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Abstract 

In the concept of full development, the sea wave spectrum is regarded as a nearly stationary 

solution of the wave transfer equation, where source and sink terms should be in balance, with 

respect to both energy and momentum. Using a two-dimensional empirical sea wave spectral 

model at full development, this paper performs an assessment of the compatibility of the 

energy and momentum budgets of sea waves over the whole spectral range. Among the 

various combinations of model functions for wave breaking and wind source terms tested, no 

one is found to fulfill simultaneously the energy and momentum balance of the transfer 

equation. Based on experimental and theoretical grounds, wave breaking is known to 10 

contribute to frequency downshift of a narrow-banded wave spectrum, when the modulational 

instability is combined with wave breaking. On those grounds, it is assumed that, in addition 

to dissipation, wave breaking produces a spectral energy flux directed toward low 

wavenumbers. I show that it is then possible to remove the energy and momentum budget 

inconsistency, and correlatively the required strength of this spectral flux is estimated. 

Assuming such a downward spectral flux permits to fulfill both energy and momentum 

balance conditions. Meanwhile, the consistency between the transfer equation and empirical 

spectra, estimated by means of a cost function K, is either improved or slightly reduced, 

depending upon the wave breaking and wind source terms chosen. Other tests are performed 

in which it is further assumed that wave breaking would also be associated with azimuthal 20 

diffusion of the spectral energy. This would correlatively reduce the required downward 

spectral flux by a factor of up to 5, although it would not be able to remove it entirely. 

 

 

I. Introduction 
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The ocean wave prediction models are based on solving the energy conservation equation 

(Gelci et al., 1957; WAMDI, 1988; Banner and Morison, 2010). The evolution of the spectral 

wave-energy density is understood as being governed by the combination of several different 

physical processes: the propagation of energy, the energy input by wind forcing, the 30 

dissipation of energy through viscosity and wave breaking, and the exchange of energy 

between different wave components interacting weakly among themselves. An abundant 

literature has been devoted to finding relevant parameterizations for the different source terms 

of the transport equation. These have been incorporated efficiently into the wave prediction 

models, producing quite satisfactory operational results. In that context, a fully developed 

ocean wave spectrum would be describable as a nearly stationary solution, in which the 

different terms of the energy transfer equation tend to balance each other, leading to greatly 

reduced wave evolution. It should be stressed however that the concept of full development is 

just a convenient vehicle for a mental experiment, but is not expected to describe a real 

situation since winds are always non stationary and non uniform.  40 

In the context of a stationary (or quasi-stationary) state describing a fully developed sea, this 

paper explores the consistency of the energy and momentum budgets of the sea wave system. 

For this purpose, in section II I will perform a test of the consistency of the integral energy 

and momentum equations in the framework of current parameterizations of the source and 

sink terms of the transport equation, and standard models of the fully developed directional 

spectrum. This will require taking into account not only the low wavenumber range for which 

the sea wave spectra are deduced from measurements by operational buoys, but also the high 

wavenumber range. To describe this high wavenumber region of the sea wave spectrum, 

empirical spectra were built based on other means, such as wave tank data (e.g. Jähne and 

Riemer, 1990), measurements based on arrays of height gauges (Donelan et al., 1985), 50 

stereophotogrammetric analysis (Banner et al., 1989), or radar reflectivity measurements at 

different radio frequencies. When the whole spectral range is considered, it will be shown that 

standard parameterization of the source terms does not allow to satisfy simultaneously the 

energy and momentum integral transport equations. In addition to producing wave 

dissipation, another effect of wave breaking will then be proposed in section III, involving 

downward flux of spectral energy in the wavenumber space. It will be shown that within this 

assumption it is possible to solve the energy and momentum budget inconsistency, and 

correlatively the required strength of this downward spectral flux will be estimated.   

 

II. Energy and momentum budget of the sea wave evolution spectrum 60 
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II.1. Spectral evolution equations integrated over wavenumber 

 Let F(k,ϕ) be the surface elevation spectrum of sea waves as a function of wavenumber 

magnitude k and azimuth ϕ. The evolution of F(k,ϕ) is governed by the basic transport 

equation involving a superposition of source terms, and is usually written in the following 

manner: 

 

!F(k,! )
!t

+ cg."F =
!F
!t

#

$
%

&

'
(
w

+
!F
!t

#

$
%

&

'
(
visc

+
!F
!t

#

$
%

&

'
(
br

+
!F
!t

#

$
%

&

'
(
nl

   (1a) 

 

where cg is wave group velocity, !F /!t( )w represents the wind input term, !F /!t( )visc  70 

accounts for the damping of capillary waves due to water viscosity, but also includes a swell 

dissipation term related to friction with the atmosphere, as reported by several studies 

(Tolman, 2002; Ardhuin et al., 2009), as will be discussed below. The other terms of the right 

hand side of equation (1a) are respectively the wave breaking dissipation term, and the 

resonant nonlinear wave-wave interaction term.  

The case of a fully developed sea corresponds to a quasi-stationary situation in the open ocean 

where the wind has blown steadily over a sufficient time that the wave spectral density does 

not evolve any more. In that ideal case, for any wavenumber k and azimuth ϕ, both !F  and 

!F(k,! ) /!t  are expected to be equal to zero, and the four source terms of the right hand side 

of equation (1a) balance each other, yielding: 80 
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In reality, the existence of a fully developed sea describable as a perfect stationary state has 

not been clearly established, and sea waves might still be growing for an old sea, although the 

net growth has then to be weak. For example, the input and dissipation integrated energy 

source terms obtained by Banner and Morison (2010) cancel out almost perfectly as the 

asymptotic state is approached, as can be seen from their Figure 4b, where the total integrated 

source term obtained for the oldest seas is reduced to less than 5% of the input and dissipation 

source terms taken separately.  90 
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Instead of equation (1b), it is liable to express the transport equation in terms of the wave 

energy spectrum Φ(k,ϕ) that is related to F through:   

 

Φ(k,ϕ)=ρ(ω2/k)F(k,ϕ)        (2) 

 

It is also possible to express it in terms of the momentum spectrum M(k,ϕ)=ρωF(k,ϕ) (k/k). 

