Response to Balu Nadiga’s comments on “Chaotic variability of the
meridional overturning circulation on subannual to interannual
timescales”

February 27, 2013

First we would like to thank Balu Nadiga for his efforts and his constructive comments. Below we
provide a point by point response to his comments and concerns and how we intend to address them
in a revised version of the paper. Balu Nadiga’s original comments are provided in bold fonts followed
by our comments in normal fonts.

1. One of the main restrictions of this study is the use of constant buoyancy flux
to force ocean circulation. This is particularly so at eddy-permitting resolutions since-
mesoscale eddies can significantly affect buoyancy forcing (as noted by the authors). As
may be expected, the problem of forcing ocean-only circulation is a common one and
has been addressed in numerous publications, as e.g., in Griffies et al., Ocean Modelling
26 (2009) 1-46. A seemingly accepted protocol is the use of bulk formulae to compute
the fluxes using the evolving ocean state and specified atmospheric fields. Notwithstand-
ing the fact that the authors note that their estimate is to considered a lower bound,
the point is that the use of constant buoyancy flux consistently underestimates chaotic
variability, and this underestimation would have been mitigated with the use of the ‘ac-
cepted’ bulk formulae method to compute buoyancy fluxes. Given this limitation, I'd be
cautious about over-interpreting the results.

We realize that our model description was not clear enough. We did not use constant buoyancy
fluxes in our experiments. Instead NEMO uses the bulk formulae method suggested by Balu Nadiga.
In the revised version of the paper this will be clarified.

2. I would have additionally considered differences in the variability of MOC between,
say, B025 and B100 to come up with a second estimate of mesoscale related variability
of MOC. This would provide a consistency check.

This is an interesting idea which we have followed up. Based on the difference between the variance
of the MOC in the 1/4° and the 1° models we have calculated the standard deviation of the additional
variability that is occurring in the 1/4° model compared to the 1° version. We illustrate this for the
Atlantic in figure 1. When we compare the variability obtained from the difference in variance with
the “chaotic” MOC variability shown in figure 13 of our paper we can see that the variability patterns
look similar in both cases. However, it is also obvious that the values are higher than the ones we
report in our paper. In our opinion this is not surprising. Looking at the difference between two
model passes provides an estimate of the MOC component that cannot directly be predicted from
the forcing. However, when we increase the model resolution from 1° to 1/4° not all the additional
variability we see for 1/4° has to be unpredictable. Some of it will be readily predictable from the
forcing, i.e. the overall MOC variability increases not just because of “chaotic” processes such as
ocean mesoscale eddies but it can also increase as ocean processes such as wave processes or western
boundary currents are better resolved. In the revised version we suggest to add a few paragraphs and
a figure similar to figure 1 to illustrate this point.
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Figure 1: Standard deviations of the Atlantic MOC' in the 1/4° (top) and 1° versions of the model.
The standard deviation of the additional variability occurring in the 1/4° model is shown in the bottom

panel. It is calculated according to /vargos—vary

3. Given the sub-annual to interannual focus, I would have devoted more effort to
analyzing the barotropic component of MOC variability. In some high resolution N.
Atlantic experiments I have done, I see that they can dominate MOC variability at high
frequencies.

Even on the short timescales of interest here it would not be enough to look at the barotropic com-
ponents of the MOC variability to understand the precise nature of the chaotic MOC variability. We
have actually started to look at the chaotic MOC variability in the different components of the MOC
(barotropic, geostrophic, Ekman). The chaotic variability found in barotropic component actually
exceeds that found for the MOC. However, the same is also true for the geostropic component. This
is not unexpected given that that there is compensation between the barotropic and the geostrophic
components of the MOC (e.g. Kanzow et al., 2007). We agree that looking at the different components
of the chaotic MOC variability is of interest. However, as we say in the discussion we feel that this
would be a separate study in its own right. Given the length of our manuscript we feel that this should
be left for a future study. The main goal of our paper is to provide an estimate of the amplitude of the
initial condition dependent (i.e. “chaotic”) MOC variability and to what extent the MOC variability
is a predictable response to surface forcing.

4. I found the part on the conceptual model not useful.
When we presented our results at conferences or during seminars the audience found the box-model

a useful way of illustrating the idea behind the work. This was our motivation for including it in this
manuscript. We still think that the box model makes the later results obtained with the NEMO model



more accessible and therefore believe that it should be kept in a revised version of the manuscript.
However, as detailed below we would make some modifications to the box model in response to Balu
Nadiga’s comments.

4a. I strongly suspect that the sqrt(2) factor that the authors find is related to the
fact that the two ocean noise processes representative of mesoscale activity appear only
as a difference in the conceptual model. For example, the variance of the sum (or differ-
ence as in the present case) of two normally distributed independent samples is the sum
of variances of the two samples. However, the authors do not provide enough detail in
this context to say for certain. In any case, Eq. 6 is sufficient to make the point.

We agree that the factor of v/2 only appears as a difference in the box model. This was the actual
motivation for introducing the box-model in the first place as in our opinion it illustrates nicely that by
just taking the difference between two model passes (both subject to a noise of unknown amplitude as
is the case in the our NEMO simulations) one is likely to overestimate the amplitude of the “chaotic”
variability. This happens because the variance of two independent samples is the sum of the variances
of the two samples. In the revised version we will make sure that we explain this more carefully.

