales (coarse and fine) with some additional constraints. The algorithm has been running oper-
ationally in the Baltic Sea from the beginning of 2011, using Radarsat-1 ScanSAR wide mode
and Envisat ASAR wide swath mode data. The resulting ice drift fields are publicly available
as part of the MyOcean EC project. The SAR based ice drift vectors have been compared to
the drift vectors from drifter buoys in the Baltic Sea during the first operational season and
also these validation results are shown in this paper. Also some navigationally useful sea ice
quantities, which can be derived from ice drift vector fields, are presented.
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1 Introduction

intro

Ice motion is a very important ice parameter for ice navigation. It can be used to locate
the areas of divergence and convergence, and also be used to locate compressive ice fields. In
addition to the ice drift up to the current moment, the forecasting of the ice drift is very useful
information for ice navigation.

We at FMI have developed a SAR-based sea ice drift estimation algorithm, which is based
on phase correlation at two resolutions. The algorithm is now run operationally as part of the
MyOcean, which is a part of the European Commission (EC) GMES (Global Monitoring for
Environment and Security) program. The SAR-based ice drift can be used for validating ice
models making forecasts of ice drift based on numerical weather prediction data. It can also
be utilized in data assimilation into the ice models, and as an additional information source for
SAR based sea ice classification algorithms. The data used in the FMI Baltic Sea ice drift es-
timation are from both Radarsat-2 and Envisat ASAR instruments. Since April 2012, after the
breakdown of ENVISAT, only RADARSAT data have been used. These instruments operate at
C-band (wavelength about 5cm). The ice drift fields for the Baltic Sea are computed for each
overlapping SAR image pair with a temporal distance less or equal than two days. The result-
ing ice drift or ice displacement vector fields are delivered in NetCDF format, and are freely
available for all registered MyOcean users, for the product catalogue see (MyOcean product
catalogue , 2012).

Motion estimation methods between two co-registered images can be based on block match-
ing (the similarity is typically measured by different variations of cross-correlation, such as
phase correlation applied in our algorithm), algorithms estimating optical flow from differen-
tial equations based on partial derivatives of the image signal, such as presented in (Horn and
Schunck , 1981), and feature-based methods. In feature based algorithms first some local fea-
tures are computed and these are then matched based on some criteria (e.g. feature correlations)
instead of direct block matching. Correlation (cross-correlation) methods have been utilized in
estimation of ice drift, e.g. in (Fily , 1987), where ice drift was estimated from SAR image pairs
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using correlation in multiple resolutions. Other examples of correlation based ice drift estima-
tion from SAR are the Radarsat Geophysical Processor System (RGPS) (Kwok , 1998) and the
arctic and antarctic MyOcean SAR ice drift products (MyOcean product catalogue , 2012) by
Danish Technical University (DTU). In the RGPS the correlation approach has been coupled
with a feature-based approach. Correlation based ice drift estimation methods have also been
studied for the Baltic Sea earlier, e.g. in (Sun, 1994). In this approach also the rotation is
estimated by correlating the power spectra, i.e. in this sense this algorithm can be considered
as a combination of a feature-based and a correlation method. Optical flow based ice drift es-
timation has been studied, for example for the Baltic Sea in (Sun , 1996). A multiresolution
phase-correlation algorithm for sea ice drift estimation was presented in (Thomas et al. , 2004,
2008), and this algorithm has also been tested in the Bay of Bothnia, these experiments were
reported in (). Ice drift estimation based on passive microwave instruments has been studied,
e.g. in (Liu and Cavalieri , 1998; Haarpaintner , 2006), the previous is an example of a correla-
tion method, and the latter is a more sophisticated approach based on a wavelet decomposition,
i.e. analysis of wavelet coefficients in multiple resolutions. Passive microwave instruments
typically have a large coverage but their resolutions are coarse, typically several kilometers,
and only low or medium resolution ice drift can be measured by these instruments. SAR in-
struments instead have a much higher spatial resolution. In ScanSAR mode, which combines
multiple SAR beams into one wide swath, with a width up to 400-500 km (ENVISAT ASAR
and RADARSAT-1/2), SAR instruments also have a good spatial cover, with a high resolution
of about 100m.

