
OSD
9, 1187–1229, 2012

A reduced rank
smoother’s benefits.

N. Freychet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Ocean Sci. Discuss., 9, 1187–1229, 2012
www.ocean-sci-discuss.net/9/1187/2012/
doi:10.5194/osd-9-1187-2012
© Author(s) 2012. CC Attribution 3.0 License.

Ocean Science
Discussions

This discussion paper is/has been under review for the journal Ocean Science (OS).
Please refer to the corresponding final paper in OS if available.

Obstacles and benefits of the
implementation of a reduced rank
smoother with a high resolution model of
the Atlantic ocean
N. Freychet1, E. Cosme1, P. Brasseur2, J.-M. Brankart2, and E. Kpemlie2
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Abstract

Most of oceanographic operational centers use three-dimensional data assimilation
schemes to produce reanalyses. We investigate here the benefits of a smoother,
i.e. a four-dimensional formulation of statistical assimilation. A square-root sequen-
tial smoother is implemented with a tropical Atlantic ocean circulation model. A simple5

twin experiment is performed to investigate its benefits, compared to its corresponding
filter. Results show that the smoother leads to a better estimation of the ocean state,
both on statistical (i.e. mean error level) and dynamical point of view. Smoothed states
are more in phase with the dynamics of the reference state, an aspect that is nicely
illustrated with the chaotic dynamics of the north-Brazil rings. We also show that the10

smoother efficiency is strongly related to the filter configuration. One of the main ob-
stacles to implement the smoother is then to accurately estimate the error covariances
of the filter. Considering this, benefits of the smoother are also investigated with a
configuration close to situations that can be managed by operational centers systems,
where covariances matrices are fixed (optimal interpolation). We define here a sim-15

plified smoother scheme, called half-fixed basis smoother, that could be implemented
with current reanalysis schemes. Its main assumption is to neglect the propagation
of the error covariances matrix, what leads to strongly reduce the cost of assimilation.
Results illustrate the ability of this smoother to provide a solution more consistent with
the dynamics, compared to the filter. The smoother is also able to produce analyses20

independently of the observation frequency, so the smoothed solution appears more
continuous in time, especially in case of a low frenquency observation network.

1 Introduction

Data assimilation methods for geophysics have evolved continuously since their ori-
gins in the 70’s. In the branch of estimation theory, the Kalman filter (Kalman, 1960)25

has been widely used in oceanography. Its implementation with large numerical
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models is made possible provided relevant adaptations, such as reduced-order for-
mulation (Parrish and Cohn, 1985; Todling and Cohn, 1994; Evensen, 1994; Fuku-
mori and Malanotte-Rizzoli, 1995 and Houtekamer and Mitchell, 1998). The filter
provides an optimal estimate of the system state, given a model state (numerical),
and past and present observations available up to the analysis time. Thus, it is well5

indicated to initialize a forecast, what is the historical purpose of data assimilation
in geophysics. Though, oceanographic applications of data assimilation get increas-
ingly diversified. In particular, climate studies require accurate reconstructions of the
past ocean circulation, reanalyses, as performed for instance in the MyOcean project
(http://www.myocean.eu.org/). Such reanalyses are expected to gain accuracy when10

the observations datasets are used on a four-dimensional way with data assimilation,
i.e. when each observation has an influence on past, present and future states of the
model solution. In the framework of the Kalman filter, the past influence of observations
is introduced through retrospective analyses and leads to a smoothing formulation of
the estimation problem. Optimal smoothers in estimation theory may be considered as15

a four-dimensional extension of the Kalman filter that takes into account future obser-
vations.

Several smoother approaches exist (see Cosme et al., 2011, for detailed descrip-
tions). In this paper, we consider the sequential fixed-lag smoother (Cohn et al., 1994;
Evensen and van Leeuwen, 2000), well designed for reanalysis purposes. More pre-20

cisely, we use the reduced rank square root smoother developed by Cosme et al.
(2010), which is based on the Singular Evolutive Extended Kalman (SEEK) filter (Pham
et al., 1998; Brasseur and Verron, 2006). Actually, the MyOcean reanalysis system is
based on the SEEK filter too. This reduced-rank smoother has been tested by Cosme
et al. (2010) with a square-box configuration of a high resolution ocean circulation25

model. In this work, we investigate the application of the reduced-rank smoother with a
more complex and realistic tropical Atlantic ocean circulation model in a ¼◦ resolution
configuration. We strive to identify obstacles and solutions to implement the smoother
in such a realistic context. The gain of the smoother over the filter is assessed. Finally,
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to comply with operational constraints, we design here a new flavour of the sequential
fixed-lag smoother algorithm, referred to as half-fixed basis, to overcome implementa-
tion issues. Our main goal is to determine whether this smoother can improve present
reanalysis schemes.

In Sect. 2, we present the SEEK filter and the SEEK smoother formulations as de-5

tailed in Cosme et al. (2010). Some advantages and drawbacks linked to implemen-
tation are stressed. Section 3 summarizes the set-up of our twin experiments. The
smoother is then implemented according to its theoretical formulation. In Sect. 4 we
dwell upon a sensitive step of the implementation of a smoother: the parametrisation
and the dynamical propagation of error covariances. In Sect. 5 we expose and exam-10

ine the main results of a short smoother reanalysis. The filter reanalysis is used as
a reference to point out the improvements of a four-dimensional extension of the data
assimilation. To deal with implementation issues raised in Sect. 4, a half-fixed basis
smoother algorithm is developed and tested in Sect. 6. Section 7 concludes and gives
perspectives.15

2 The reduced rank square-root filter and smoother algorithms

The Kalman filter and smoother formulations can be found in Anderson and Moore
(1979), Simon (2006) and Evensen (2007). For the smoothers, see also Cosme et al.
(2011). Here we only provide an overview of the sequential algorithms and an intuitive
interpretation of the equations. We also decline these algorithms in their square-root20

transformation so they can be implemented in large geophysical problems. Finally, we
expose the modifications to introduce for the half-fixed basis smoother to be imple-
mented.
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2.1 Notations

Notations are similar to the ones used in Cosme et al. (2010). Superscripts refer to
the type of states (“a” for analysed and “f” for forecast). Subscripts are used to specify
the transition between two times (for instance k−1,k is used for the transition matrix
between times k−1 and k) or the time of a state and information it contains (for instance5

k |k−1 indicates that the state is estimated at time tk , given all observations available
up to time tk−1). Subscripts 0 represent the initial conditions.

2.2 The Kalman filter

The sequential form of the filter is given by a succession of two steps, Forecast and
analysis, summarized in Eqs. (1)–(7). Initial conditions must first be prescribed: xa

0, an10

initial state, and Pa
0, an initial error covariance matrix.

Initialization xa
0 and Pa

0 Forecast step

x f
k |k−1

=Mk−1,kxa
k−1|k−1

(1)

Pf
k |k−1

=Mk−1,kPa
k−1|k−1

MT
k−1,k+Qk−1,k (2)15

Analysis step

dk = yk−Hkx f
k |k−1

(3)

Gk =Hk(Pf
k |k−1

Hk)T +R−1
k (4)

Kk |k = (Pf
k |k−1

Hk)TG−1
k (5)

xa
k |k = x f

k |k−1
+Kk |kdk (6)20

Pa
k |k = (I−Kk |kHk)Pf

k |k−1
(7)
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The filter performs a forecast step by propagating xa
k−1|k−1 with the dynamical linear

model operator Mk−1,k (Eq. 1), leading to the forecast state x f
k |k−1 at time tk . Error co-

variance matrix Pa
k−1|k−1 is also propagated with the model operator (equation 2) and a

model error Qk−1,k is added to take into account model uncertainties and approxima-
tions. Thus, at the end of the forecast step (at time tk), an estimate of the ocean state5

x f
k |k−1 and error statistics Pf

k |k−1 associated to this state are provided by the filter, given
all observations available up to time tk−1.

Observations at time tk are then used to perform the filter analysis step. First the
innovation vector dk is computed (Eq. 3), providing the difference between observa-
tions (yk) and the model state (x f

k |k−1) projected into the observation space with the10

observation operator Hk . The innovation error covariance matrix Gk is also defined
(Eq. 4), with Rk the observation error matrix. Gk is then used to compute the Kalman
gain Kk |k (Eq. 5). Then, the update of the forecast state, xa

k |k , is computed (Eq. 6), bal-
ancing observations and the model estimate thanks to the Kalman gain. Statistics on
the residual error, Pa

k |k , are also estimated through Eq. (7). At the end of the analysis15

step, the Kalman filter provides the best state estimate given all observations available
up to time tk .

Analysis and forecast steps are performed successively from the first to the last
observed date.