In those expressions ρ is water density and ω is wave angular velocity. The momentum M 

carried by the waves is a vector quantity, but if we limit ourselves to fully developed 

situations, symmetry of the 2D-spectrum implies that only the alongwind component of the 

momentum will be different from zero after integration over wavenumber. Taking ϕ=0 for the 100 

wind direction, that component may be written, at wavenumber (k,ϕ) : 

 

M(k,ϕ)= ρωF(k,ϕ)cosϕ        (3) 

 

For a fully developed sea (!F(k,! ) /!t " 0 ), integrating the transport equation for the wave 

energy spectrum over wavenumber, we obtain:  
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The last term of the right-hand side of equation (4), which represents the nonlinear transfer of 110 

energy by resonant wave-wave interactions is described classically as resulting from four-

wave interactions (Hasselmann, 1962, 1963) or three-wave interactions (Valenzuela and 

Laing, 1972).  In a general discussion about interaction symmetries involving wave particle 

analogy, Hasselmann et al. (1994) report that conservation of energy and conservation of 

momentum both apply for all wave-wave resonant interaction processes, including four-wave 

and three-wave interactions (this is not the case for wave action conservation, which holds for 

four-wave but not three-wave interactions). As a consequence, after integration over the 

wavenumber space the energy and momentum budget of resonant nonlinear interactions is 

zero. Therefore, the last term of the right hand side of equation (4) is equal to zero, and 

similarly the same property applies for the momentum transport equation. One then gets both 120 

equations:  
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II.2. Tests based on standard source terms for fully developed seas: 

In order to check the integral energy and momentum budgets of equations (5a) and (5b), it is 

necessary to quantify the different source terms involving wind input, viscosity and wave 

breaking. For each of them, we may define the rate of evolution of the sea wave spectrum 130 

βsub(k,ϕ) according to 

 

! 

"sub (k,#) =
1

F(k,#)
$F(k,#)

$t
% 

& 
' 

( 

) 
* 
sub     (6) 

where the subscript “sub” refers to the type of source term involved (“visc” for viscous 

damping, “w” for wind input or “br” for wave breaking).  

As concerns the wind input and wave breaking terms, they have been the subjects of 

numerous parameterizations in the literature. I tested different combinations of wind input and 

wave breaking models. Basic types of models for source terms will be described below 

(sections II.2.b and II.2.c), and will be used to check the energy and momentum budgets. 

Although not exhaustive, these illustrate the main assumptions taken by standard models. 140 

Other source functions tested did not lead to qualitatively different conclusions, and did not 

allow removing the systematic trends obtained and described below. 

 

II.2.a. Viscous damping term: 

The viscous damping term is expressed as: 

 

!visc = !capil +!swell        (7) 

 

In equation (7), βcapil is the damping term of capillary waves due to the viscosity of water, and 

is taken from Lamb (1932) as  βcapil =-4νwk2, where νw=1.3.10-6m2/s is the kinematic viscosity 150 
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of water. According to Dore (1978), however, the viscosity of the air gives a stronger 

dissipation for wavelength larger than 0.85m. Swell dissipation was observed by Tolman 

(2002) and Ardhuin et al. (2009), who found it to be consistent with the effects of friction 

with the atmosphere. The term βswell in equation (7) accounts for such damping of swells by 

friction with the air. Ardhuin et al. (2010) propose the following expression for this swell 

dissipation term: 
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In these expressions, Re=4uorbaorb/νa is the boundary Reynolds number, where uorb and aorb are 160 

the significant surface orbital velocity and displacement amplitudes, and νa=14.10-6m2/s is the 

air viscosity. Following Ardhuin et al. (2010), the critical Reynolds number value Rec is 

estimated as a function of significant wave height Hs according to Rec=(2.105m)/Hs , and the 

coefficient fe is taken as: 

fe = 0.8 0.003+ (0.015! 0.018cos! )
u*
uorb
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II.2.b. Wind input source terms: 

Among the numerous parameterizations for the atmospheric wind-related growth rate βw 

found in the literature, some are based on the friction velocity u*, others are based on the 

wind velocity at a given height, and still others are based on the velocity at a height scaled 170 

with the wavelength. Plant(1982) proposed: 
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where c(k) is the wave phase speed, and ω is wave angular velocity.  
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On the basis on previous studies (Snyder et al., 1981; Komen et al., 1984), the  WAMDI 

group (1988), used a linear, rather than quadratic, dependence for βw for their third generation 

wave prediction model, 
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where ρa and ρw are air and water densities, respectively. 

Arguing that the appropriate reference wind is rather the wind at some height above the 

roughness elements that is related to their scale, Donelan and Pierson(1987) proposed a 

parameterization based upon the wind speed at a height π/k : 
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Following previous authors (Belcher and Hunt, 1993, Hara and Belcher, 2002), Kukulka and 

Hara (2005) proposed a wind input wave growth formulation under the sheltering assumption. 

According to this approach, the wave-induced stress of longer waves reduces the turbulent 190 

stress felt by shorter waves. The resulting βw can be expressed as follows 
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where hβ(ϕ)=[max(cosϕ,0)]2 , cβ(k) is a coefficient which depends upon the boundary 

Reynolds number Re, and τo=ρau*2 is the total momentum flux.  

 

In the capillary-gravity range waves are steep and they may result in modification of the 

airflow which will reduce the momentum flux from air to water. This phenomenon was 

studied by Janssen (1991) who proposed a quasi-linear theory resulting in an effective high 200 

wave number cutoff. More recently, Banner and Morison (2010) and Ardhuin et al. (2010) 

proposed a wave prediction model based on this approach, including slight tuning 

modifications. The parameterization of the wind input term βw based on the works by Janssen 

(1991), Banner and Morison (2010), and Ardhuin et al. (2010), will be referred to as the JBA 

model, and is described in more details in Appendix A.  
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I tested successively those 5 different wind input source terms, taken respectively from Plant 

(1982), Komen et al. (1984), Donelan and Pierson (1987), Kukulka and Hara (2005), and JBA 

model. In all cases the total atmospheric term (including wind input and swell dissipation) 

was set to 0 for cosϕ<0.  210 

 

II.2.c. Wave breaking source terms: 

Several approaches have been used for modeling βbr. The first one considers that, even though 

wave breaking is a nonlinear process, the phenomenon applied to the sea waves is weak in the 

mean, and as a consequence it leads to a quasi-linear behavior of the dissipation 
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respect to wave spectrum Φ (Hasselmann, 1974). This approach was followed by Komen et 

al. (1984), who proposed: 
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where γK is a non-dimensional constant, and <ω> is mean angular frequency.  

Another type of approach was proposed by Phillips (1985), who explored the consequences of 

the assumption that the processes of energy input from the wind, spectral flux divergence due 

to resonant nonlinear interactions, and loss by breaking are all important in the equilibrium 

range. These considerations led him to propose the following formulation for the variation of 

the wave action density N(k,ϕ)=(g/ω)F(k,ϕ) due to wave breaking: 
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where g is acceleration of gravity, B(k,ϕ)=k4F(k,ϕ) is the saturation spectrum, and a is a non-

dimensional constant. In terms of βbr, this can be rewritten as 
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with 

! 