Our algorithm is based on computing phase correlation in two resolutions, in a coarse resolu-
tion to estimate the large scale drift and in a fine resolution to refine the coarse scale estimates.
Because phase correlation is a correlation between phase information, it is sensitive to edges
in the image, and phase correlation methods are robust against gray level variation e.g. due to
different incidence angles in the two images, compared to the common cross-correlation. Phase
correlation is also more robust against noise than common cross-correlation. Using multiple
resolutions enables detecting of larger ice drift in a high resolution defined by the the fine reso-
Iution. The main difference between the earlier phase correlation algorithm in (Thomas et al. ,
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2004, 2008) and our new operational algorithm are: (1) our algorithm uses only two resolutions
(coarse and fine), (2) our algorithm performs the motion estimation only for areas containing
some SAR features defined by existence of edges, (3) our algorithm uses a quality measure
to measure the reliability of a drift estimate instead of the correlation value, (4) our algorithm
selects the final motion from multiple motion candidates defined by multiple correlation max-
ima, and (5) our algorithm applies the vector median filtering (Astola et al., 1990) to refine
the estimation (to produce more coherent vector fields). According to our experience, the SAR
frequency band does not play a major role in ice drift estimation, the same features (edges)
are visible in L- (FMI has used ALOS-PALSAR C-band data), C- (RADARSAT, ENVISAT
ASAR) and X-bands (COSMO-SKYMED, Terrasar-X). In some areas, there can be some fea-
tures at L-band, which are not visible at X- or C-bands, and in these cases ice drift detection is
possible only at L band. These features are due to the better penetration capability of L-band
and thus ability to see deeper within the ice cover than at C- and X-bands. C- and X-bands
mostly represent surface scattering only.

2 SAR Preprocessing

We use both Radarsat-2 and Envisat ASAR data for the Baltic Sea ice monitoring. We use
the wide swath mode (WSM) data from Envisat ASAR and ScanSAR wide (SCW) mode data
from Radarsat-2. These modes assemble wide SAR images from several narrower SAR beams,
resulting to an image width of 400-500 km, which is a suitable size for operational sea ice
monitoring in the Baltic Sea scale. The SAR resolution in these modes is still 100-150m.
In the ice drift estimation only the horizontally transmitted and horizontally received (HH)
polarization channel is used. Radarsat-2 also has a dual-polarized mode in ScanSAR mode, i.e.
also HV (horizontally transmitted, vertically received) channel is available. Envisat ASAR does
not have this possibility, however. The typical temporal coverage, i.e. a SAR image acquisition
using these two instruments over the same area in the Baltic Sea, ranges from a few hours to
three days.

The SAR images are first calibrated to get the logarithmic backscattering coefficient values,
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which are presented in decibels. The backscattering coefficient, o°, describes the properties of
the target area producing the backscatter of each SAR pixel. The ¢ values are then linearly
scaled to eight bits per pixel (8 bpp) images, the scaling interval is from -35dB to O dB. The
general calibration equations are:

o A% .
o= ?sm(a) = gsm(a), (D
o' (dB) =10log1o(c?). (2)

K is a SAR calibration coefficient, and typically given in the SAR metadata, A is the SAR
amplitude value and I = A? is the SAR intensity value. « is the SAR incidence angle, which
increases from the near range to far range, and typically varies about in the range of 20-50
degrees.

The 8 bpp SAR images are then rectified to Mercator projection, which is the projection
used in nautical charts in the Baltic Sea. The rectification is performed using a fixed reference
latitude g (latitude of true scale) of 61 degrees 40 minutes. This parameter has been selected
for the compatibility with the FMI ice charting applications and software on-board Finnish ice
breakers. After rectification, a land masking to mask off all the land areas is applied.