2.3 The sequential smoother20

The smoother uses observations at a time tk to improve past estimates at times ti ,
with ti < tk . Thus, an analysed state at time ti is now noted xa

i |k , meaning it contains
all informations from observations available until time tk . Obviously, i is not unique,
meaning observations at time tk can be used by the smoother to analyse several past
states (at different times ti ). The set of time indices at which the retrospective analyses25

are produced is noted Σk . In our configuration, Σi = {k−L,...,k−1}, corresponding to
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a fixed-lag smoother according to the nomenclature used in Cosme et al. (2010). With
this configuration, the smoother performs retrospective analysis for the L states previ-
ous to time tk only (L being called the lag of the smoother). This can be interpreted as
time localisation of the smoother, restricting the past influence of observations. It also
limits the numerical storage of the smoother.5

Forecast step

x f
k |k−1

=Mk−1,kxa
k−1|k−1

(8)

Pfa
k,i |k−1

=Mk−1,kPaa
k−1,i |k−1

, i ∈Σk (9)

Pf
k |k−1

=Mk−1,k(Pfa
k,k−1|k−1

)T +Qk−1|k (10)10

Analysis step

Ki |k =Pfa
k,i |k−1

HT
k(HkPf

k |k−1
HT
k+Rk)−1 (11)

xa
i |k = xa

i |k−1
+Ki |kdk , i ∈Σk (12)

Paa
k,i |k = (I−Kk |kHk)Pfa

k,i |k−1
, i ∈Σk (13)

Pa
i |k =Pa

i |k−1
−Ki |kHkPfa

k,i |k−1
, i ∈Σk (14)15

Equations of the optimal linear fixed-lag smoother are summarized in Eqs. (8)–(14).
To perform the retrospective analysis, the smoother needs the introduction of cross-
covariances matrices, that is, matrices of covariances between state errors at two dif-
ferent times. These matrix are involved in the smoother gain (Eq. 11), which is used
for the smoother analysis (Eq. 12). Thereby, the cross-covariance matrices enable the20

use of information at time tk to correct a past state at time ti . Note that in the forecast
step, the Eq. (2) of the filter is splitted into two equations for the smoother (Eqs. 9 and
10) to bring out the cross-covariances matrix.
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2.4 The square-root transformation of the Kalman filter and smoother

We now expose algorithms in a reduced-rank form so they can be applied to large
geophysics systems. We use the Singular Evolutive Extended Kalman (SEEK) filter
that has already been implemented with real systems (e.g. Verron et al., 1999; Testut
et al., 2003; Brankart et al., 2003 and Castruccio et al., 2006). A synthesis on the SEEK5

filter can be found in Brasseur and Verron (2006) or Rozier et al. (2007). The main idea
is to use a square-root decomposition of the error covariance matrix so it can be written

as: Pf =SfSfT , where Sf is a n×n matrix, n being the length of the state vector. The filter
equations are then reformulated including the square-root decomposition, as exposed
in Eqs. (15)–(24).10

To be computable at low cost, some assumption are introduced. First, the dimension
of Sf can be reduced assuming that errors only occur on a low dimension subspace,
r , of the state space (with r �n). In practice, these directions can be identified keep-
ing the r first Empirical Orthogonal Functions (EOFs) computed from a time series of
model states. When considering only the r main directions of the error, Sf becomes a15

n×r matrix, the columns of which are often referred to as error modes. The term I+Γ
in the smoother gain is then r×r , and easily inversible if r is small enough. Moreover,
the propagation of error covariances (Eq. 16) is more affordable (only r model itera-
tions are needed instead of n). The model error term is now noted δ in this equation.
Another assumption is made on R, so it can be easily inversible in the Kalman gain20

equation: it is considered diagonal here. Note that other assumptions can be used
(as presented in Testut et al., 2003, Brankart et al., 2003, or Brankart et al., 2009) to
introduce observation error correlations while keeping the matrix diagonal.

Initialization

xa
0 and Sa

025

Forecast step

x f
k |k−1

=Mk−1,kxa
k−1|k−1

(15)
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Sf
k |k−1

=Mk−1,kSa
k−1|k−1

+δk−1|k (16)

Filter analysis step

Γk = (HkSf
k |k−1

)TR−1
k (HkSf

k |k−1
) (17)

Kk+1 =Sf
k |k−1

[I+Γk ]−1(HkSf
k |k−1

)TR−1
k (18)

dk+1 = yk+1−Hk+1x f
k |k−1

(19)5

xa
k |k = x f

k |k−1
+Kk |kdk (20)

Sa
k |k =Sf

k |k−1
(I+Γk)−1/2 (21)

Smoother analysis step

Ki |k =Sa
i |k−1

[I+Γk ]−1(HkSf
k |k−1

)TR−1
k (22)

xa
i |k = xa

i |k−1
+Ki |kdk , i ∈Σk (23)10

Sa
i |k =Sa

i |k−1
[I+Γk ]−1/2, i ∈Σk (24)

With the SEEK formulation of the filter, the sequential smoother implementation be-
comes straightforward. Only three extra equations are needed (Eqs. 22, 23 and 24).
The cross-covariance terms are here directly introduced in the smoother gain. The
smoother analysis is performed using the smoother gain and the innovation vector15

computed from the filter. And finally, the smoother analysis covariances are computed.
The smoother implementation does not require additional assumption nor significant
extra CPU times, with respect to the filter. The only limitation lies in the storage of
the smoother covariance matrices, but with the fixed-lag formulation, the number of
restrospective analyses, and thus the number of covariance matrices to store for each20

observation, is limited. The smoother also presents the advantage of being applica-
ble simultaneously to or after the filter (in this case, calculations of the gains must be
performed again).
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2.5 Model error and evolutive covariances

A smoother requires accurate cross-covariances between the filter forecast state and
past estimates (Eq. 22). Thus the filter must provide accurate forecast (and analysis,
for the next steps) error modes.

Theoretically speaking, the forecast error modes result from the combination of the5

dynamical propagation of past analysis modes, which ensures the statistical connec-
tion through time, and a white-in-time model error, what makes the short-term cross-
temporal decorrelation of modes occur (Eq. 16). Hence, both elements (dynamical
propagation and model error) play a key role in the behaviour of the smoother. In par-
ticular, it is theoretically obvious that a smoother must rely on an evolutive filter (with10

dynamical propagation of the modes), termed in this way in contrast to a static filter
such as Ensemble Optimal Interpolation (Evensen, 2003). And it is self-evident that
the model error must be accounted for accurately.

The model error parameterisation in Ensemble filters has long been and still remains
a considerable issue, and is still an active topic of research (Houtekamer et al., 2009;15

Brankart et al., 2010). The covariance inflation approach (Li et al., 2009) is quite pop-
ular but inadequate to decorrelate error modes through time (Cosme et al., 2010).
Recent efforts has been undertaken for a better, adaptive estimation of the forecast
error covariances in the SEEK filter (Brankart et al., 2010, 2011) but further work is
necessary to make them robust and applicable routinely. In order to disconnect the20

smoother and the model error issues here, we have decided to stick to a perfect model
set-up and neglect the model error term δ. This obviously puts limitations to the scope
of our experiments, as detailed in Sect. 4. This assumption leads to a new form of
Eq. (16):

Sf
k |k−1

=Mk−1,kSa
k−1|k−1

(25)25

The propagative term MSa implies r model iterations, r being the number of columns
in Sa. To be affordable at a reasonable cost, r must be kept quite small. A remaining
problem lies in the divergence of the filter that can occur due to the order reduction,
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i.e. the error estimated by the filter (Sf and Sa), can become inconsistent with the true
error. The estimation of the errors through time can be controlled thanks to several
parameters. This point will be discussed in Sect. 4 with the implementation of an
evolutive filter.

Finally, note that even if δ is neglected in the covariance propagation, retrospec-5

tive influence of observations is artificially limited thanks to the fixed-lag form of the
smoother.

2.6 A half-fixed basis smoother

The model error parameterisation issue, combined with the prohibitive cost of the
modes propagation, often leads to use static filters, as various oceanographic oper-10

ational centers have already turned to (Brasseur et al., 2005; Martin et al., 2007; Oke
et al., 2008). It can be expected that these operational centers will have to adapt their
assimilation schemes to perform the future reanalyses of the ocean circulation, as it
has already been done (Ferry et al., 2010), and as it is the general case now for the
atmospheric circulation. For this reason, and in spite of the theoretical concerns men-15

tioned previously, it seems worth trying to design a smoother based on a static filter
(minimizing the impacts of the violations in the theory) and testing it numerically.

In this configuration, only Eq. (25) needs to be rewritten in a static form: Sf
k |k−1 =Sa

0).
Kalman gains of the filter (Eq. 18) and the smoother (Eq. 22) are also affected, with the
terms Sf

k |k−1 being replaced by Sa
0. Another term in Eq. (22) needs to be specify: the20

analysis error covariance matrix Sa
i |k−1. This matrix can be considered as fixed (so the

smoother would also be a fixed basis type), but a more theoretically sound approach
consists in using the analysis covariance matrix computed from Sa

0 with the filter at the
appropriate time. This smoother scheme of smoother is referred to as half-fixed basis,
because a part of the cross-covariance matrix is kept fixed (Sf

k |k−1) while the other part25

is time dependent (Sa
i |k−1). We will expose and discuss more in detail this smoother in

Sect. 6.
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3 Twin experiments and assimilation settings

The smoother is implemented and assessed in the framework of twin experiments, but
with the concern to remain close to a real problem (through model and simulated ob-
servations). The experimental settings are described in this section. The nomenclature
of experiments is summarized in Table 2.5

3.1 Model and configuration

The ocean circulation model NEMO (Nucleus for European Modelling of Ocean,
Madec, 2008) is used in a tropical Atlantic configuration (from 61.5◦ W to 15◦ E, and
15◦ S to 17.75◦ N) and with a resolution of ¼ degree. This configuration, previously
developed and used by Ubelmann et al. (2009), is named TATL4 (Tropical ATLantic ¼10

degree). Boundary conditions are extracted from an model simulation spanning the
1958–2007 period (Dussin et al., 2009). An initial condition for TATL4 is extracted on
5 January 1995. Atmospheric forcings (Brodeau et al., 2010) are identical. An interan-
nual simulation is then performed untill the end of 2005. This run is used as a reference
for the twin experiment and is called REF.15

Two main signals dominate the dynamics of the tropical Atlantic, as illustrated by
Fig. 1. On the one hand, Tropical Instability Waves (TIWs) develop during summer and
fall at 3◦ N. They propagate from east to west and exhibit a strong signal on the sea
surface temperature (Legeckis, 1977; Allen et al., 1995). On the other hand, eddies
develop and circulate along the north-east coast of the Brazil. These eddies, know20

as Brazil Rings (Richardson and Walsh, 1986; Garzoli and Katz, 1993), are due to
the north-Brazil current retroflection and exhibit a strong signal on velocity (from the
surface to 200–500 m depth). Due to their propagative signatures, these two signals
are interesting objects of studies for a four-dimensional assimilation experiment.
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3.2 Perturbation

To perform a twin experiment, a perturbed ocean state is generated using the inter-
annual variability. An initial condition from REF on 25 May 2003 is used to restart the
model on 25 May 2005. This error on initial condition leads to a perturbed simulation
called FALSE, computed until the end of 2005. The data assimilation experiment starts5

one month after the beginning of FALSE, so that the perturbed simulation can partially
adjust with the forcings and damp spurious, high frequency oscillations. The goal of
the present data assimilation experiment is then to correct FALSE so it becomes closer
to REF. Note that even if a perturbation of the initial condition is not sufficient to assess
the performance of the smoother for a long term reanalysis, it allows the careful study10

of the impact of the smoother analysis and the quality of corrected states, at least at
the beginning of the experiment.