PP (k,") =#k 8F 2(k,")       (16b) 

 

and γP is a non-dimensional constant. 

 240 

More recently, due to the observed strong threshold behaviour reported by Banner et al. 

(2002) for the wave breaking probability in the spectrum, threshold-based formulations for 

the breaking component of the dissipation term βbr were proposed (Banner and Morison, 

2010; Ardhuin et al., 2010). The model results closely reproduced the observed breaking 

wave properties and wave spectral evolution. Ardhuin et al.’s (2010) approach will be 

expressed here as  

 

!br (k," ) = !#aPa (k," )       (17) 

 

where γa is a non-dimensional constant, and Pa(k,ϕ) is given in Appendix B. 250 

Similarly to what has been done for wind input source terms, I tested successively those 3 

different wave breaking source terms, taken respectively from Komen et al. (1984), Phillips 

(1985), and Ardhuin et al. (2010).  

 

II.2.d. Empirical sea wave spectral model 

In order to compute the integral quantities of equations (5a) and (5b), one needs to use a 

model for the sea wave spectrum based on observations. As concerns the omnidirectional 

spectrum, I used the empirical sea wave spectral model by Elfouhaily et al.(1997) for different 

conditions of wind speed, assuming fully developed situations. An advantage of this model is 

that it describes the wave spectrum over the whole range of wavenumbers from the spectral 260 

peak to capillary waves, on a purely empirical basis. Also, while this model was tuned on in 

situ observations of wave spectra performed both in ocean and in laboratory, it is also 

consistent with the optical mean square slope measurements by Cox and Munk (1954).  

As concerns the directional behavior of the spectrum, observations have shown that it exhibits 

distinct directionally bimodal peaks (Young et al. 1995; Long and Resio, 2007). Resio et al. 

(2011) have proposed wave-age dependent self-similar bi-modal model functions for the 

directional spreading consistent with recent observations. They showed that, with their model 

function, the nonlinear wave-wave interactions produce relatively constant fluxes of both 
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energy and momentum through the equilibrium range. For those reasons I used Resio et al.’s 

(2011) directional spreading model function, assuming full development. This spreading 270 

function was used up to wavenumber k= 25 kp, i. e. frequency f=5fp, where kp and fp are the 

peak wavenumber and frequency, which corresponds roughly to the domain where Resio et 

al.’s model was validated against data. For higher wavenumbers, most directional 

observations are based upon remote sensing techniques (radar or optical observations 

including Banner et al.’s (1989) stereo-photogrammetric analysis), and give essentially 

information about the centrosymmetric (or folded) spreading function. Although this 

approach is relevant for electromagnetic modelers, it is not appropriate here, since the 

transport equations written above must involve directional, instead of folded spectra, and 

some hypothesis needs to be used to obtain a directional spectrum. For wavenumbers above 

25kp, I used Elfouhaily’s folded spreading function.  Elfouhaily et al. define a “delta ratio” 280 

given by Δ(k)=(F(k,0)-F(k,π/2)/(F(k,0)+F(k,π/2)). Following Donelan et al. (1985), I assumed 

a directional spectrum given by an hyperbolic secant spreading function 

F(k,ϕ)=F(k,0)sech2(hϕ), and the value of h was adjusted in such a way that the resulting 

folded spectrum yields the delta ratio of  Elfouhaily et al.’s model.  

 

The momentum budget depends in a sensitive manner on the high wavenumber part of the 

spectrum, and it is therefore useful to estimate how much the momentum budget is sensitive 

to small errors in the high frequency part of the spectrum. For this purpose, tests were also 

performed using a composite spectrum where the model described above was replaced by 

Kudryavtsev et al.’s (2003)  directional spectrum for high wavenumbers (k≥25kp). Elfouhaily 290 

et al.’s (1997) spectrum in the high wavenumber range was designed by using only laboratory 

data, as well as  optical data at sea, purposefully excluding radar data. On the contrary 

Kudryavtsev et al.’s (2003) spectrum was essentially based on normalized radar cross section 

(NRCS) measurements at sea, and more recent measurements of radar derived anisotropy of 

the sea surface mean square slope (Hauser et al., 2008) were found to be reasonably well 

fitted by Kudryavtsev et al.’s (2003) spectrum. As an example, a comparison between the two 

model spectra can be seen in Figure 1 for a 10m/s wind speed. In order to make the 

comparison easier, the curvature spectra B(k,ϕ)=k4F(k,ϕ) are plotted, for two azimuthal 

directions ϕ=0 and ϕ=π/2.  

 300 

II.2.e. Energy and momentum budgets integrated over wavenumber 
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The wind input and wave breaking source terms described above, together with the viscous 

term (equation (7)) were applied to the empirical sea wave spectrum in order to check the 

energy and momentum budgets expressed in equations (5a) and (5b), which may be rewritten 
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The expressions for the wave breaking or wind input source terms given in sections II.2.b and 

II.2.c should be regarded as giving functional forms, but a fine tuning of their relative 310 

amplitudes might be needed in order to fulfill the energy and momentum balance equations 

(18a) and (18b). To perform this fine tuning of the relative amplitudes of the wind input and 

wave breaking source terms, I considered coefficient γ of the wave breaking (referred as γk, γp, 

or γb in equation (14a), (16a), or (17), respectively), as an adjustable coefficient.  Since both 

energy and momentum balance ((18a) and (18b)) must be fulfilled, there are indeed two ways 

to perform the tuning of the same coefficient γ.  
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 320 

where P(k,ϕ) is equal to Pk(k,ϕ), Pp(k,ϕ), or Pa(k,ϕ) according to whether equation (14a),  

(16a), or (17) is used. Of course, one expects both obtained values γ1 and γ2 to be close to 

each other, since they represent two estimates of the same quantity γ. Table 1 displays the 

ratio R=γ2/γ1 for the various combinations of the wind and breaking source terms described 

above. While the expected value of R is R=1, one can see that there is a considerable scatter 

between the values of R obtained, with a mean of R=3.5, and extreme values from 2.66 to 

5.11 depending on the functional form chosen for βw and βbr.  
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The computations of coefficients γ1 and γ2 depend not only on the functional forms of the 

source terms βw and βbr, but also on the assumed shape of the sea wave spectrum in the (k,ϕ) 

space. The ratio R (not shown) computed when replacing Resio et al.’s (2011) spreading 330 

function by other spreading functions (Elfouhaily et al., 1997; Donelan and Pierson, 1987; 

Banner, 1990) at low wavenumbers, did not allow to reduce the ratio R to a value close to 1.  