For some other purposes, such as ice type classification, we also apply an incidence angle cor-
rection (Makynen et al., 2002), which is based on a empirical linear relationship between mean
sea ice backscattering and incidence angle value. This correction is, however, not necessary for
the ice drift estimation.

For the ice drift application, the two images are co-registered. This is performed using the
georeferenced data of the rectified images. After co-registration the common areas of the two
images are cut, and these two cut images are the inputs of the ice drift algorithm.

3 Algorithm

The algorithm is based on phase correlation computed in two resolutions. In our approach,
the phase correlation computation is performed for edged areas only, because these typically
5
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are the areas, where reasonable correlations can be computed. In smooth or random areas the
correlations are too low for reliable drift detection.

The edges are here detected using the Canny edge detection algorithm (Canny , 1986), but
in practice most of the edge detection algorithms produce similar results. Typically the edge
detection is based on gradient magnitude in the images. After edge detection, we perform a
filtering of the edges, filtering out small edge segments. An edge segment is here defined as a
set of connected edge pixels, in the sense of the pixel’s 8-neighborhood. All the edge segments
smaller than a given size (an integer number of pixels) are removed from the edge image. A
suitable size threshold for a full-resolution SAR edge image is five. The small edge segments
are typically due to speckle and do not describe any actual SAR features.

The ice motion is determined for sampled data windows from the two images using phase
correlation. The window size is W x W, we have used W = 16. The detecting of the ice drift
at each resolution is based on the phase correlation. To compute the phase correlation the 2-
dimensional fast Fourier transform (2-D FFT) is applied to the data windows sampled from the
two co-registered images at same location. Then FFT-coefficients of the two image windows
are normalized by their magnitudes, and the FFT-coefficients of the two image windows are
multiplied and the inverse 2-D FFT is applied. The phase correlation array is computed from
the the normalized cross power spectrum. The best matching displacement in a Cartesian (X,y)
coordinate system is defined by the maximum of the phase correlation, here denoted by PC.

(dz,dy) = argmax g, ,) { PC(x,y)} 3
_ —1 ( (Xa" (k1) Xo (k1))
= argmax, . {FFT ( X kD) Xa (1] ) },

Because the FFT assumes the data to be periodic, a Gaussian window is applied to the data
windows before the transformation. The drift is estimated in the row-column coordinate system
in whole pixels at two resolutions. The displacement vector in the row and column coordinates
is denoted by (dr,dc). In practice there often occur several correlation maxima which can be
close to each other, and it is reasonable to use more than just one drift candidate for one window
pair, and make the final decision only at the fine resolution level.
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Two resolutions are used in this approach, first coarse or low resolution (LR) data is used to
locate the large scale motion, and then fine or high resolution (HR) data is used to refine the
motion estimation. Simplified flow diagrams of the algorithm for the low resolution and high
resolution parts are shown in the figures 1 and 2.

For the low resolution, the co-registered two images are first down-sampled to the given
resolution. The down-sampling rate is a power of two, say Rg = 2""!, we have used n =5,
corresponding to a down-sampling Rg = 16. The two low resolution images are generated
by successively applying a half-band low-pass FIR filter designed for multi-resolution image
processing (Biazzi et al., 1998). After down-sampling to the low resolution, we go through
the image in steps of 1W/2 in both row and column directions, and for each of the sampled
locations, we make the two W x W sample windows, and locate M phase correlation maxima.
We have used the parameter value M/ = 12 here. If the zero motion case (dr,dc) = (0,0) is not
included in the M low resolution drift values indicated by the maxima, it is included and the
drift candidate with the lowest phase correlation is excluded. In the same way, the low resolution
drift candidates with the highest phase correlations from the neighboring low resolution motion
grid locations are copied to the list of M candidates, if they are not included. This revised list of
drift candidates and corresponding phase correlations for each image location is then delivered
to the fine resolution processing.