3.3 Simulated observations

Synthetic observations are extracted from REF following the procedure described by
Cosme et al. (2010). Two sets of observations are generated: in situ data of tempera-15

ture and salinity, and altimetric measurements.
In situ data mimic ARGO profilers network. Every two days, a set of vertical profiles

is available, 6◦ apart from each other. This pattern is shifted by 2◦ from one assimilation
step to the next. It results in a 2◦ density network every 18 days, close to the average
true ARGO network (one profile every 2◦ and every 15 days). The simulated in situ20

data network is illustrated on Fig. 2, for one assimilation cycle (every 2 days) and the
full coverage (after 18 days).

Altimetric data mimic Jason-type satellite tracks. Every 2 days, a limited number of
tracks of Sea Surface Height (SSH) are available. The periodicity of these tracks is
10 days. Figure 3 provides an example of SSH tracks available for one assimilation25

cycle (every 2 days) and shows the complete coverage obtained in 10 days of consec-
utive altimetric observations.

1199

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/9/1187/2012/osd-9-1187-2012-print.pdf
http://www.ocean-sci-discuss.net/9/1187/2012/osd-9-1187-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
9, 1187–1229, 2012

A reduced rank
smoother’s benefits.

N. Freychet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

We consider the mesurement error is null here: the observations are not perturbed
and can be described as perfect observations. But the matrix R is not zero because of
the truncation error. Its parametrisation is presented in Sect. 4.

3.4 Initial statistics

As the only source in the initial state error is connected to model’s time variations,5

the statistics Sa
0 describing the initial error covariance are calculated based on model’s

time variability. 270 EOFs are computed from REF, using ocean states in Summer
and Fall between 1995 and 2000. Winter and Spring are not considered because
the experiment spans the Summer months only and because TIWs or Brazil rings
signatures are mostly present in Summer and Fall. The first 39 EOFs, that represent10

about 95 % of the total variance of the 270 initial EOFs, are selected to form the initial
error modes.

3.5 Localisation

A consequence of the order reduction is that statistics may not be able to faithfully
descibe all the correlations, especially long-distance correlations (Houtekamer and15

Mitchell, 1998). To prevent the spurious influence of distant observations during an
analysis step, the filter is used with a localisation scheme (Brankart et al., 2009). This
method rules out long-distance corrections, so that only observations in the neighbour-
hood of an analysed point are used for the correction. The size of the neighbourhood
is defined as 15◦ zonal and 10◦ meridional in length (illustrated by the black boxe on20

Fig. 1). It is chosen large enough so that at least one observation is available for each
analysis. The zonal length is larger than the meridional length because the dynamics in
tropical region is mostly zonal, so the correlations are more consistent in this direction.
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4 Evolutive filter

We now present the results of the SEEK smoother in its original form, i.e. with evolv-
ing error modes, as presented in Cosme et al. (2010). For the reasons mentioned in
Sect. 2.5, we pay particular attention to the accurate estimation of the forecast error
modes (defined by Eq. 25 in our configuration). It is well known that due to the trunca-5

ture of S essentially, the error modes can collapse or become inconsistent with the true
error (error on the mean) with time. The most common method to avoid this is to use
covariance inflation. But for the reasons given in Sect. 2.5, it is not our choice here.
Instead, we chose to tune a few parameters controlable in the system: the number
of error modes (columns in S), the size of the localisation domain, and the amplitude10

of the (diagonal) observation error matrix R. The adopted criterion of consistency be-
tween errors on the mean and errors estimated by the modes is that the RMS error
computed with the mean,

RMS=

√√√√ 1
N×M×P

N∑
i=1

M∑
j=1

P∑
k=1

(xi ,j,k−xref
i ,j,k)2,

(with i =1 :N the set of the longitudes, j =1 :N the set of the latitudes, k =1 : P the set15

of the vertical levels, xi ,j,k the mean state of the ocean and xref
i ,j,k the true state of the

ocean, REF) must be of the same order of magnitude as the square root of the trace

of the covariances matrix (tr(SST )).
The first two parameters, though, are partly constrained by practical considerations.

A high number of error modes allows an accurate representation of the error space, but20

requires more CPU times for modes propagation. Several sensitivity experiments, not
detailed here, suggested that 39 was a fair number. The localisation parameters must
also be prescribed optimally to avoid spurious corrections due to distant observations
and no correction due to absence of close observations. Again, sensitivity experiments
showed that having at least one observation for each analysed grid point was a fair25

choice.
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The remaining parameter to be specified is the matrix R, which represents the con-
fidence to the observations and to the resulting analysis. This matrix includes the
observation error (including the accuracy of mesurements), but not only. As mentioned
in Sect. 2.4, this matrix is considered diagonal. This assumption implies that the di-
agonal terms should be inflated to include the ignored non-diagonal terms. Moreover,5

the truncation error (due to the reduction order) should also be included in R. This
error, as well as the non-diagonal terms of R, are not easy to quantify, and a wrong
definition of the diagonal terms of R can lead to inconsistent error statistics with the
real error. Precedent studies point out these aspects, as for instance Liu and Rabier
(2002), Rabier (2006) or Oke et al. (2008). To parametrise correctly R, several filtering10

experiments are conducted, with different values for observations error as precised in
Table 1. The experiments last 50 days, starting from 25 June considered as day 0 for
the results. For each experiment, the true RMS error is compare to the mean estimate

error of the filter (tr(SST )). Results are illustrated with the temperature error levels on
Fig. 4. The red curve represents the true error, and the full black curve, the estimated15

error. The error of FALSE is also shown with the black dotted line. To be consistent,
the estimated error (black) should be close to the true error (red).

Results show that for the error statistics to be consistent, prescribed observation
errors have to be large. Indeed, the best estimated error is obtained with the largest
observations error (ErrObs04 in Table 1). This suggests that the truncature error in-20

cluded in R is ten times larger than a traditional mesurement error. On the other hand,
the mean true error (in red) is poorly influenced by this parametrisation. Consequently,
large observation errors avoid the collapse of error modes without affecting the quality
of the mean state estimate. Also, as a (bad) counterpart of neglecting the model error,
the filter converges to an asymptotic level of error, what makes the smoother assess-25

ment relevant in the first few weeks of the experiment only. The results are similar for all
other assimilated variables (salinity and SSH, not shown). The filter is less efficient for
velocities, but still the estimated error on these variables is better with high observation
errors, as for the assimilated variables.
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The parametrisation of an evolutive filter is difficult. The definition of the error co-
variance matrix and the control of its time evolution is tricky, and may lead to consider
unusual values for certain parameters (such as the observations error in our case).
This would be especially true with a more complex system where error sources would
not only be linked to the initial condition, and it certainly is a major obstacle for the5

smoother implementation. A strategy to avoid this problem will be exposed in Sect. 6,
but first we discuss the smoother effects with the previously defined evolutive filter in
the next section.

5 Smoother’s impact

The smoother is tuned using the parameters defined for the SEEK filter in the previous10

section. The fixed-lag parameter, i.e. the temporal localisation of influence of the ob-
servations, is set to 10 days (5 retrospective assimilations). We verified that extending
the lag to more than 10 days does not improve the smoother results. This is due to the

decrease in amplitude of the cross-covariance matrix SaSfT with time, either because

Sa and SfT become orthogonal due to the model dynamics working on the latter, or15

because of the continuous decrease of the former due to the successive retrospective
analyses.

5.1 Smoothing improvements on error statistics

The smoother impact on the mean error levels is shown on Fig. 5, for two assimilated
variables (SSH and temperature) and a non-assimilated variable (zonal velocity). As20

expected, the error on SSH or velocity is reduced with the smoother, though to a limited
extent, due to relatively small initial errors in SSH. In the Tropics, where the large scale
dynamics are not dominated by geostrophy, variations in SSH are low in amplitude,
therefore hard to control with data assimilation (Ubelmann et al., 2009). The small
improvements on velocity is due to the fact that corrections on this variable mostly25
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occur near the surface, and errors are computed over the 3 spatial dimensions. The
signature of the smoother impact is then mitigate by the 3-D signal. Results are more
contrasted on the thermodynamical variables: temperature, and salinity. Compared to
the filter analysis, the mean error level of the smoothed states is 10 % to 15 % lower at
the beginning of the experiment (before day 10). After day 10, the smoother effects tend5

to decrease, concomitantly with the filter corrections. This behaviour is satisfactory, and
directly related to the settings of our experiment, where the errors are introduced in the
initial state only. In such settings, the filter converges with time toward an asymptotic
error level, and the innovations tend to be zero. Like the filter correction, the smoother
corrections are based on the filter innovation (Eq. 19). If the innovation is null, whatever10

the reason is, the smoother will not bring any correction. A smoother is not meant
to counterbalance spurious tuning of the filter, but only to make optimal (4-D) use of
observations especially when they are sparse in nature, space, and time. In the case of
a reanalysis, the filter is expected to have a significant impact during all the experiment,
along with the smoother. As we are interested in the smoother effects here, we now15

focus on the first part of the experiment, when the smoothed error level is significantly
lower than the filtered error level.