The ratio R was also computed with the composite model mentioned in section II.2.d, where 

the spectrum based on Elfouhaily et al. (1997) and Resio et al. (2011) is replaced by 

Kudryavtsev et al.’s (2003) spectrum at high wavenumbers. The results obtained with this 

composite spectral model are given in Table 2. It can be seen that the new ratio R is modified, 

but still remains within 35% of the values listed in Table 1 for each combination of the βw 

and βbr models. The smallest value for R (R=1.72) is obtained with Komen et al.’s (1984) 

model for βbr, WAMDI’s (1988) model for βw, and the composite spectral model used for 

Table 2. However, no combination of the current models of sea wave spectrum, wind input 340 

source term, and wave breaking source term, was indeed found to be able to produce a ratio R 

equal (or at least close) to 1. 

Assuming for example that the wave breaking coefficient γ (i. e., γk, γp, or γb of equations 

(14a), (16a), or (17)) is determined by the energy balance equation (i. e., γ=γ1), the preceding 

results indicate that the wave momentum removed from the waves by wave breaking and 

viscous dissipation is unable to balance the momentum brought by the wind (this would 

require γ=γ2 while instead γ=γ1<γ2). Thus, within the classical expressions for wave growth 

terms of wind input and wave breaking, and for fully developed situations, a proportion of 

about one half or more of the momentum brought by the wind to the waves would accumulate 

within the wave system. This is not a tenable assumption for a fully developed sea which is 350 

supposed to be nearly stationary.  

 

III. A modified formulation of the breaking source term restoring energy and 

momentum balance 

 

Due to the difficulty reported in the preceding section to fulfill both energy and momentum 

budgets, it appears that present parameterizations of the source terms are inconsistent with 

empirical spectral shapes. Does this mean that the chosen spectral shapes are unrealistic, or 

else that the source term parameterizations are unrealistic? It is unfortunately not possible to 

answer this question. However, the spectral models were built by direct confrontation to the 360 
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observations, taking advantage of numerous kinds of instruments (in situ as well as remote 

sensing data) operating in the various sea state conditions, and it would be uncomfortable to 

modify those purely observation-based wave spectra, just in order to conform to the energy 

and momentum budget requirements. In contrast, the source terms of the transport equation 

are quantities determined in a more indirect manner (and for that reason, as seen in section II, 

numerous different approaches have been followed to parameterize those source terms). In 

view of these considerations, in this paper I choose to consider the empirical spectra as the 

observational reference. Basically, a way to restore energy and momentum balance would be 

to add an extra source term at low wavenumbers, and/or to add an extra sink term at high 

wavenumbers, but obviously there is not a unique way to modify the source terms in order to 370 

fulfill energy and momentum balance, and also such a modification should not alter 

significantly the resulting sea wave spectrum.  

Among the source or sink terms, the one which is the least well established is the wave 

breaking term, because the processes represented by this unique term are indeed highly 

nonlinear, involving spilling of the crests of large gravity waves, formation and dissipation of 

whitecaps, spray, entrainment of air bubbles within the water upper layers, production of 

turbulence at shorter scales. Also, since the wave breaking events occurring near the steep 

crests are localized features in the spatial domain, duality of the spectral analysis implies that 

their signature cannot be local in the wavenumber space. Thus expressing βbr as a mere 

function of F(k,ϕ) and k may be considered as an oversimplification, even if it is scaled by 380 

integral quantities of the wave spectrum (as in equation (14b) for instance).  

From the discussion above, it follows that one approach to restore energy and momentum 

balance would be to decrease the amplitude of the wave breaking sink term at low 

wavenumbers and to increase it at high wavenumbers. Note however that a similar result 

would be obtained without modifying the wave breaking term, but assuming that wave 

breaking is producing an additional flux of spectral energy from high to low wavenumbers. 

Such downshifting of spectral energy resulting from wave breaking in presence of 

modulational instability has been highlighted both theoretically and experimentally, as will be 

discussed in detail below. In this paper we will show that following this latter approach 

permits to restore the energy and momentum balance, without the need to modify the wave 390 

breaking sink term itself.  

 

III.1. frequency downshift related to the modulational instability in presence of wave 

breaking  
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It is well known that a uniform train of Stokes waves is unstable to the so-called modulational 

instability, as shown theoretically and experimentally by Benjamin and Feir (1967). 

Following Benjamin and Feir’s pioneering work, numerical simulations of the evolution of 

gravity wave spectra of fairly narrow bandwidth were performed (Alber, 1978; Dysthe et al., 

2003), and a number of experimental investigations were conducted on the long time 

evolution of nonlinear wave trains (Lake et al., 1977; Melville, 1982; Tulin and Waseda, 400 

1999). The modulational instability is an interaction among three monochromatic wave trains: 

carrier (ωo), upper (ωo+δωo), and lower (ωo-δωo) sideband waves. An asymmetric growth of 

the sidebands makes the lower to grow at the expense of the upper. In the absence of wave 

breaking, the evolution occurs in a recurrent fashion, where the modulation periodically 

increases and decreases, the wave form returning periodically to its previous form. The effect 

of breaking dissipation is to increase and render irreversible the energy difference of the upper 

and the lower sidebands after peak modulation The end state of the evolution following 

breaking is an effective downshifting of the spectral energy (Tulin and Waseda, 1999). 

Although these studies were performed in the framework of monochromatic wave trains, we 

will assume here that a frequency downshift associated with wave breaking is still occuring in 410 

the case of a broad-banded wave spectrum. Since the frequency downshift effectively reduces 

the wave momentum when the wave energy is conserved, it may provide the mechanism 

required to solve the problem of imbalance  between momentum and energy reported in 

section II.  

It should be stressed that the modulational instability without wave breaking would produce 

no downshifting on the long term, and would not be associated with a loss of energy and 

momentum. In that sense it is a conservative process. Similarly, as reported by Hasselmann et 

al. (1994), conservation of energy and momentum both apply for all resonant wave-wave 

interaction processes, including four-wave and three-wave interactions. On the contrary, the 

process invoked here assumes a further downshifting specifically associated with wave 420 

breaking, which violates energy and momentum conservation.  