At the fine resolution level, all the displacements from the low resolution level, scaled up by
the down-sampling factor are considered as potential low resolution ice drift candidates, and the
windows are sampled in a W/2 x W/2 pixel grid from the full-scale first image (i.e. the step res-
olution is 800m for 100m resolution images), and the sampling locations from the second image
are defined by the M scaled displacements from the low resolution. For each high resolution
window pair, we also locate multiple drift candidates corresponding to IV highest maxima, thus
resulting in M x N drift candidate values for each fine scale location in the /2 x W/2 grid.
In the current version of the algorithm, the drift candidate with the highest phase correlation at
the fine resolution level is selected as the final ice drift candidate. In another algorithm version
we have also performed some spatial filtering within a given spatial neighborhood among all
the M x N candidates at each grid location before selecting the final drift candidate. Some
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geophysical restrictions can additionally be used, e.g. not allowing too high local convergence
values, this can be adjusted by a threshold value.

Finally, a vector median filtering (Astola et al., 1990) is performed with a given radius to
obtain the final motion estimate. The size of the filtering is dependent on a quality index, and is
varied from 5x5 to 11x11 points in the fine resolution motion grid. The algorithm can actually
use either phase correlation or cross correlation (this can be selected by the user), but we have
used only phase correlation in the studies presented here and in the operational algorithm.

3.1 Quality Measures

The cross-correlation or the phase-correlation are not very good measures of the quality of the
estimates, This is due to the fact, that there often also exist other high correlation values at dif-
ferent locations between two data windows. And if there are more than one correlation peak,
it is difficult to determine, which of these peaks corresponds to the actual motion, and which
are due to similarities spatially apart from each other in the images. Different quality indexes
instead of phase or cross correlation taking into account the possible existence of multiple cor-
relation peaks, have been studied at FMI. Here are some quality measures, which can be used.
The sub-indexes of the phase correlation (PC) refer to the sorted (largest first, starting from one)
phase correlation values for one SAR window pair.

Qu=PCi(1=3 55 D) =PCi =3 PCD; 4
k=2 k=2
L = PCGy
Q2=1- T&Dk &)
k=2
Q3=PC1—PCy (6)
Q4=PClX(PCl—PCQ) (7)
Q5= PC1 /N, ®)
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Dy, are the pairwise distances of the lower (k’th) maxima from the first maximum. In the
quality measures not utilizing the distance of the maxima, the maxima in the neighborhood of
the first maximum are excluded, because typically the phase- or cross-correlation is also high
near the peaks, but this only indicates the same peak value. N, is the number of PC peaks
higher or equal than f.PC), we have typically used f.=0.7. This kind of quality index is
much better criteria for including or excluding data than the phase- or cross-correlation. Our
current algorithm by default computes the quality measures ()5 and Qg.

4 Operational Products

The products are computed using a window size of 16x16 pixels in the Mercator projection, and
the computation step size is 8 pixels in both row and column direction, corresponding to about
800 meters for 100m resolution images. Also the nominal product resolution is 800 m. The val-
ues used in the products are the row- and column components of the motion, phase-correlation
and the quality values Q5 at each 800m grid cell. In the operational products delivered to My-
Ocean (MyOcean product catalogue , 2012), the drift components and the scaled quality value
are re-sampled to latitude-longitude coordinate system with a similar resolution as in the Mer-
cator coordinates, bilinear interpolation for the vector components is used in the re-sampling.
The values in the final product are given as U- (from west to east) and V-coordinates (from
south to north) in meters, i.e. the motion in pixels is multiplied by the local resolution. The
local resolution Ry, in the Mercator projection, is computed as:

_ cos(¢o)
cos()
Ry is the true resolution at (g, in our case it is 100m.
As a measure of product quality we have used a scaled version of the quality measure ()5

in the operational product. This value is delivered as part of the ice drift product for each grid
9
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point.
The quality measure Q5 is converted to a scaled quality index (s ranging from one to five
using the following thresholding:

Q5<1°=Q,=0

179<Q5<1 3 >5Qs=1

173<Q5<0.1—=Qs=2 (11
0.1<Q5<02—Qs=3

02<Q5<04—Q,=4

Q5>04—Qs=5

The final product is converted into a NetCDF file, with georeferencing for the common area
of each overlapping SAR image pair within a mutual temporal distance of two days.