5.2 The smoother’s dynamics estimation

The smoother is able to reduce the error level of the filter analysis. We now exam-
ine its capacity to estimate dynamically balanced states of the ocean circulation. In-20

deed, a Kalman filter analysis estimate results from a trade-off between dynamics (from
the background estimate) and statistics (from the correction term). But it is still sup-
posed to represent the state of a dynamical system and as such, must be dynamically
balanced, that is, respectful of the dynamics represented by the system’s model. A
smoother estimate must be, at least in theory, closer to the truth than the filter esti-25

mate. But it has also undergone a series of statistically-based corrections that move
this dynamics/statistics trade-off toward statistics, what may further alters its dynamical
balance. To check the representation of the dynamics in the smoothed states (compare
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to the filtered states), we perform a simple test: analysed states (from the filter or the
smoother at day 2, i.e. the first analysed date) are used to initialize a free run of the
model (respectively FreeFilt and FreeSmooth in Table 2). The implicit idea is that if
a state is dynamically inconsistent, this should be reflected on the error evolution, as
illustrated by Rozier et al. (2007).5

Results for error levels in SSH, temperature and zonal velocity are shown on Fig. 6.
First, the error level at day 10 is the same for the filtered run (full black line) and the
FreeSmooth (dotted red line), for all variables, and this is a notable point. Indeed, the
same observations are used in both cases, but the filter assimilates them sequentially
in time while the smoother assimilates them on a same date (here, day 2). It means10

that the smoother could extract the same information from observations, but to cor-
rect a same state. More generally, the evolution of error levels (on both variables) for
FreeSmooth is better during the first 50 days. Beyond, errors tend to converge to the
same level (though more slowly for the temperature), to become close to the FALSE
error level. These results suggest that the smoother corrections are consistent with the15

dynamics, i.e. the reduction of the error level has a real signification on a dynamical
point of view and does not introduce significant instabilities.

A region particularly well-indicated to illustrate this point is the north Brazil zone. Be-
cause of its chaotic dynamics, the initial condition strongly affects the subsequent circu-
lation in this region (especially on the Brazil rings). Figure 7 shows the evolution of the20

error (in velocity) between the free runs and the reference along a transect (between
44◦ W and 52◦ W) at 5◦ N. Figure 8 shows snapshots of the absolute velocity around
this same transect, for different times. The alternation between positive and negative
anomalies (Fig. 7) is typical of phase shifts affecting the propagative structures, here
the Brazil rings. Until day 50, this phase shift is stronger in FreeFilt. If the rings seem25

quite similar in the filtered state and the smoothed state at day 0 (Fig. 8), they clearly
show different evolutions. Rings in FreeSmooth are much close to the rings in REF. For
instance, a ring is correctly formed at day 20 or 30 for FreeSmooth, but this same ring
is not completely untied from the north-Brazil current with FreeFilt. Thus, even if not
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directly visible in the analysed states (day 0), the dynamics is obviously more coherent
with REF in the smoothed state. Still, error levels on the free runs (Fig. 7) and snap-
shots (Fig. 8) after day 50 show that the dynamics in FreeSmooth tends to become
also unphased with REF (though the dynamics is not exactly the same as in FreeFilt).

Given all these considerations, it is obvious that the smoothed solution leads to a5

better estimation of the dynamics, compare to a filtered solution at a same date. The
four-dimensional use of the information from the observations has a real impact on
analysed states. If the parametrisation linked to the filter is optimal, then the implemen-
tation of a smoother gives a better estimated solution, on both statistical and dynamical
point of view. In our experiment though, these results are limited to the beginning of10

the experiment due to the settings of the problem.
Despite its benefits, a remaining obstacle to implement a smoother is the parametri-

sation of the evolutive filter. Even if this formulation is not fully consistent with the
smoother theory, we will now investigate the possibility and the efficiency of retrospec-
tive analyses in a context of fixed-basis formulation of the filter. These results are15

exposed in the next section.

6 Smoother based on a static filter

We present in this section a new formulation for a smoother, based on a static filter,
a so-called optimal interpolation scheme (noted OI). As introduced in Sect. 2.6, this
formulation avoids the problems linked to the evolutive filter (cost and parametrisation),20

and is close to present systems of operational centers. The OI is implemented with the
same parametrisation as the filter, except that Eq. (25) is now replaced by the following
equation:

Sf
k |k−1

=Sa
0, (26)

Sa
0 being the initial basis of error modes.25
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An hypothesis inherent to the implemention of an optimal interpolation scheme is
that the analyses times are distant enough to make the residual errors decorrelate from
one step to the next. To implement the OI scheme with our configuration, we define
a new observation network with a 10-day frequency. Observations themselves are
the same (i.e. they are extracted from REF every 2 days), but are gathered together5

at the nearest analysis days, and assimilated all together these days. For instance,
observations between day 5 and 15 are gathered and assimilated at day 10. Next
assimilation step occurs at day 20, with all observations available between day 15 and
25. Day 10 is now the date of the first assimilation step.

Figure 9 presents a diagram of the smoother implementation. At the filter analysis10

time k, the analysis covariance matrix Sa
k is computed from the background Sa

0, si-
multaneously to the analysis state. This is not done usually with an OI scheme. The
retrospective analysis at time k using the observation at a time k +10 is performed

(corresponding to a 10 day interval), using the cross-covariances matrix Sa
kSa

0
T
. Thus,

the smoother uses informations on residual errors at time k, combined with Sa
0 instead15

of Sf
k+10|k . If Sa

0 is fixed, the matrix Sa
k depends on the time of the analysis (this matrix

is computed every 10 days after an OI analysis step). This form of smoother can be
then considered as half-fixed. The large red circle and the blue plus sign on Fig. 9
represent the smoother analysis with a 10 days retrospective analysis.

Now, it is also possible to perform smoother analyses at intermediate times, every20

2 days for instance. For each of such analyses, the background state is provided by
the model simulation during the OI process. The background error modes must be
defined appropriately, based on already existing bases. In the following experiments,
the modes at times k+2,...,k+8 are simply prescribed with Sa

k , but other sound so-
lutions are possible, such as a linear combination of Sa

k and Sa
0. This was not tested25

here. These intermediate smoother analyses are represented with red squares and
blue crosses on Fig. 9.
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6.1 Smoother’s impact on the optimal interpolation solution

Results on RMS error levels for the optimal interpolation and the smoother based on
OI are shown on Fig. 10. The smoother impact (red circles) is visible on each variable,
assimilated or not. First, the evolution of error levels for the smoothed solution is con-
tinous. Discontinuities inherent to sequential assimilation solutions (visible here every5

10 days, during OI analysis) are smoothed out. Also, even with a very simple config-
uration of cross-covariance matrices, the smoothed solution exhibits lower error levels
than the filtered one, except for some points (between day 20 and 30 for the velocity).
It is finally worth noticing that this smoothing scheme is almost cost-free and could be
applied with current assimilation systems in operational oceanographic centers.10

Note that a 2-days configuration of a smoother can also be used with a 10-days fre-
quency evolutive filter. The smoother needs the propagation of error statistics between
the beginning of an interval and the day of the retrospective assimilation. This scheme
is then similar to the asynchronous Kalman filter described by Hunt et al. (2004).

6.2 Dynamics with a half-fixed basis smoother15

As in the previous section, we here examine the dynamical balance of the smoother
solution. Free runs are initialized at day 10 with the analysed states from OI (FreeOI) or
the smoother based on OI (FreeSmoothOI). The evolution of error levels are shown on
Fig. 11. Even if initial error levels for OI and the smoother are close (especially on tem-
perature and velocity), the behaviours of both free runs are significantly different. The20

error level of FreeOI tends to increase (after day 50) for each variable. On the contrary,
for each variable, the error level of FreeSmoothOI tends to decrease continously. This
is blatant with velocity. Even after day 50, the error level keeps decreasing, suggesting
that the dynamics stay consistent and close to REF. Figure 12 illustrates this point in
the north-Brazil current region. During the 40 first days, the Brazil rings are quite sim-25

ilar between FreeOI or FreeSmoothOI. But at day 80, the rings and the branch of the
north-Brazil current’s retroflection are clearly better simulated in FreeSmoothOI.
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This example shows once again that the improvement of the solution due to the
smoother is not only statistical, but has a real dynamical meaning. The smoother can
be used with a non-optimal system (fixed-basis) and still exhibits significant improve-
ments, both on the average error level and on the dynamics of the solution. Still, one
should keep in mind that the parametrisation of the OI here is not optimal, since it is5

based on the same parametrisation of an evolutive filter. Moreover, as already dis-
cussed, many possibilities can be considered to use a smoother scheme based on OI.
We choosed a simple configuration here, but more sophisticated ways to define the
cross-covariance error matrix could improve the results. These results also suggest
that a smoother scheme could be introduced in current operational centers systems,10

opening new perspectives for upcoming reanalyses of the ocean circulation.

7 Conclusions

The reduced-rank sequential smoother (Cosme et al., 2010) based on the SEEK filter
has been further developed and implemented in a real ocean circulation model. The
main purpose was to study the obstacles to implementing such an assimilation scheme15

in a real reanalysis system, and to study effects of the smoother on the estimation of
the corrected states. The smoother was first implemented as described in its seminal
formulation, i.e. with an evolutive filter. In a second step, a simplified scheme was
introduced, based on optimal interpolation as many of operational centers use, and
its benefits were exposed. A simple twin experiment was set up for this study, based20

on a perturbation of the initial condition. This configuration limited the benefits of the
analysis throughout time, but a focus on the first assimilation steps enabled us to draw
relevant conclusions about the smoother behaviour and benefits.