 

III.2. New formulation of the wave breaking source term: 

Due to the preceding discussion, we will assume henceforth that, in addition to reducing the 

spectral energy, wave breaking also produces a transfer of energy to lower frequencies. The 

detailed mechanism for the frequency change is rather unknown. It might be a continuous and 

gradual process, or result from a superposition of local, abrupt, and discrete processes (Huang 

et al., 1996). Whatever the detailed process, we will describe the frequency downshift by 
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means of a downward energy flux 
!
f (k,! )  in the wavenumber space. In a first time, we will 

assume that 
!
f (k,! ) is radially oriented in the k-space, and therefore that f! =0. As discussed 430 

above, the radial component fk  should be related to the wave breaking dissipation. As a 

simpliest approach, we will assume that fk is merely proportional to the dissipation term, 

Dimensional consideration then leads to the following expression of the energy flux: 

 
!
f (k,! ) = µ !"

!t
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&

'
(
br

!
k        (20) 

 

where µ is a non-dimensional coefficient.  

 

The divergence of this energy flux in the wavenumber space gives rise to a supplementary 

source term !" /!t( )S according to the conservation equation : 440 
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where divk stands for the divergence operator in the wavenumber space. According to 

equation (20), this may be rewritten :  
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or equivalently : 

 450 

!S = !
µ
k"

#
#k

k2!br"( )       (23) 

 

The energy and momentum budgets can now be performed exactly as in section II, except that 

βbr should now be replaced by βbr+βs,where βs is given by equation (23). Equations (18a) and 

(18b) should thus be replaced by : 
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As previously (see equations (14a), (16a), or (17)), we express βbr under the generic form 460 

 

!br (k," ) = !#P(k," )        (25) 

 

and thus equations (19a) and (19b) should now be replaced by 

 

!1 =
("w +"visc )!k dk d#

"$

$

#
0

$

#

P!"
µ
k
%
%k

k2P!( )&

'(
)

*+
k dk d#

"$

$

#
0

$

#
    (26a) 

!2 =
("w +"visc )Mkdk d#

!$

$

"
0

#

"

PM !
µ
k
$
$k

k2PM( )%

&'
(

)*
k dk d#

!$

$

"
0

#

"
    (26b) 

 

The value of coefficient µ is then adjusted in such a way that γ1=γ2, thus ensuring that the 

energy and momentum budgets are balanced.  470 

Although any of the different combinations of wind and wave breaking growth rate models 

mentioned in section II may be used to perform those calculations, henceforth we report only 

the results obtained using βbr from Komen et al. (1984) and βw from WAMDI (1988), since 

those model functions led to the smallest ratio γ2/γ1 (i. e., smallest energy-momentum 

imbalance) in Tables 1 and 2. Figure 2 displays the value of coefficient µ adjusted in such a 

way that γ1=γ2 in equations (26a) and (26b). The adjusted value of µ is seen to be of the order 

of 2 to 3, with only a weak dependence upon wind speed over the 5-15 m/s range. 

Considering equation (20), one may notice that, since the wave breaking term !" /!t( )br  is 

negative, a positive value of µ implies that the flux 
!
f  is directed toward decreasing 

wavenumbers, which is consistent with a frequency downshift. As concerns the high 480 

frequency (HF) part of the sea wave spectra, both Elfouhaily et al.’s (1997) and Kudryavtsev 
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et al.’s (2003) models were tested, and both results are displayed in Figure 2. It can be seen 

that the value of coefficient µ is little affected by the choice of the spectral model, except at 

the lowest wind speeds where µ tends to be slightly smaller when Kudryavtsev et al.’s HF 

spectrum is used instead of Elfouhaily et al.’s HF spectrum.  

 

III.3. Comparison with previous studies on downshifting associated with wave breaking: 

The experiments performed by Tulin and Waseda (1999) permitted them to quantify the 

downward flux associated with wave breaking. Although these experiments were carried out 

in laboratory with discrete waves, it may give order of magnitude estimates allowing 490 

comparisons with our results. 

The evolution of the lower and upper sidebands of a system of discrete waves in presence of 

wave breaking was studied by Tulin (1996), and is given by equation (5-10) from Tulin and 

Waseda (1999): 

!
!t

E"1 "E+1( ) =!Db / !" /"( )+ (higher !harmonic!terms)    (27) 

The influence of the higher harmonic terms is negligible and will be ignored henceforth. Eo, 

E-1 and E+1 are the energies of the wavetrain in the carrier, lower and upper sidebands, with 

angular velocities ω, ω−δω, ω+δω, and wavenumbers k, k-δk, k+δk, respectively. Db=-∂E3/∂t 

is the energy dissipation by wave breaking, where E3=Eo+E-1+E+1, and η is a nondimensional 

coefficient. 500 

The time derivative of (E-1-E+1) can also be described as an energy flux fEk in the wavenumber 

space: 

fEk = !2!k
"
"t

E!1 !E+1( )        (28) 

In the domain of gravity waves, the dispersion relation ! = gk  yields 

δk/k=2δω/ω. Therefore from equations (27) and (28) one gets: 

 

fEk
(!E3 /!t)

= 4!k                (29) 

Equation (29) expresses the ratio between the k-component of energy flux in wavenumber 

space, and energy dissipation rate due to wave breaking, in the case of a discrete wavetrain in 

the vicinity of wavenumber k. Equation (20) proposed a similar relation, but involving this 510 

time a broadband spectrum instead of a discrete wavetrain. Equation (20) may be rewritten: 
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fk (k,! )
(!" /!t)br

= µk         (30) 

 

Assuming that the results of discrete wavetrains may be extrapolated to a broadband 

spectrum, consistency between equations (29) and (30) would be obtained by taking µ=4η. 

Tulin and Waseda’s (1999) experimental value of η is η=0.4, while the theoretical estimate 

by Tulin (1996) is η≈0.4 for a strong breaker to η≈0.7 for a weak breaker. The value of µ 

expected to be consistent with those studies would thus be µ≈1.6 to 2.8. 

Such a comparison between broadband spectra at sea with studies involving discrete wave 520 

systems should not be overinterpreted, and only orders of magnitude estimates are relevant 

here. It appears, however, that the values that we obtained in Figure 2 (µ between 2 and 3) 

are consistent with the ones expected from Tulin’s (1996) and Tulin and Waseda’s (1999) 

studies. It may be noted that when, instead of using βbr from Komen et al. (1984) and βw from 

WAMDI (1988) as done in Figure 2, one uses βbr from Ardhuin et al. (2010) and βw from the 

JBA model (the combination of source terms resulting from the most recent studies), the 

required coefficient µ reaches significantly higher values (between 3 and 6).  Also, we will 

see in section IV that introducing directional diffusion reduces significantly the value of 

parameter µ required.  