5 Applications

We also compute some derived quantities from the ice drift, the most important quantities for
modeling and navigation are shortly presented here. First, the mean ice drift velocity between
a SAR image pair can be computed by dividing by the SAR acquisition time difference. Mean
velocity is a useful value for example in ice model validation and assimilation. The mean
ice velocity can be computed from the ice model ice drift velocities by means of numerical
integration.

Other useful quantities are divergence, curl and shear, and quantities derived from these.
Divergence D(F) of a vector field F' = (dr,dc) is defined as

D(F)=V-F. (12)

dr and dc are the motion in row and column directions. A simple discrete estimate for divergence
D at location (i) is
D(F)=3[dr(i+1,j)—dr(i—1,j)+ (13)
de(i,j+1)—dc(i,j—1)].
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The divergence (blue) and convergence (red) for the ice motion example in Fig. 4 are also shown
in the vector field part of the figure.
Curl C of a vector field F' is

C(F)=V x F. (14)
And the corresponding discrete estimate for curl at (i,j) is

C(F)=1[dc(i+1,j)—de(i—1,5)—

dr(i,j+1)+dr(i,j—1)]. =

The direction of the curl vector is the direction of the normal of the vector field, and the sign of
the curl indicates the direction (clockwise or counter-clockwise).
Shear S for a vector F field is

dde  ddr\* dde  ddr\*

F)= _——— . 1
S(F) \/<8c 8r>+<8r 80) (16)
In a discrete estimate, we replace the partial derivatives in Eq. 16 as follows:

Ode 1 . o

Do = glde(ig —1) —de(i,j+1)] (17)
odr 1 , . . .

W:ﬂdr(l—l?])—dr(l—ﬂﬂ)] (18)
dde 1 ) . . .

W:§[dc(z—1,j)—dc(z+1,])] (19)
odr 1 . .
%:§[d7’(%]—1)—d7”(%]+1)]- (20)

After computing the discrete estimates for divergence and shear, the total deformation can
then be computed as

Dp(F)=+/52+D2. Q1)
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One practical application utilizing the ice drift estimation is locating fast ice. This can be
done by finding the areas, where practically no ice motion has occurred within a relatively long
time period. In the Baltic Sea a suitable period for fast ice detection is two weeks or longer.
An example of a two-week cumulative ice motion magnitude in the Baltic Sea can be seen in
Fig. 5, fast ice areas can be distinguished from this by applying a threshold, and labeling all the
areas with a cumulative ice motion magnitude below the threshold as fast ice.

Some of the areas where ice compression occur can also be estimated based on ice deforma-
tion indicators based on SAR ice motion, and these indicators are very useful in validation of
ice models trying to forecast ice compression for ice navigation.

Some statistics of the measures based on estimated ice motion can also be used to get at least
some qualitative information on the ice thickness. From the total ice deformation computed
over e.g. a period of two weeks, we can locate the areas of high deformation, which typically
include thicker ice than areas of lower deformation.