Technically, the implementation of the smoother algorithm is rather straightforward
(when a filter algorithm is already implemented). It requires only a few extra calculation25

compared to the filter, and can be performed simultaneously to or after a filter pass.
The smoother can then be considered as an additional layer to the filter algorithm.
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A major obstacle to implementing a smoother lies in the parametrisation of an evo-
lutive filter, theoretically needed to define accurately the cross-crovariance error ma-
trices. We used a criterion based on mean error statistics to specify the parameters
associated to the filter. We found that, for the mean error statistics of the filter to be
consistent with the true error, we had to prescribe large observation errors. Moreover,5

the filter efficiency was mostly significant during the first 10 days of the experiment.
To preserve optimality over a longer period, the filter should be used with adaptative
parametrisations (Brankart et al., 2010).

To circumvent this issue, we considered implementing a smoother based on a sim-
pler system of optimal interpolation. To do so, we defined a new algorithm of half-fixed10

basis smoother. The advantage of such formulation is that it could be implemented al-
most as is with current assimilation systems of operational centers. This smoother was
tested with a 10-day frequency observation network, but we also pointed out the ability
of the smoother to provide a solution with a higher frequency (2 days in this case).

The smoother efficiency was studied in both cases: evolutive and fixed error modes.15

Overall, the smoother was able to improve the results compare to a 3D assimilation
schemes, filter or optimal interpolation. Error levels were reduced with the retrospective
assimilation of observations. The smoother impact was mostly significant during the
first 10 days of the experiment, just like the filter, underlying the fact that the smoother
efficiency is strongly related to the parametrisation of the filter (or the optimal interpo-20

lation).
We also could verify that the smoothed solution was dynamically consistent, and

in better dynamical adequacy with the reference than the filtered solution. Thus, the
corrections introduced with the smoother are not only statistical but also have a dy-
namical consistency. This point was surprisingly true in the case of the half-fixed basis25

smoother, what is encouraging in the context of using the smoother to improve the
quality of reanalyses.

We suggest that the smoother could be performed with actual reanalysis systems.
Indeed, the algorithm could be implemented easily and with a negligible cost, and the
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smoother has shown encouraging results with an optimal interpolation system. In other
terms, there is no reason to not use it.
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Table 1. Observation errors of SSH, temperature and salinity for sensitivity experiment
ErrObs01 to ErrObs04.

experiment SSH temperature salinity
name (cm) (◦C)

ErrObs01 0.03 0.8 0.5
ErrObs02 0.08 1.5 1
ErrObs03 0.15 2 1.5
ErrObs04 0.3 3 3
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Table 2. Nomenclature of the different runs.

run name description

REF Interannual run from 1995 to 2005,
used as the reference.

FALSE Perturbed run, initialized on 25 June 2005
with the state of REF from 25 June 2003.

FreeFilt Run initialized on day 2 of the data
assimilation experiment, with the filtered state.

FreeSmooth Run initialized on day 2 of the data
assimilation experiment, with the smoothed state.

FreeOI Run initialized on day 10 of the data assimilation
experiment, with the state analysed with
the optimal interpolation.

FreeSmoothOI Run initialized on day 10 of the data assimilation
experiment, with the smoothed state basis
on optimal interpolation.
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Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother 5

Fig. 1. TATL4 configuration: sea surface temperature is colored
and exhibits the development of TIWs in the center of the bassin;
black contours indicate the 0.5m.s

−1 iso-velocity at 30m depth,
exhibiting the north Brazil current and the rings formation. The
black square boxe illustrates the influence zone of an observation
(see section3.5).

17.75◦N) and with a resolution of ¼ degree. This con-
figuration, previously developed and used by Ubelmann et
al. (2009), is named TATL4 (Tropical ATLantic ¼ degree).
Boundary conditions are extracted from an model simulation
spanning the 1958-2007 period (Dussin et al., 2009). An ini-
tial condition for TATL4 is extracted on january 5, 1995. At-
mospheric forcings (Brodeau et al., 2010) are identical. An
interannual simulation is then performed untill the end of
2005. This run is used as a reference for the twin experiment
and is called REF.

Two main signals dominate the dynamics of the tropical
Atlantic, as illustrated by figure 1. On the one hand, Tropical
Instability Waves (TIWs) develop during summer and fall at
3◦N. They propagate from east to west and exhibit a strong
signal on the sea surface temperature (Legeckis, 1977; Allen
et al., 1995). On the other hand, eddies develop and circu-
late along the north-east coast of the Brazil. These eddies,
know as Brazil Rings (Richardson and Walsh, 1986; Garzoli
and Katz, 1993), are due to the north-Brazil current retroflec-
tion and exhibit a strong signal on velocity (from the surface
to 200-500 m depth). Due to their propagative signatures,
these two signals are interesting objects of studies for a four-
dimensional assimilation experiment.

3.2 Perturbation

To perform a twin experiment, a perturbed ocean state is gen-
erated using the interannual variability. An initial condition
from REF on may 25, 2003 is used to restart the model on
may 25, 2005. This error on initial condition leads to a per-
turbed simulation called FALSE, computed until the end of
2005. The data assimilation experiment starts one month af-
ter the beginning of FALSE, so that the perturbed simula-
tion can partially adjust with the forcings and damp spuri-
ous, high frequency oscillations. The goal of the present data

assimilation experiment is then to correct FALSE so it be-
comes closer to REF. Note that even if a perturbation of the
initial condition is not sufficient to assess the performance of
the smoother for a long term reanalysis, it allows the careful
study of the impact of the smoother analysis and the quality
of corrected states, at least at the beginning of the experi-
ment.

3.3 Simulated observations

Synthetic observations are extracted from REF following the
procedure described by Cosme et al. (2010). Two sets of
observations are generated: in situ data of temperature and
salinity, and altimetric measurements.

In situ data mimic ARGO profilers network. Every two
days, a set of vertical profiles is available, 6◦ apart from each
other. This pattern is shifted by 2◦ from one assimilation step
to the next. It results in a 2◦ density network every 18 days,
close to the average true ARGO network (one profile every
2◦ and every 15 days). The simulated in situ data network
is illustrated on figure 2, for one assimilation cycle (every2
days) and the full coverage (after 18 days).

Altimetric data mimic Jason-type satellite tracks. Every
2 days, a limited number of tracks of Sea Surface Height
(SSH) are available. The periodicity of these tracks is 10
days. Figure 3 provides an example of SSH tracks available
for one assimilation cycle (every 2 days) and shows the com-
plete coverage obtained in 10 days of consecutive altimetric
observations.

We consider the mesurement error is null here: the ob-
servations are not perturbed and can be described asperfect
observations. But the matrixR is not zero because of the
truncation error. Its parametrisation is presented in section 4.

3.4 Initial statistics

As the only source in the initial state error is connected to
model’s time variations, the statisticsSa

0 describing the ini-
tial error covariance are calculated based on model’s time
variability. 270 EOFs are computed from REF, using ocean
states in Summer and Fall between 1995 and 2000. Winter
and Spring are not considered because the experiment spans
the Summer months only and because TIWs or Brazil rings
signatures are mostly present in Summer and Fall. The first
39 EOFs, that represent about 95% of the total variance of the
270 initial EOFs, are selected to form the initial error modes.

3.5 Localisation

A consequence of the order reduction is that statistics may
not be able to faithfully descibe all the correlations, espe-
cially long-distance correlations (Houtekamer and Mitchell,
1998). To prevent the spurious influence of distant obser-
vations during an analysis step, the filter is used with a lo-
calisation scheme (Brankart et al., 2009). This method rules
out long-distance corrections, so that only observations in the

Fig. 1. TATL4 configuration: sea surface temperature is colored and exhibits the development of
TIWs in the center of the bassin; black contours indicate the 0.5 m s−1 iso-velocity at 30 m depth,
exhibiting the north Brazil current and the rings formation. The black square boxe illustrates the
influence zone of an observation (see Sect. 3.5).
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6 Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother

2 days of observation 18 days of observation

Fig. 2. Horizontal distribution of in situ observations network simulated for the experiment. Left: observations available for one assimilation
step (here: June,30 2005). Right: observations coverage after 18 days.

2 days of observation 18 days of observation

Fig. 3. Horizontal distribution of altimetric observations network simulated for the experiment. Left: observations available for one assimi-
lation step (here: June,30 2005). Right: observations coverage after10 days.

neighbourhood of an analysed point are used for the correc-
tion. The size of the neighbourhood is defined as 15◦ zonal
and 10◦ meridional in length (illustrated by the black boxe
on figure1). It is chosen large enough so that at least one
observation is available for each analysis. The zonal length
is larger than the meridional length because the dynamics in
tropical region is mostly zonal, so the correlations are more
consistent in this direction.

4 Evolutive filter

We now present the results of the SEEK smoother in its orig-
inal form, i.e. with evolving error modes, as presented in
Cosme et al. (2010). For the reasons mentioned in section
2.5, we pay particular attention to the accurate estimationof
the forecast error modes (defined by equation 25 in our con-
figuration). It is well known that due to the truncature ofS

essentially, the error modes can collapse or become inconsis-
tent with the true error (error on the mean) with time. The
most common method to avoid this is to use covariance in-

flation. But for the reasons given in section 2.5, it is not our
choice here. Instead, we chose to tune a few parameters con-
trolable in the system: the number of error modes (columns
in S), the size of the localisation domain, and the amplitude
of the (diagonal) observation error matrixR. The adopted
criterion of consistency between errors on the mean and er-
rors estimated by the modes is that the RMS error computed
with the mean,

RMS=

√

√

√

√

1

N×M×P

N
∑

i=1

M
∑

j=1

P
∑

k=1

(xi,j,k−xref
i,j,k)

2,

(with i=1 :N the set of the longitudes,j =1 :N the set of
the latitudes,k=1 :P the set of the vertical levels,xi,j,k the

mean state of the ocean andxref
i,j,k the true state of the ocean,

REF) must be of the same order of magnitude as the square
root of the trace of the covariances matrix (tr(SST )).