4b. The conceptual model is somewhat inappropriate in that the model is not capable
of exhibiting chaos and sensitive dependence on initial conditions (IC). Consequently, the
fact that the ICs are different hardly matters and the difference in q (dq) related to the
externally-input ‘ocean noise’

Balu Nadiga is right when he says that the “ocean noise” is externally input without any de-
pendence on initial conditions. For the revised paper we suggest to replace the white “ocean noise” (1,
(s with a noise that depends on the actual values values of p; and ps. This new noise is obtained using
the logistic equation f(z) = rz(1—z). Depending on the value of r the iteration of f(x) leads to either
periodic or non-periodic series of numbers between 0 and 1 (if 0 < r < 4). We set the parameter r to
a value where the Ljapunov exponent is positive, i.e. where the iteration of the logistic equation does
not lead to a periodic series of numbers. The ocean noise (; 2 is calculated by iterating the logistic
equation 100 times:

Gi(t) = f1P1(t) — 0.5, (1)
Go(t) = f1%(z2(t)) — 0.5, (2)
The values of z1, 2 depend on the value of p; and py according to
z1(t) = 0.5 + p1(t)/20, 3)
x2(t) = 0.5 + pa(t)/20. (4)

The parameter r is chosen so that the Ljapunov exponent is positive, i.e. where the iteration of
the logistic equation does not lead to a periodic series of numbers. The values of z; and x2 at the end
of the iteration are then scaled and added to p; and po:

p1 = p1 + 5z, (5)
p2 = p2 + dx2. (6)

In a revised version of the paper we would replace the old figure 4 with a new figure showing the
box-model results with the new formulation (figure 2 below) and would modify the text accordingly.

Even with the “chaotic” component now depending on the logistic equation there is still a factor
of approximately v/2 between the amplitudes of the “chaotic” variability in one simulation and in the
“chaotic” variability inferred by taking the difference between two model passes. The case shown in
the figure 2 is just one example but we have computed many other realisations where we added small
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Figure 2: Results from box model with ocean noise obtained using the logistic equation. Top: two
model passes without “chaotic” ocean variability (spinup: blue, second pass: green). Middle: two
model passes with “chaotic” ocean variability (blue: spinup, green: second pass). Bottom: differences
between the spinups (blue), the second passes (green), and between the spinup and the second pass for
the case with added “chaotic” ocean variability (red).

perturbations € to x1 and x i.e.

z1(t) = 0.5+ € + p1(t)/20, (7)
z2(t) = 0.5 + € + pa(t)/20. (8)

4c. Forcing is missing in the prognostic equations of the Stommel-like 2 box model

This was an oversight and we will add the forcing term in the equation. In the calculations the
surface forcing was always included.

5. The authors do not attempt to explain the non-zero level of ‘chaotic’ variability in
the A100/B100 experiments. If one should attempt this, the results of the experiments
may suggest that ‘mesoscale and smaller scale processes’ may not be the only contribu-
tors to chaotic variability. And that subject to the same forcing, the ocean may develop
large-scale, quasi-periodic or chaotic oscillations

We agree that eddies are not the only contributors and also in response to a comment made by
reviewer 2 we will make this clear in the revised version of the paper. We suggest to include a figure
illustrating the amplitude of the “chaotic” MOC variability in the experiments A100/B100 and explain
the differences with the results found for A025/B025:
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Figure 3: Chaotic MOC variability in the Atlantic for the 1° model. a) Total chaotic MOC variability,
b) subannual chaotic MOC variability c) interannual chaotic MOC variability.
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Figure 4: As above but for Indo-Pacific.

In contrast to A025/B025 the largest contribution to the “chaotic” MOC variability away from
the equatorial region is found on interannual timescales. The chaotic MOC variability at the Equator
is confined to the subannual timescales for both the low and high-resolution versions of the model.
The overall chaotic MOC variability is smaller in A100/B100 and our results suggest that almost all
the variability increase found for A025/B025 occurs on subannual timescales. The amplitude of the



interannual variability is comparable for both resolutions with the low resolution even having a higher
interannual ”chaotic” MOC variability in some regions (e.g. north of about 30°N in the Atlantic, and
in the deep Indo-Pacific between 10-25°N.

In the revised paper we will discuss the differences and similarities between A100/B100 and
A025/B025 in more detail. Main additions will be to stress that most of the chaotic variability
increase in A025/B025 is confined to subannual timescales. We will also revise our statement in the
discussion where we suggest that the impact of mesoscale ocean eddies affects the chaotic MOC vari-
ability on interannual timescales. Even though the chaotic MOC variability on interannual timescales
is higher in places for A025/B025 (especially around 1000m depth for many latitudes of the Atlantic),
the picture is not as clear as our previous statements suggest. This will be rectified in the revised paper.

6. The article says that the chaotic component of climate variability has no pre-
dictability (e.g., beginning of ‘Introduction’). To avoid confusion, it may be best to
further qualify this. Something along the lines of ‘beyond a decorrelation time or a time
related to doubling of finite-sized errors...’

Point taken. This will be rephrased in the revised version of our paper.
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