One feature derived from the ice drift is the ice drift ratio, denoted by Rjs at each grid
position:

tn tn
Rur(rie) =Y _Ifi(r,0)l/1)_fi(r.c)l- (22)

i=to i=to

In the equation f;(r,c) is the ice motion vector at location (r,c) at the moment 4, in practice the
moment describes the drift between two adjacent SAR images. The sums are computed over
the motion vectors from SAR image pairs during a certain time period, e.g. one week or two
weeks. The sum in the numerator is the sum of all the drift magnitudes during the time period,
and the sum in the denominator is the absolute value of the cumulative motion. R,y is typically
higher in the areas of thicker ice and lower in the areas of thinner ice. This can be explained
such that in the areas where this ratio is higher, the motion has not been into a certain direction,
but the motion direction has been oscillating, and in the areas of low ratio the motion has been
more into one direction. In the fast ice areas (black areas in Fig. 6) the ice thickness can quite
accurately be estimated based on a thermodynamic ice model (Launiainen and Cheng, 1998),
and if we also get a reliable ice thickness distribution from an ice model, we then can give
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some ice thickness estimates over the drift ice areas based on the drift statistics described. The
deficiency of utilization of this kind of statistics is that it requires data over a time period of
some weeks, and thus can not take into account faster temporal ice dynamics. This information
can for example be used to improve the initial ice thickness fields in an ice thickness estimation
algorithm based on thermodynamic ice model and SAR data (Karvonen et al., 2008a,b). In Fig.
6 the total ice deformation, ice drift ratio Rj;, and the mean level ice thickness (from FMI ice
chart based on ice analysis from multiple data sources) for March 17, 2011 as an example is
given. The thinner ice areas roughly correspond to the areas where the total deformation and
the drift ratio are smaller, excluding the fast ice areas.

The main uses for the Baltic Sea ice drift estimates will be the ice classification algorithms
(ice thickness, ice type classification), validation of ice models, and data assimilation into ice
models.

6 Validation

During the 2011 validation period, i.e. from March 1 to April 26, 2011, totally 209 SAR-based
ice motion estimates computed for the common areas of SAR image pairs with a temporal
difference were used in the validation. 169 of these were classified to short drift category (buoy
motion less than 500m) and 40 measurements to long drift category (the rest of the data). The
buoy trajectories during the test period are shown in Fig. 7.

The buoy locations were transmitted only once an hour, and the temporally nearest buoy
locations to the SAR acquisition times were used in the comparison. This temporal inaccuracy
naturally produced some inaccuracies. The scaled quality ()5 for all the long drift data was
two. For the short drift data ()5 varied in the interval 2—4. For the short drift data, only the
motion magnitude was evaluated, because in short motion estimates the SAR registration errors
can cause large relative errors and defining the direction can become ambiguous. Also for short
motion when computing motion in pixels the direction is highly quantized increasing the error.
For example, if the estimated drift is one pixel, it can be only in four directions (left, right,
up, down) and thus the direction is quantized into four angles. For the long drift data both the
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magnitude and direction were combined. The validation results are shown in Figures 8-10.
The coefficient of determination, R? for the long drift data magnitude was 0.55 (with one
obvious outlier removed, the outlier buoy motion is more than theoretically possible to detect
using the applied algorithm parameters i.e. about 18.1 km in diagonal direction), and the mean
absolute direction difference was 15.8 degrees. For the short drift data we computed the number
of cases where the buoy motion was over 1000m, i.e. the magnitude error is already rather large
(over 500m) and the estimated motion is short (i.e. less than 500m), this number was 11 of the
168 samples i.e. 6.5 %. The mean absolute direction difference for the short motion was 75.8
degrees. Some computed error measures for the two cases are tabulated in tables 1 and 2.

Table 1. Long motion error statistics, the magnitude errors (except the RMSE) are in meters.
table

Quantity Llerr. | MSE | RMSE | bias
Magnitude 847 1333 | 0.15 | -470
Angle 15.8° | 21.3° - -

Table 2. Short motion magnitude error statistics (the errors are in meters).