 530 

IV.  Assessment of the ability of the model to reproduce the empirically 

determined sea wave spectrum 

 

IV.1. Methodology 

The requirement for stationarity of the sea wave spectrum, which is expected for fully 

developed seas, implies that the source and sink terms balance each other at every 

wavenumber k and direction ϕ. Therefore, for any k and ϕ, the total source term !F /!t( )T  

should vanish, which reads: 
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Note that, while in the preceding sections integration of the balance equations over 

wavenumber space allowed us to ignore the resonant nonlinear interactions which conserve 

energy and momentum, these need however to be included as soon as the balance equation is  

written at a given wavenumber. 

 

Of course, due to the inaccuracies of the empirically modeled sea wave spectrum, as well as 

the simplistic nature of the modeled source and sink terms used, one cannot expect equation 

(31) to be fulfilled at every location (k,ϕ) within the spectral plane. At most one can expect 

!F(k,! ) /!t( )T to be close to zero on the average. In order to assess the efficiency with which 550 

the different source terms of equation (31) cancel out each other, we define a cost function K. 

On dimensional grounds, this cost function is taken as the average of 1/! " k 4F(k,# )( ) /!t
T  

over the spectral plane. Also, a similar weight is given to the different wavenumber intervals 

of the sea wave spectrum in logarithmic scale. This leads to the following cost function: 

 

K =

1
!

! k 4F( )
!t

T""

"

#
k=kmin

kmax

# d(lnk)d#

""

"

#
k=kmin

kmax

# d(lnk)d#
      (32) 

 

The lower limit of the integration is taken as kmin=0.1kp , where kp=g(0.84/U)2 is the spectral 

peak, g is acceleration of gravity and U is the 10m wind speed. The determination of the 

upper limit kmax will be discussed below. While ideally K should be zero, comparison of the 560 

values of K obtained with different approaches will allow to compare the ability of the source 

terms to reproduce the empirical spectra over the spectral range [kmin, kmax]. 

 

IV.2. Resonant nonlinear term 

The resonant four-wave nonlinear term !F /!t( )nl  in expression (31) was computed by the so-

called WRT method based on Webb’s (1978) approach, and described in detail by Van 

Vledder (2006). This method is based upon a number of analytical transformations to remove 

the δ-functions in the Boltzmann integral obtained by Hasselmann (1962).  

As the gravity-capillary transition is approached, for wavelengths in the neighborhood of 1.7 

cm, another type of resonant nonlinear interactions involving three-wave, rather than four-570 
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wave resonance conditions occur (Valenzuela and Laing, 1972). Those three-wave 

interactions also conserve energy and momentum (Hasselmann et al., 1994). They are not 

accounted for in this study, and as a consequence that region close to the gravity-capillary 

transition will not be used to estimate the cost function K. The gravity-capillary transition 

occurs at wavenumber km =(g/T)1/2 =364rad/m, where T=74x10-6 m3s-2 is the surface 

tension/density ratio for water. In the figures displayed below, the upper limit of integration in 

equation (32) will be taken as kmax=0.2 km. Even if this choice may seem rather arbitrary, the 

behaviour of K is not qualitatively different if other choices are made for kmax between 0.05km 

and km, although K would increase by a factor of up to 4 if kmax=km rather than kmax=0.2km 

were used. This is related to the fact that close to k=km the spectrum is modified by processes 580 

not taken into account in this study, such as three-wave resonant interactions. 

 

IV.3. Comparison with the classical approach 

The values of the cost function K obtained here may be compared to the ones obtained when 

the frequency downshift introduced hereabove is ignored. In that case, the supplementary 

term !F /!t( )S  vanishes. This is the classical way of dealing with wave breaking, and it can 

be obtained simply by ignoring the momentum balance equation. In that case we just take 

γ=γ1 as given by the energy equation (19a), and we ignore equation (19b). In Figure 3, the 

cost function K obtained with both approaches is displayed. Again the wave breaking and 

wind source terms are taken from Komen et al. (1984) and WAMDI (1988), respectively. As 590 

expected, the cost function is seen to increase with wind speed, since the net residual obtained 

after algebraic summation of the different growth rates scales with the wind input growth rate, 

and thus increases with wind speed. The version using Kudryavtsev et al.’s (2003) HF 

spectrum gives systematically higher cost function K. In all cases, the cost function obtained 

with the approach of this paper is smaller than the one obtained with the classical approach, 

indicating that the formulation of source terms proposed in this paper produces sea wave 

spectra which are closer to the empirical wave spectra. 

Other tests (not shown) were also performed using other model functions for the source terms 

βbr and βw. For example, if the most recent model functions involving βbr from Ardhuin et al. 

(2010) and βw from the JBA model are used, then the cost function K obtained with the 600 

approach of this paper is virtually identical to the one obtained with the classical approach if 

Kudryavtsev et al.’s (2003) HF spectrum is used, and slightly higher than the classical 

approach if Elfouhaily et al.’s (1997) HF spectrum is used. This indicates that using the 
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approach of this paper is less useful if the Ardhuin et al (2010) and JBA models are used, 

even though in that latter case the strong energy/momentum imbalance should be addressed 

somehow.  

It may be interesting to illustrate in wavenumber space where the imbalance is occurring. The 

net variation rate of sea wave momentum may be written : 
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In equation (33b), (!F /!t)T  includes all the terms of equation (31). In a stationary situation 

the spectrum does not evolve any more and g(k) should be zero everywhere. Unfortunately 

due to the inaccuracies of the models this cannot be achieved perfectly. Figure 4 displays an 

example of the variation of function g as a function of log10(k).  Due to the definition of 

function g(k) in equation (33a), momentum balance implies that the areas above and below 

the line g(k)=0 should be equal in Figure 4. By construction this is achieved when the model 

of this paper is used (full line). When the classical approach is used (dashed line), the fact that 

we have taken γ=γ1 ensures that the overall energy balance requirement is fulfilled. As 620 

concerns the momentum balance, however, it can be seen in Figure 4 that the area over the 

line g(k)=0 is significantly larger than the area below the line. This indicates that the 

integrated momentum variation rate is positive, leading to irrealistic accumulation of 

momentum within the wave system, as discussed in section 2.  

 

IV.4. Effect of azimuthal diffusion of spectral energy 

Up to now, the downward energy flux 
!
f (k,! )  associated with wave breaking was assumed to 

be radially oriented, and thus its azimuthal component f! was assumed to be equal to zero. In 

order to relax that constraint, I tested an approach in which, in addition to inward flux, wave 

breaking was also associated with azimuthal diffusion of the spectral energy. Such azimuthal 630 

diffusion should be somehow related to the inward energy flux and its azimuthal gradient. 