The first two parameters, though, are partly constrained
by practical considerations. A high number of error modes
allows an accurate representation of the error space, but re-
quires more CPU times for modes propagation. Several sen-

Fig. 2. Horizontal distribution of in situ observations network simulated for the experiment.
Left: observations available for one assimilation step (here: 30 June 2005). Right: observations
coverage after 18 days.
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6 Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother

2 days of observation 18 days of observation

Fig. 2. Horizontal distribution of in situ observations network simulated for the experiment. Left: observations available for one assimilation
step (here: June,30 2005). Right: observations coverage after 18 days.

2 days of observation 18 days of observation

Fig. 3. Horizontal distribution of altimetric observations network simulated for the experiment. Left: observations available for one assimi-
lation step (here: June,30 2005). Right: observations coverage after10 days.

neighbourhood of an analysed point are used for the correc-
tion. The size of the neighbourhood is defined as 15◦ zonal
and 10◦ meridional in length (illustrated by the black boxe
on figure1). It is chosen large enough so that at least one
observation is available for each analysis. The zonal length
is larger than the meridional length because the dynamics in
tropical region is mostly zonal, so the correlations are more
consistent in this direction.

4 Evolutive filter

We now present the results of the SEEK smoother in its orig-
inal form, i.e. with evolving error modes, as presented in
Cosme et al. (2010). For the reasons mentioned in section
2.5, we pay particular attention to the accurate estimationof
the forecast error modes (defined by equation 25 in our con-
figuration). It is well known that due to the truncature ofS

essentially, the error modes can collapse or become inconsis-
tent with the true error (error on the mean) with time. The
most common method to avoid this is to use covariance in-

flation. But for the reasons given in section 2.5, it is not our
choice here. Instead, we chose to tune a few parameters con-
trolable in the system: the number of error modes (columns
in S), the size of the localisation domain, and the amplitude
of the (diagonal) observation error matrixR. The adopted
criterion of consistency between errors on the mean and er-
rors estimated by the modes is that the RMS error computed
with the mean,

RMS=

√

√

√

√

1

N×M×P

N
∑

i=1

M
∑

j=1

P
∑

k=1

(xi,j,k−xref
i,j,k)

2,

(with i=1 :N the set of the longitudes,j =1 :N the set of
the latitudes,k=1 :P the set of the vertical levels,xi,j,k the

mean state of the ocean andxref
i,j,k the true state of the ocean,

REF) must be of the same order of magnitude as the square
root of the trace of the covariances matrix (tr(SST )).

The first two parameters, though, are partly constrained
by practical considerations. A high number of error modes
allows an accurate representation of the error space, but re-
quires more CPU times for modes propagation. Several sen-

Fig. 3. Horizontal distribution of altimetric observations network simulated for the experiment.
Left: observations available for one assimilation step (here: 30 June 2005). Right: observations
coverage after 10 days.

1220

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/9/1187/2012/osd-9-1187-2012-print.pdf
http://www.ocean-sci-discuss.net/9/1187/2012/osd-9-1187-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
9, 1187–1229, 2012

A reduced rank
smoother’s benefits.

N. Freychet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother 7

ErrObs01 ErrObs02

ErrObs03 ErrObs04

Fig. 4. Influence of temperature observation error on the error statistics. Redcurve represents the true RMS error on temperature and black
curve the error estimated with the filter (y axis: day of the experiment, x axis: RMS error, in◦C). The black dotted curve shows the RMS
error of FALSE. Each figure corresponds to a different parametrisation of temperature error inR. Values are specified in table 4 .

Table 4. Observation errors of SSH, temperature and salinity for
sensitivity experiment ErrObs01 to ErrObs04.

experiment name SSH (cm) temperature (◦C) salinity

ErrObs01 0.03 0.8 0.5
ErrObs02 0.08 1.5 1
ErrObs03 0.15 2 1.5
ErrObs04 0.3 3 3

sitivity experiments, not detailed here, suggested that 39was
a fair number. The localisation parameters must also be pre-
scribed optimally to avoid spurious corrections due to distant
observations and no correction due to absence of close obser-
vations. Again, sensitivity experiments showed that having at
least one observation for each analysed grid point was a fair
choice.

The remaining parameter to be specified is the matrixR,
which represents the confidence to the observations and to
the resulting analysis. This matrix includes the observation
error (including the accuracy of mesurements), but not only.
As mentioned in section 2.4, this matrix is considered diago-
nal. This assumption implies that the diagonal terms should
be inflated to include the ignored non-diagonal terms. More-
over, the truncation error (due to the reduction order) should
also be included inR. This error, as well as the non-diagonal
terms ofR, are not easy to quantify, and a wrong defini-
tion of the diagonal terms ofR can lead to inconsistent error
statistics with the real error. Precedent studies point outthese

aspects, as for instance Liu and Rabier (2002), Rabier (2006)
or Oke et al. (2008). To parametrise correctlyR, several fil-
tering experiments are conducted, with different values for
observations error as precised in table 4. The experiments
last 50 days, starting from june,25 considered as day 0 for the
results. For each experiment, the true RMS error is compare
to the mean estimate error of the filter (tr(SST )). Results are
illustrated with the temperature error levels on Figure 4. The
red curve represents the true error, and the full black curve,
the estimated error. The error of FALSE is also shown with
the black dotted line. To be consistent, the estimated error
(black) should be close to the true error (red).

Results show that for the error statistics to be consistent,
prescribed observation errors have to be large. Indeed, the
best estimated error is obtained with the largest observations
error (ErrObs04 in table 4). This suggests that the trunca-
ture error included inR is ten times larger than a traditional
mesurement error. On the other hand, the mean true error
(in red) is poorly influenced by this parametrisation. Conse-
quently, large observation errors avoid the collapse of error
modes without affecting the quality of the mean state esti-
mate. Also, as a (bad) counterpart of neglecting the model
error, the filter converges to an asymptotic level of error,
what makes the smoother assessment relevant in the first few
weeks of the experiment only. The results are similar for
all other assimilated variables (salinity and SSH, not shown).
The filter is less efficient for velocities, but still the estimated
error on these variables is better with high observation errors,

Fig. 4. Influence of temperature observation error on the error statistics. Red curve represents
the true RMS error on temperature and black curve the error estimated with the filter (y axis:
day of the experiment, x-axis: RMS error, in ◦C). The black dotted curve shows the RMS error
of FALSE. Each figure corresponds to a different parametrisation of temperature error in R.
Values are specified in Table 1.
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8 Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother

as for the assimilated variables.
The parametrisation of an evolutive filter is difficult. The

definition of the error covariance matrix and the control of
its time evolution is tricky, and may lead to consider unusual
values for certain parameters (such as the observations error
in our case). This would be especially true with a more com-
plex system where error sources would not only be linked
to the initial condition, and it certainly is a major obstacle
for the smoother implementation. A strategy to avoid this
problem will be exposed in section 6, but first we discuss the
smoother effects with the previously defined evolutive filter
in the next section.

Table 5. Nomenclature of the different runs.
run name description

REF Interannual run from 1995 to 2005,
used as the reference.

FALSE Perturbed run, initialized on june 25th 2005
with the state of REF from june 25th 2003.

FreeFilt Run initialized on day 2 of the data
assimilation experiment, with the filtered state.

FreeSmooth Run initialized on day 2 of the data
assimilation experiment, with the smoothed state.

FreeOI Run initialized on day 10 of the data assimilation
experiment, with the state analysed with

the optimal interpolation.
FreeSmoothOI Run initialized on day 10 of the data assimilation

experiment, with the smoothed state basis
on optimal interpolation.

5 Smoother’s impact

The smoother is tuned using the parameters defined for the
SEEK filter in the previous section. The fixed-lag parameter,
i.e. the temporal localisation of influence of the observations,
is set to 10 days (5 retrospective assimilations). We verified
that extending the lag to more than 10 days does not improve
the smoother results. This is due to the decrease in ampli-

tude of the cross-covariance matrixSaSfT with time, either
becauseSa andSfT become orthogonal due to the model
dynamics working on the latter, or because of the continu-
ous decrease of the former due to the successive retrospective
analyses.

5.1 Smoothing improvements on error statistics

The smoother impact on the mean error levels is shown on
figure 5, for two assimilated variables (SSH and temperature)
and a non-assimilated variable (zonal velocity). As expected,
the error on SSH or velocity is reduced with the smoother,
though to a limited extent, due to relatively small initial er-
rors in SSH. In the Tropics, where the large scale dynamics
are not dominated by geostrophy, variations in SSH are low

SSH

temperature

velocity

Fig. 5. RMS error for the SSH (m), the temperature (◦C) and
the zonal velocity (m.s−1), for the filter (full black line) and the
smoother (circles). The trajectory of the run FALSE is also repre-
sented with the dotted line.

in amplitude, therefore hard to control with data assimilation
(Ubelmann et al., 2009). The small improvements on veloc-
ity is due to the fact that corrections on this variable mostly
occur near the surface, and errors are computed over the 3
spatial dimensions. The signature of the smoother impact is
then mitigate by the 3D signal. Results are more contrasted
on the thermodynamical variables: temperature, and salin-
ity. Compared to the filter analysis, the mean error level of
the smoothed states is 10% to 15% lower at the beginning of
the experiment (before day 10). After day 10, the smoother
effects tend to decrease, concomitantly with the filter cor-
rections. This behaviour is satisfactory, and directly related
to the settings of our experiment, where the errors are in-
troduced in the initial state only. In such settings, the filter
converges with time toward an asymptotic error level, and
the innovations tend to be zero. Like the filter correction,
the smoother corrections are based on the filter innovation
(equation 19). If the innovation is null, whatever the reason
is, the smoother will not bring any correction. A smoother
is not meant to counterbalance spurious tuning of the filter,
but only to make optimal (4D) use of observations especially

Fig. 5. RMS error for the SSH (m), the temperature (◦C) and the zonal velocity (m s−1), for
the filter (full black line) and the smoother (circles). The trajectory of the run FALSE is also
represented with the dotted line.
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Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother 9

when they are sparse in nature, space, and time. In the case
of a reanalysis, the filter is expected to have a significant im-
pact during all the experiment, along with the smoother. As
we are interested in the smoother effects here, we now focus
on the first part of the experiment, when the smoothed error
level is significantly lower than the filtered error level.