Quality @, || Samples | L1 err. | MSE | bias
2 139 842 1320 | 790
3 24 144 178 | 130
4 6 326 368 | 320

We also computed the L; error and mean square error (MSE) for the long motion magni-
tude and angle, and for the short motion magnitude for each of the detected quality classes. In
the long motion case there was only one quality class (Qs =2). We also computed the bias
(estimated magnitude -buoy magnitude), and it can be seen that the long magnitudes are un-
derestimated and the short magnitudes are overestimated by the algorithm. The relative mean
square error (RMSE) for the long motion magnitude was 0.15 and for the short motion mag-
nitude 0.49. The direction in the long motion case was estimated rather well. In comparison
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to visual interpretation for some image pairs, the motion estimated by the algorithm seemed to
correspond to the visual interpretation.

For the small drift data the magnitude mean absolute error was 842m for the data with the
scaled quality Qs =2 (139 samples), 144m for the data with Qs = 3 (24 samples), and 326m
for the data with Qs =4 ( 6 samples). It seems based on this small data set that the estimates
are better for () higher than 2 gives better estimates, but the amount of data is still too small
to make final conclusions on this. In general the products show that the SAR-based ice drift
estimates give useful estimates of the ice drift, especially the direction of the drift is estimated
well. However, there exist some relatively large errors. We have not yet studied the locations
of the erroneous measurements, but we assume them to be located close to edges of large drift
and small drift areas. It can also be expected that the errors for the short drift data are higher,
because the relative errors due to e.g. image pair registration and the direction quantization
become larger. This can be seen especially in the value of the RMSE. Because the long drift
directions are estimated rather well, and also it is rather well estimated whether the drift mag-
nitude is short or long, these ice drift estimates are useful in validating ice models, especially
after a visual inspection of the drift estimate data and the SAR images in parallel before the
validation process, and leaving out the data which possibly does not correspond to the visual
interpretation. We have also shown that this kind of data can successfully be used in improving
SAR-based ice classification algorithms (locating fast ice and getting information on the degree
of deformation).

7 Conclusions

conclusions

We have developed an operational SAR-based sea ice drift algorithm, product generation and
delivery chain at FMI. The products have been generated and delivered operationally during one
Baltic Sea ice season, and also been validated against some buoy measurements. The algorithm
had been in test use already in the previous ice season 2009-2010.

The algorithm produces reasonable values compared to the validation data from buoys. How-
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ever, the validation data is currently only for the Gulf of Bothnia area, and no validation data
for the Gulf of Finland exist. The ice drift direction is relatively well estimated for the long ice
motion case, the accuracy in the magnitude is worse. For the short motion case, the estimated
motion is also rather short, but the relative errors are rather high. The algorithm also reliably
locates the areas where the ice is moving and the areas of static ice. This data can be used se-
lectively in ice model validation. The data has not been used in data assimilation yet, but this is
one potential application for the data. According to our experience, one very fruitful application
for this data are SAR algorithms estimating the degree of ice deformation and locating fast ice,
based on ice drift statistics for a periods ranging from one week to a few weeks.

The algorithm works well for SAR data in cold weather conditions. In the melting season,
the ice cover gets wet and SAR backscattering is attenuated by the wet snow cover, and the sea
ice feature detection becomes more difficult. This leads to poorer ice drift estimation algorithm
performance in the wet snow conditions.

One restriction of the algorithm is related to the image size and resolution. Because the pixel
size in the low resolution is 1.6km and the window size is 16x16 pixels, it is not possible to
correctly estimate motions larger than about 12.8km in row or column directions, and /2 x
12.8km=18.1 km in diagonal directions. In practice this limit is even smaller, because at the
window edges the Gaussian window multiplication reduces the signal information content. This
parametrization restricts the maximal allowed temporal difference between the two SAR images
in the image pair. However, the window sizes and resolution are also user-defined parameters
and easy to change, if e.g. longer allowed temporal differences between a SAR image pair
acquisitions are required. However, the temporal difference can not be increased very much,
because with long temporal differences, more ice deformation occur and the correlating features
are lost.