The following expression is chosen here for the azimuthal energy flux: 
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f! ="
!fk
!!

       (34) 

 

where the non-dimensional constant ν plays the role of a diffusion coefficient.  

The supplementary source term !" /!t( )S  can be computed again from the conservation 

equation (21), in which both radial and azimuthal components of 
!
f are now considered, and 

the resulting values of µ can thus be obtained for any value of ν. Figure 5 displays the 

parameter µ characterizing the strength of inward flux corresponding to those values of 640 

diffusion parameter ν. It is seen that µ decreases with increasing values of ν, while still 

remaining positive. For ν of the order of 0.5, the flux parameter µ(ν) is about a factor of 2 

smaller than µ(0). As ν increases further, µ(ν) still decreases down to about (1/5)µ(0). 

However, in any case, it is seen that µ remains  positive, which means that a downward flux 

of spectral energy is still required in order to fulfill simultaneously the balance of both energy 

and momentum budgets.   

 

V. Conclusion 

 

Using a unified two-dimensional sea wave spectral model over the whole range of 650 

wavenumbers at full development, I attempted to assess the compatibility of the energy and 

momentum budgets over the whole spectral range. For fully developed situations, among the 

various combinations of model functions for wave breaking and wind source terms tested, no 

one allowed to fulfill together the integral energy and momentum balance equations. For 

example, assuming that the integral energy balance equation is fulfilled, a proportion of about 

one half or more of the momentum brought by the wind to the waves would accumulate 

within the wave system. This is in contradiction with the fact that a fully developed sea is 

expected to be nearly stationary. This indicates that either the chosen spectral shapes are 

unrealistic, or else that the source term parameterizations are unrealistic. In this paper I 

choose to consider the empirical spectra as the observational reference, and I propose a 660 

correction to the source terms, based on physical grounds, permitting to exhibit a solution 

where the energy and momentum balance is restored. 

The following approach is thus proposed in order to reconcile both energy and momentum 

budgets. It is known, both experimentally and theoretically, that wave breaking may 

contribute to frequency downshift of a narrow-banded wave spectrum, when the modulational 
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instability is combined with wave breaking. In this paper it is assumed that such a frequency 

downshift also occurs for the sea-wave spectrum, despite the fact that it is a broad-banded 

spectrum. This is expressed by assuming that, in addition to dissipation, wave breaking is also 

associated with an energy flux 
!
f  directed toward low wavenumbers, and quantified by means 

of a non-dimensional coefficient µ according to equation (20). For the model source functions 670 

used to obtain the results displayed in this paper, coefficient µ is estimated to be of the order 

of 2 to 3 for wind speeds within the 5-15 m/s range, which scales reasonably well with Tulin 

and Waseda’s (1999) laboratory observations. A cost function K is computed allowing to 

assess the ability of the source functions to reproduce the empirically determined two-

dimensional sea wave spectrum at full development. For the model source functions used in 

this paper, the introduction of this inward spectral flux 
!
f  improves the consistency between 

source terms and empirical spectra, as estimated by the cost function K. These studies were 

performed using the wave breaking and wind energy transfer rates by Komen et al. (1984) and 

WAMDI (1988), respectively, because this combination of source terms produced the 

smallest energy and momentum budget inconsistency (smallest ratio γ2/γ1 in Table 2). Similar 680 

results were obtained by using other models of wave breaking and wind input energy transfer 

rates, although with some combinations of transfer rate models the approach of this paper 

gave a nearly identical or slightly higher cost function (i. e., slightly lower consistency with 

empirical spectra) than the classical approach. Other tests were performed in which it was 

assumed that, in addition to inward flux, wave breaking was also associated with azimuthal 

diffusion of the spectral energy. Incorporating such azimuthal diffusion would reduce the 

inward flux parameter µ by a factor of up to 5, although it would not be able to remove 

entirely the inward flux.  

As concerns the sea wave spectral model, two kinds of reference spectra were taken at high 

wavenumbers (k>25kp): the spectrum by Elfouhaily et al. (1997), and the one by Kudryavtsev 690 

et al. (2003). Although the momentum of waves is particularly sensitive to the directional 

spectrum at high wavenumbers, the same tendencies were obtained with those two kinds of 

wavenumber spectra.  

Ultimately, this paper shows evidence that, with the wind and wave breaking source terms 

available in the literature, the integral energy and momentum balance equations cannot be 

fullfilled together for fully developed seas, which is in contradiction with the fact that a fully 

developed sea is expected to be nearly stationary. The additional process peroposed here 

would be able to restore the consistency of energy and momentum budgets.  



 - 24 - 

APPENDIX A: JBA model for the atmospheric term for growth rate 700 

 

The JBA model mentioned in this paper accounts for the wind input term βw of wave growth 

rate, as proposed by Janssen’s (1991) quasi-linear theory, including tuning modifications by 

Banner and Morison (2010) and Ardhuin et al. (2010). According to this model, the 

dimensionless critical height, µ1, is defined as: 

 

µ1(k,! ) = (u* / c)
2 (gzo / u*

2 )exp J1! / cos"(u* /c+ 0.006)[ ]( )    (A1) 

 

where κ=0.4 is Van Karman constant, c is the phase speed, and J1=0.99. The roughness length 

zo is given as: 710 

zo =
0.01u*

2

g 1! co(! w / ! )
        (A2) 

where co=0.8, and the ratio of wave-induced stress τw to the total stress τ is taken from 

Janssen’s (1989) equation (7). 

The Miles parameter b is given by: 

 

b(k,ϕ)=J2 µ1 (ln(µ1))4/κ2   for µ1≤1  , where J2=1.6 

b(k,ϕ)=0   for µ1>1        (A3) 

 

The spectral growth rate is then  
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Here, u*
red is the reduced friction velocity which is felt by wavenumber k, as a consequence of 

the sheltering of the short waves by the longer waves. We express it by removing the 

integrated waveform drag due to waves with wavenumbers between 0 and k, which gives: 

(u*
red )2 = u*

2 ! su
!w
!a!"

"

"
0

k

" #w (k ',$ )%(k ')F(k ',$ )cos$k 'dk 'd$    (A5) 

where the sheltering coefficient su is taken as su=1 following Ardhuin et al. (2010).  