5.2 The smoother’s dynamics estimation

The smoother is able to reduce the error level of the filter
analysis. We now examine its capacity to estimate dynam-
ically balanced states of the ocean circulation. Indeed, a
Kalman filter analysis estimate results from a trade-off be-
tween dynamics (from the background estimate) and statis-
tics (from the correction term). But it is still supposed to
represent the state of a dynamical system and as such, must
be dynamically balanced, that is, respectful of the dynam-
ics represented by the system’s model. A smoother estimate
must be, at least in theory, closer to the truth than the filter
estimate. But it has also undergone a series of statistically-
based corrections that move this dynamics/statistics trade-off
toward statistics, what may further alters its dynamical bal-
ance. To check the representation of the dynamics in the
smoothed states (compare to the filtered states), we perform
a simple test: analysed states (from the filter or the smoother
at day 2, i.e. the first analysed date) are used to initialize a
free run of the model (respectively FreeFilt and FreeSmooth
in table 5). The implicit idea is that if a state is dynamically
inconsistent, this should be reflected on the error evolution,
as illustrated by Rozier et al. (2007).

Results for error levels in SSH, temperature and zonal ve-
locity are shown on figure 6. First, the error level at day
10 is the same for the filtered run (full black line) and the
FreeSmooth (dotted red line), for all variables, and this is
a notable point. Indeed, the same observations are used in
both cases, but the filter assimilates them sequentially in time
while the smoother assimilates them on a same date (here,
day 2). It means that the smoother could extract the same
information from observations, but to correct a same state.
More generally, the evolution of error levels (on both vari-
ables) for FreeSmooth is better during the first 50 days. Be-
yond, errors tend to converge to the same level (though more
slowly for the temperature), to become close to the FALSE
error level. These results suggest that the smoother correc-
tions are consistent with the dynamics, i.e. the reduction of
the error level has a real signification on a dynamical point
of view and does not introduce significant instabilities.

A region particularly well-indicated to illustrate this point
is the north Brazil zone. Because of its chaotic dynamics,
the initial condition strongly affects the subsequent circula-
tion in this region (especially on the Brazil rings). Figure7
shows the evolution of the error (in velocity) between the free
runs and the reference along a transect (between 44◦W and
52◦W) at 5◦N. Figure 8 shows snapshots of the absolute ve-
locity around this same transect, for different times. The al-

SSH

temperature

velocity

Fig. 6. RMS error for the SSH (m), the temperature (◦C) and the
zonal velocity (m.s−1), for the filtered run (full black line) and the
free runs restarted with: the filtered state at day 2 (full red line),
the smoothed state at day 2 (dotted red line). The RMS error for
FALSE is also shown with the dotted black line.

ternation between positive and negative anomalies (figure 7)
is typical of phase shifts affecting the propagative structures,
here the Brazil rings. Until day 50, this phase shift is stronger
in FreeFilt. If the rings seem quite similar in the filtered state
and the smoothed state at day 0 (figure 8), they clearly show
different evolutions. Rings in FreeSmooth are much close to
the rings in REF. For instance, a ring is correctly formed at
day 20 or 30 for FreeSmooth, but this same ring is not com-
pletely untied from the north-Brazil current with FreeFilt.
Thus, even if not directly visible in the analysed states (day
0), the dynamics is obviously more coherent with REF in the
smoothed state. Still, error levels on the free runs (figure 7)
and snapshots (figure 8) after day 50 show that the dynam-
ics in FreeSmooth tends to become also unphased with REF
(though the dynamics is not exactly the same as in FreeFilt).

Given all these considerations, it is obvious that the
smoothed solution leads to a better estimation of the dynam-
ics, compare to a filtered solution at a same date. The four-
dimensional use of the information from the observations has
a real impact on analysed states. If the parametrisation linked

Fig. 6. RMS error for the SSH (m), the temperature (◦C) and the zonal velocity (m s−1), for the
filtered run (full black line) and the free runs restarted with: the filtered state at day 2 (full red
line), the smoothed state at day 2 (dotted red line). The RMS error for FALSE is also shown
with the dotted black line.

1223

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/9/1187/2012/osd-9-1187-2012-print.pdf
http://www.ocean-sci-discuss.net/9/1187/2012/osd-9-1187-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
9, 1187–1229, 2012

A reduced rank
smoother’s benefits.

N. Freychet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

10 Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother

FreeFilt FreeSmooth

Fig. 7. Evolution of absolute error on velocity (in m.s−1), between REF and FreeFilt (left) and FreeSmooth (right). The error iscalculated
along a section localized at 5◦N, and between 40◦W and 50◦W.

to the filter is optimal, then the implementation of a smoother
gives a better estimated solution, on both statistical and dy-
namical point of view. In our experiment though, these re-
sults are limited to the beginning of the experiment due to
the settings of the problem.

Despite its benefits, a remaining obstacle to implement a
smoother is the parametrisation of the evolutive filter. Even
if this formulation is not fully consistent with the smoother
theory, we will now investigate the possibility and the effi-
ciency of retrospective analyses in a context of fixed-basis
formulation of the filter. These results are exposed in the
next section.

6 Smoother based on a static filter

We present in this section a new formulation for a smoother,
based on a static filter, a so-called optimal interpolation
scheme (noted OI). As introduced in section 2.6, this for-
mulation avoids the problems linked to the evolutive filter
(cost and parametrisation), and is close to present systemsof
operational centers. The OI is implemented with the same
parametrisation as the filter, except that equation 25 is now
replaced by the following equation :

S
f

k|k−1
=Sa

0 , (26)

Sa
0 being the initial basis of error modes.
An hypothesis inherent to the implemention of an opti-

mal interpolation scheme is that the analyses times are dis-
tant enough to make the residual errors decorrelate from one
step to the next. To implement the OI scheme with our con-
figuration, we define a new observation network with a 10-
day frequency. Observations themselves are the same (i.e.

they are extracted from REF every 2 days), but are gathered
together at the nearest analysis days, and assimilated all to-
gether these days. For instance, observations between day 5
and 15 are gathered and assimilated at day 10. Next assim-
ilation step occurs at day 20, with all observations available
between day 15 and 25. Day 10 is now the date of the first
assimilation step.

Figure 9 presents a diagram of the smoother implemen-
tation. At the filter analysis timek, the analysis covariance
matrixSa

k is computed from the backgroundSa
0 , simultane-

ously to the analysis state. This is not done usually with an
OI scheme. The retrospective analysis at timek using the
observation at a timek+10 is performed (corresponding to a
10 day interval), using the cross-covariances matrixSa

kS
a
0
T .

Thus, the smoother uses informations on residual errors at
timek, combined withSa

0 instead ofSf

k+10|k. If Sa
0 is fixed,

the matrixSa
k depends on the time of the analysis (this matrix

is computed every 10 days after an OI analysis step). This
form of smoother can be then considered as half-fixed. The
large red circle and the blue plus sign on figure 9 represent
the smoother analysis with a 10 days retrospective analysis.

Now, it is also possible to perform smoother analyses at
intermediate times, every 2 days for instance. For each of
such analyses, the background state is provided by the model
simulation during the OI process. The background error
modes must be defined appropriately, based on already exist-
ing bases. In the following experiments, the modes at times
k+2,...,k+8 are simply prescribed withSa

k, but other sound
solutions are possible, such as a linear combination ofSa

k and
Sa
0 . This was not tested here. These intermediate smoother

analyses are represented with red squares and blue crosses
on figure 9.

Fig. 7. Evolution of absolute error on velocity (in m s−1), between REF and FreeFilt (left) and
FreeSmooth (right). The error is calculated along a section localized at 5◦ N, and between
40◦ W and 50◦ W.
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REF

day 2

FreeFilt FreeSmooth

day 10

day 20

day 30

day 40

day 60

Fig. 8. Absolute error map for the velocity (in m.s−1), for REF (left), FreeFilt (middle) and FreeSmooth (right). Day 0 (top)is the day of the
restart. The snapshots are given every 10 days.Fig. 8. Absolute error map for the velocity (in m s−1), for REF (left), FreeFilt (middle) and

FreeSmooth (right). Day 0 (top) is the day of the restart. The snapshots are given every
10 days.
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12 Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother

Fig. 9. Schematic representation of the half-fixed basis smoother with a 10-daysfrequency observations network. Analysis covariance matrix
(in green) are computed after each optimal interpolation analysis (at timek andk+10). The cross-covariance matrix used for the smoother
analysis between datek andk+8 (respectivelyk+10 andk+20) is indicated in red (respectively blue). Smoothed states are indicated with
red or blue symbols (see section 6 for more explanations).

SSH

temperature

velocity

Fig. 10. RMS error for the SSH (m), the temperature (◦C) and the
zonal velocity (m.s−1), for the optimal interpolation (full black line)
and the smoother (red circles).