Future improvements for the algorithm will be better taking into account ice rotations. In our
coastal radar ice tracking algorithm (Karvonen , 2012), which is based on a similar phase corre-
lation approach in two resolutions, we have taken this into account by computing the correlation
for windows slightly rotated with respect to each other to the two directions in the low resolu-
tion, and using these rotations in the high resolution motion candidates, i.e. it is not necessary to
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compute multiple correlations for different rotations in the high resolution. We are also going to
adapt some image filtering techniques we have find useful in the coastal radar image ice track-
ing. Such techniques are computing the motion estimates only for locations with enough corner
points, and removing small details by spatial edge preserving filtering techniques. Requiring
corners reduces the errors caused by similarities along linear edges, and filtering of small details
reduces the errors caused by these small features, which can be either SAR noise or actual small
scale ice features. Small scale ice features can cause errors, because it is more likely that there
exist multiple such features, and small scale features also typically change faster than larger
ones as the ice moves. We are also studying ways how these features can be taken into account
in quality factor values. Currently we can say that the quality is increased as a function of
increased number of corner points, and decreased as a function of increased small scale details.
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Fig. 1. The low resolution part of the algorithm. The processing after down-sampling is shown only for
one window pair in the diagram. In the algorithm this is performed for each window pair with a grid step
of (W/2,W/2) low resolution pixels.
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Fig. 2. The high resolution part of the algorithm. The processing is shown here only for one window pair.
In the algorithm this is performed for each window pair with a grid step of (W/2,W/2) high resolution
pixels.
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Fig. 3. SAR images April 3, 2011 09:17:34 UTC (Envisat ASAR, ©ESA, left) and April 3, 2011
16:12:42 UTC (Radarsat-2, ©MDA, right) over the Gulf of Bothnia.
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Fig. 4. The SAR images of Fig. 3 after co-registration and land masking (ASAR ©ESA, upper left, and
Radarsat-2 ©MDA, upper middle), and the located edges indicating the edged areas (edges shown in
black, upper right). Ice motion vector field between the SAR acquisitions April 3, 2011 09:17:34 UTC
and April 3, 2011 16:12:42 UTC over the Gulf of Bothnia (lower left), for better visibility, the motion
vectors are shown in a coarser grid than the nominal resolution and their lengths are scaled, the longest
vector corresponds to a motion of 2.83 km, the maximum motion in both row and column directions was
21 100m pixels. The scaled phase correlation (brighfer tone indicates higher values, lower middle), and
the scaled quality index Q5 (brighter tone indicates higher values, right).



Fig. 5. Mean ice motion magnitude for two weeks before March 5, 2010 based on our SAR ice drift
algorithm. Bright tones represent larger motion. The fast ice areas can be derived from this data. The
bright areas in the southern parts of the Baltic Sea are open water, open water has been masked off, using
the method presented in (Karvonen et al., 2005) and set white in the figure.
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Fig. 6. Ice total deformation (left), ice motion ratio (middle), and the mean level ice thickness on March
17 2011. The total deformation and ice motion ratio are computed over two weeks before March 17, and
the brighter tones indicate higher values.
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Fig. 7. Buoy tracks shown with different colors for each buoy.
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Fig. 8. Magnitude of the buoy motion and estimated motion for the long drift data in meters. One outlier
with a buoy motion larger than the maximum algorithm detecting capability is located outside of the

illustrated range.

26



Direction

o, . A
300 <
250} . 1

SAR motion
—_ [g]
w o
S S
»

00f . ]
sof B2 :
0 &2 N 1

0 50 100 150 200 250 300 350
Buoy motion

Fig. 9. Direction of the buoy motion and the estimated motion in degrees. The values correspond very
well to each other. The high values of SAR drift directions for the low buoy drift directions are actually
quite close to the buoy drift directions, because the direction 0 degrees (to north) corresponds to the value
360 degrees.
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Fig. 10. Magnitude of the buoy drift and estimated ice drift for the short drift data in meters. The different
quality classes are indicated by colors (s =2 — red, Qs =3 — green, Qs =4 — blue).
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