Equations (A4) and (A5) are solved iteratively.  
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APPENDIX B: Expression of the wave breaking source term by Ardhuin et al. (2010) 

 730 

 

The threshold-based formulation for the wave breaking source term Pa(k,ϕ) introduced in 

equation (17) is decribed by Ardhuin et al. (2010) as the sum of a saturation-based term Psat , a 

cumulative term Pcu , and a term related to wave-turbulence interaction Pturb, as follows: 

 

Pa (k,! ) = Psat (k,! )+Pcu(k,! )+Pturb(k,! )       (B1) 

 

The last term of the right hand side Pturb due to wave-turbulence interactions is expected to be 

much weaker than both other terms and is neglected by Ardhuin et al. (2010). The saturation-

based term Psat is given as: 740 

 

Psat (k,! ) ="
Csat

Br
2 !.max B1(k)!Br, 0[ ]2 + (1!!).max B '(k,! )!Br, 0[ ]2{ }   (B2) 

 

In this expression, B’(k,ϕ) is a direction-integrated spectral saturation, with a restriction of the 

integration over a ±Δϕ interval (with Δϕ=80°) in order to maintain a dependence of 

dissipation rate upon direction. It is expressed here as: 

 

B '(k,! ) =
cossB (! !! ')B(k,! ')d! '
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#
cossB (! !! ')d! '
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#
      (B3) 

 

where B(k,ϕ)=k4F(k,ϕ), and 750 

 

B1(k)=max[B’(k,ϕ), 0≤ϕ<2π]        (B4) 

 

Following Ardhuin et al.(2010), in equation (B2) the threshold for the onset of breaking is 

taken as Br=0.0009, and the other constants are Csat=2.2x10-4, δ=0, and sB=2.  
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The cumulative term Pcu represents the smoothing of the surface by big breakers with celerity 

C’ that wipe out smaller waves of phase speed C. It is expressed by Ardhuin et al. (2010) as 

follows: 

 760 

Pcu(k,! ) = !1.44Ccu max B(k ',! ') ! Br , 0"
#

$
%0

2"
&0

rcu f&
2
'Cd! 'dk '    (B5) 

 

where f is sea wave frequency, !C =
!
C "
!
C ' , and the constants are taken as Ccu=-0.4 and 

rcu=0.5.  
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Table 1. Ratio R=γ2/γ1, where γ1 and γ2 are the coefficients of the wave breaking dissipation 

term required to fulfill the energy and momentum balance, respectively, for different 

combinations of the expressions of βw and βbr assumed. The sea wave spectral model for 

k<25kp is from Elfouhaily et al. (1997), with directional spreading function by Resio et al. 

(2011). Above k=25kp, the sea wave directional spectral model is from Elfouhaily et al. 

(1997). A wind speed U=10m/s is assumed.  

___________________________________________________________________________ 

Ratio R=γ2/γ1   βbr Komen et al. βbr Phillips (1985) βbr Ardhuin et al. 

    (1984)   (1985)   (2010)             920 
___________________________________________________________________________ 

βw Plant (1982)   2.97      2.55   2.67 

βw WAMDI (1988)   2.66      2.29   2.40 

βw Donelan-Pierson (1987)  5.11      4.39   4.60 

βw Kukulka-Hara (2005)  4.78      4.10   4.30 

βw JBA model    3.68      3.16   3.31 
___________________________________________________________________________ 

 

 

 930 

Table 2. Same as Table 1, but Elfouhaily et al.’s (1997) wave spectrum is replaced by 

Kudryavtsev et al.’s (2003) spectrum at high wavenumbers (k≥25kp). 

______________________________________________________________________ 

Ratio R=γ2/γ1   βbr Komen et al. βbr Phillips   βbr Ardhuin et al. 

    (1984)   (1985)   (2010) 
___________________________________________________________________________ 

βw Plant (1982)   2.58      3.32   3.45 

βw WAMDI (1988)   1.72      2.21   2.30 

βw Donelan-Pierson (1987)  4.00      5.15   5.36 

βw Kukulka-Hara (2005)  3.38      4.35   4.53 940 

βw JBA model    2.76      3.55   3.69 
___________________________________________________________________________ 
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Figure 1. Curvature spectrum B(k,ϕ)=k4F(k,ϕ) in the high wavenumber range (k≥25kp) as 950 

given by  Elfouhaily et al.’s (1997) model (solid lines) and by Kudryavtsev et al.’s (2003) 

model (dashed lines), plotted for a 10m/s wind speed. For each model spectrum, the thick line 

stands for the spectrum along the wind direction (ϕ=0), while the thin line stands for the 

spectrum in the crosswind direction (ϕ=π/2).  
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Figure 2. Coefficient µ quantifying the downward spectral energy flux (as defined by equation 

(20)), allowing to balance the energy and momentum budgets, as a function of wind speed. 

The wave breaking term βbr is from Komen et al. (1984), and the wind input term βw is from 

WAMDI (1988). The sea wave spectral model for k<25kp is from Elfouhaily et al. (1997), 

with directional spreading function by Resio et al. (2011). Above k=25kp, the sea wave 

spectral model is either from Elfouhaily et al. (1997) (solid lines), or from Kudryavtsev et al. 

(2003) (dashed lines). 

970 
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Figure 3. Cost function K times 107, as defined by equation (32), corresponding to the model 

of this paper (thick lines), compared with the cost function K obtained in the classical 

approach (thin lines), as a function of wind speed. The sea wave spectral models are the same 

as in Figure 2, involving high wavenumber spectrum from Elfouhaily et al. (1997) (solid 

lines), or from Kudryavtsev et al. (2003) (dashed lines). 
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 980 

 
 
 
 
Figure 4. Momentum function g(k) (equation (33a)) as a function of log10(k). Wind speed is 
taken as 10m/s. The sea wave spectral model is the same as in Figure 2, with high 
wavenumber spectrum from Elfouhaily et al. (1997). The dotted vertical line indicates the 
position of the spectral peak kp. The wave breaking term βbr is from Komen et al. (1984), and 
the wind input term βw is from WAMDI (1988). Solid line : results from the model of this 
paper. Dashed line : results from the classical approach taking γ=γ1. The discontinuity near 990 
log10k=0.2 rad/m is an artefact produced by the change of directional spreading function of 
the model sea wave spectrum taken at k=25kp.  
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Figure 5. Spectral flux parameter µ as a function of diffusion parameter ν, displayed for 5, 8, 

and 15 m/s wind speeds. The sea wave spectral models are the same as in Figure 1, involving 

high wavenumber spectrum from Elfouhaily et al. (1997) (solid lines), or from Kudryavtsev et 

al. (2003) (dashed lines). 

 