6.1 Smoother’s impact on the optimal interpolation so-
lution

Results on RMS error levels for the optimal interpolation
and the smoother based on OI are shown on figure 10. The

smoother impact (red circles) is visible on each variable, as-
similated or not. First, the evolution of error levels for the
smoothed solution is continous. Discontinuities inherentto
sequential assimilation solutions (visible here every 10 days,
during OI analysis) are smoothed out. Also, even with a
very simple configuration of cross-covariance matrices, the
smoothed solution exhibits lower error levels than the fil-
tered one, except for some points (between day 20 and 30 for
the velocity). It is finally worth noticing that this smoothing
scheme is almost cost-free and could be applied with current
assimilation systems in operational oceanographic centers.

Note that a 2-days configuration of a smoother can also be
used with a 10-days frequency evolutive filter. The smoother
needs the propagation of error statistics between the begin-
ning of an interval and the day of the retrospective assim-
ilation. This scheme is then similar to the asynchronous
Kalman filter described by Hunt et al. (2004).

6.2 Dynamics with a half-fixed basis smoother

As in the previous section, we here examine the dynamical
balance of the smoother solution. Free runs are initialized
at day 10 with the analysed states from OI (FreeOI) or the
smoother based on OI (FreeSmoothOI). The evolution of er-
ror levels are shown on figure 11. Even if initial error levels
for OI and the smoother are close (especially on temperature
and velocity), the behaviours of both free runs are signifi-
cantly different. The error level of FreeOI tends to increase
(after day 50) for each variable. On the contrary, for each
variable, the error level of FreeSmoothOI tends to decrease
continously. This is blatant with velocity. Even after day
50, the error level keeps decreasing, suggesting that the dy-
namics stay consistent and close to REF. Figure 12 illustrates
this point in the north-Brazil current region. During the 40
first days, the Brazil rings are quite similar between FreeOI

Fig. 9. Schematic representation of the half-fixed basis smoother with a 10-days frequency
observations network. Analysis covariance matrix (in green) are computed after each optimal
interpolation analysis (at time k and k+10). The cross-covariance matrix used for the smoother
analysis between date k and k+8 (respectively k+10 and k+20) is indicated in red (respec-
tively blue). Smoothed states are indicated with red or blue symbols (see Sect. 6 for more
explanations).
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12 Freychet et al.: Obstacles and benefits of the implementation of a Reduced rank smoother

Fig. 9. Schematic representation of the half-fixed basis smoother with a 10-daysfrequency observations network. Analysis covariance matrix
(in green) are computed after each optimal interpolation analysis (at timek andk+10). The cross-covariance matrix used for the smoother
analysis between datek andk+8 (respectivelyk+10 andk+20) is indicated in red (respectively blue). Smoothed states are indicated with
red or blue symbols (see section 6 for more explanations).

SSH

temperature

velocity

Fig. 10. RMS error for the SSH (m), the temperature (◦C) and the
zonal velocity (m.s−1), for the optimal interpolation (full black line)
and the smoother (red circles).

6.1 Smoother’s impact on the optimal interpolation so-
lution

Results on RMS error levels for the optimal interpolation
and the smoother based on OI are shown on figure 10. The

smoother impact (red circles) is visible on each variable, as-
similated or not. First, the evolution of error levels for the
smoothed solution is continous. Discontinuities inherentto
sequential assimilation solutions (visible here every 10 days,
during OI analysis) are smoothed out. Also, even with a
very simple configuration of cross-covariance matrices, the
smoothed solution exhibits lower error levels than the fil-
tered one, except for some points (between day 20 and 30 for
the velocity). It is finally worth noticing that this smoothing
scheme is almost cost-free and could be applied with current
assimilation systems in operational oceanographic centers.

Note that a 2-days configuration of a smoother can also be
used with a 10-days frequency evolutive filter. The smoother
needs the propagation of error statistics between the begin-
ning of an interval and the day of the retrospective assim-
ilation. This scheme is then similar to the asynchronous
Kalman filter described by Hunt et al. (2004).

6.2 Dynamics with a half-fixed basis smoother

As in the previous section, we here examine the dynamical
balance of the smoother solution. Free runs are initialized
at day 10 with the analysed states from OI (FreeOI) or the
smoother based on OI (FreeSmoothOI). The evolution of er-
ror levels are shown on figure 11. Even if initial error levels
for OI and the smoother are close (especially on temperature
and velocity), the behaviours of both free runs are signifi-
cantly different. The error level of FreeOI tends to increase
(after day 50) for each variable. On the contrary, for each
variable, the error level of FreeSmoothOI tends to decrease
continously. This is blatant with velocity. Even after day
50, the error level keeps decreasing, suggesting that the dy-
namics stay consistent and close to REF. Figure 12 illustrates
this point in the north-Brazil current region. During the 40
first days, the Brazil rings are quite similar between FreeOI

Fig. 10. RMS error for the SSH (m), the temperature (◦C) and the zonal velocity (m s−1), for the
optimal interpolation (full black line) and the smoother (red circles).
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SSH

temperature

velocity

Fig. 11. RMS error for the SSH (m), the temperature (◦C) and the
zonal velocity (m.s−1), for the optimal interpolation (full black line)
and the free runs restarted with: the corrected state at day 10 with
OI (full red line), the smoothed state based on OI at day 10 (dotted
red line). The RMS error for FALSE is also indicate with the dotted
black line.

or FreeSmoothOI. But at day 80, the rings and the branch of
the north-Brazil current’s retroflection are clearly better sim-
ulated in FreeSmoothOI.

This example shows once again that the improvement of
the solution due to the smoother is not only statistical, buthas
a real dynamical meaning. The smoother can be used with a
non-optimal system (fixed-basis) and still exhibits significant
improvements, both on the average error level and on the dy-
namics of the solution. Still, one should keep in mind that the
parametrisation of the OI here is not optimal, since it is based
on the same parametrisation of an evolutive filter. Moreover,
as already discussed, many possibilities can be considered
to use a smoother scheme based on OI. We choosed a sim-
ple configuration here, but more sophisticated ways to define
the cross-covariance error matrix could improve the results.
These results also suggest that a smoother scheme could be
introduced in current operational centers systems, opening
new perspectives for upcoming reanalyses of the ocean cir-
culation.

7 Conclusions

The reduced-rank sequential smoother (Cosme et al., 2010)
based on the SEEK filter has been further developed and im-
plemented in a real ocean circulation model. The main pur-
pose was to study the obstacles to implementing such an as-
similation scheme in a real reanalysis system, and to study
effects of the smoother on the estimation of the corrected
states. The smoother was first implemented as described in
its seminal formulation, i.e. with an evolutive filter. In a
second step, a simplified scheme was introduced, based on
optimal interpolation as many of operational centers use, and
its benefits were exposed. A simple twin experiment was set
up for this study, based on a perturbation of the initial con-
dition. This configuration limited the benefits of the analysis
throughout time, but a focus on the first assimilation steps
enabled us to draw relevant conclusions about the smoother
behaviour and benefits.

Technically, the implementation of the smoother algorithm
is rather straightforward (when a filter algorithm is already
implemented). It requires only a few extra calculation com-
pared to the filter, and can be performed simultaneously to or
after a filter pass. The smoother can then be considered as an
additional layer to the filter algorithm.

A major obstacle to implementing a smoother lies in the
parametrisation of an evolutive filter, theoretically needed to
define accurately the cross-crovariance error matrices. We
used a criterion based on mean error statistics to specify the
parameters associated to the filter. We found that, for the
mean error statistics of the filter to be consistent with the true
error, we had to prescribe large observation errors. Moreover,
the filter efficiency was mostly significant during the first 10
days of the experiment. To preserve optimality over a longer
period, the filter should be used with adaptative parametrisa-
tions (Brankart et al., 2010).

To circumvent this issue, we considered implementing a
smoother based on a simpler system of optimal interpola-
tion. To do so, we defined a new algorithm of half-fixed basis
smoother. The advantage of such formulation is that it could
be implemented almostas iswith current assimilation sys-
tems of operational centers. This smoother was tested with a
10-day frequency observation network, but we also pointed
out the ability of the smoother to provide a solution with a
higher frequency (2 days in this case).

The smoother efficiency was studied in both cases: evolu-
tive and fixed error modes. Overall, the smoother was able
to improve the results compare to a 3D assimilation schemes,
filter or optimal interpolation. Error levels were reduced with
the retrospective assimilation of observations. The smoother
impact was mostly significant during the first 10 days of the
experiment, just like the filter, underlying the fact that the
smoother efficiency is strongly related to the parametrisation
of the filter (or the optimal interpolation).

We also could verify that the smoothed solution was dy-
namically consistent, and in better dynamical adequacy with

Fig. 11. RMS error for the SSH (m), the temperature (◦C) and the zonal velocity (m s−1), for the
optimal interpolation (full black line) and the free runs restarted with: the corrected state at day
10 with OI (full red line), the smoothed state based on OI at day 10 (dotted red line). The RMS
error for FALSE is also indicate with the dotted black line.
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REF

day 10

FreeOI FreeSmoothOI

day 40

day 80

Fig. 12.Absolute error map for the velocity (in m.s−1), for REF (left), the run restarted with a corrected state for OI (middle) and a smoothed
state based on OI (right). Day 0 (top) is the day of the restart. The snapshots are given every 40 days.

the reference than the filtered solution. Thus, the corrections
introduced with the smoother are not only statistical but also
have a dynamical consistency. This point was surprisingly
true in the case of the half-fixed basis smoother, what is en-
couraging in the context of using the smoother to improve
the quality of reanalyses.

We suggest that the smoother could be performed with ac-
tual reanalysis systems. Indeed, the algorithm could be im-
plemented easily and with a negligible cost, and the smoother
has shown encouraging results with an optimal interpolation
system. In other terms, there is no reason to not use it.
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