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We thank the reviewer for his/her careful reading of our paper, for his/her acknowledg-
ment of the general quality of the manuscript, and for his/her remarks that will help
improving the clarity of the mathematical background. We did our best to take them
into account as explained below.

We agree with the reviewer that it is usually better if the mathematical reasons ex-
plaining the effect that is observed are explored before the applications. This is why
we have added a new section 2.4, which provides the required theoretical background
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(see below). However, it is also important not to forget that illustrating the importance
of this effect is not the only originality of this paper (as pointed out by reviewer 2),
which is also written to show that an accurate approximation for the anamorphic trans-
formations (providing a general non-Gaussian description of the marginal distribution
for each random variable) can be obtained using a technically simple and efficient al-
gorithm. Moreover, in our case, the theoretical basis for the effect already exists (as
also pointed out by reviewer 2) and we used five examples to show how important it is
in various ocean applications:

1. First of all, as mentioned in the introduction, we already studied the effect of
anamorphic transformations on correlations in a previous paper by Béal et al.
(2010). In that paper, we already explained the mathematical reason for which
anamorphic transformations can lead to a better description of correlation (i.e. the
replacement of the linear correlation coefficient by a nonparametric measure of
correlation like rank correlation, see below). We also presented a lot of examples
(using scatterplots), which allowed us to discriminate the situations in which (i) the
Gaussian assumption is sufficient, (ii) anamorphic transformations improve the
description of the data, and (iii) anamorphic transformations do not help (even if
they never introduce spurious correlations, and almost never remove meaningful
correlations); The purpose of the present paper is then to illustrate the same
effect on spatial correlations (not shown in Béal et al., 2010).

2. Second, it is not really exact to say that we do not explain the effect of the trans-
formation on the correlations. It is not done in section 2, but in the examples.
First, in the description of Fig. 5:

“This means that the MLD response to Gaussian parameter perturbations is not
Gaussian, as illustrated in Fig. 5 (left panel) by a scatterplot of MLD vs SST at
114◦W 0◦N. As a consequence, the joint distribution of MLD and SST cannot
be bi-Gaussian, as visually obvious from the clear nonlinearity of the regression
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line (i.e. the line of maximum MLD probability for every given SST). In the trans-
formed variables (Fig. 5, right panel), even if the marginal distribution for each
variable is now close to Gaussian (by construction), the joint distribution is still
not bi-Gaussian (larger MLD dispersion for small SST than for large SST). But
at least the regression line is now close to linear, with the direct consequence of
increasing the linear correlation coefficient. This phenomenon explains why the
spatial correlation structure can only be improved by consistent local anamorphic
transformations.”

And second, in the description of Fig. 6:

“Going to a nonlinear measure of correlation (like the rank correlation, in the mid-
dle panels of Fig. 6) is only useful if the transformation can help linearizing the
regression line between the two random variables (as illustrated in Fig. 5). The
rank correlation was indeed introduced by Spearman (as explained by Von Mises,
1964) to produce this effect and thus to go beyond the linear correlation coeffi-
cient (of Pearson), as a measure of the (nonlinear) dependency between random
variables. Furthermore, since the linear correlation structure after a local Gaus-
sian anamorphosis is very similar to rank correlation (compare right and middle
panels in Fig. 6), this explains why the correlation radius is generally increased
by the transformation.”

The same explanations apply to all following examples, which is why it is also
summarized in the conclusion:

“These effects may be understood by observing that the linear correlation coef-
ficient (Pearson) between the transformed variables corresponds to a nonlinear
measure of correlation between the original variables, which is very similar to the
rank correlation (Spearman).”

3. And third, there is an abundant statistical literature discussing the advantages
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of nonparametric correlations (like Spearman’s rank correlation) as compared to
the linear correlation coefficient (Pearson). In particular, nonparametric correla-
tions are (a) more adequate to see a nonlinear dependence between random
variables, and (b) more robust to the presence of outliers in the data. This can be
illustrated by the famous example of the Anscombe’s quartet (Anscombe, 1973):

http://en.wikipedia.org/wiki/Anscombe’s_quartet

showing that the linear correlation coefficient is unable to see the perfect (nonlin-
ear) dependence between the random variables in example (2), and is very sensi-
tive to the presence of outliers in examples (3) and (4). (Anscombe, 1973 already
stated that “case (2) can sometimes be brought back to case (1) by transforming
the x-scale or the y-scale or both”, which is exactly what is done with anamor-
phic transformations of the variables.) The advantage of using nonparametric
correlations in such cases is also explained in many textbooks, for instance, in
wikipedia:

http://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient

where the basic phenomenon is well illustrated by scatterplots, and many refer-
ences are given. It is particularly clearly and briefly summarized in Numerical
Recipes (Press et al., 2004):

“We could construct some rather artificial examples where a correlation could be
detected parametrically (e.g. in the linear correlation coefficient r), but could not
be detected nonparametrically. Such examples are very rare in real life, however,
and the slight loss of information in ranking is a small price to pay for a very major
advantage: When a correlation is demonstrated to be present nonparametrically,
then it is really there! (That is, to a certainty level that depends on the significance
chosen.) Nonparametric correlation is more robust than linear corrrelation, more
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resistant to unplanned defects in the data, in the same sort of sense that the
median is more robust than the mean.”

Moreover, these explanations from the statistical literature are equivalent to the
reasons given in the field of Geostatistics for the effect of anamorphic transfor-
mations on the correlation structure (as pointed out by the second review).

Consequently, what is shown in the paper already closely corresponds to what is sug-
gested by the reviewer, i.e. use a selection of examples to illustrate a result that is
generally valid (and more specifically, in our case, show the importance of this effect in
many ocean applications).

Nevertheless, it is true that the clarity of the manuscript could be improved by giving
the theoretical basis in section 2, before going to the examples, instead of explaining
things step by step as the examples become more and more complicated. This is why
we have added a new section 2.4, which provides a brief summary of the theoretical
background, together with references in which the reader can find more comprehensive
explanations:

2.4 Effect on correlations

However, since the examples given in the following sections are mainly dedicated to
illustrate the effect of anamorphic transformations on spatial correlations, it is certainly
useful to provide first a summary of the theoretical background explaining the effect that
can be expected. For that purpose, we assume that we have two non-Gaussian random
variables X1 and X2 (with marginal cdfs F1 and F2) that have been transformed into
the Gaussian variables Z1 and Z2 (with the same cdf G). First of all, it is important to
remember that, since the transformations are invertible, there is no loss of information
induced by the anamorphosis, and the statistical dependence (in a general sense)
between the random variables remains unchanged, i.e. the reduction of entropy gained
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from the knowledge of the other variable (i.e. the mutual information I) remains the
same:

I(X1, X2) = H(X2)−H(X2|X1) = H(Z2)−H(Z2|Z1) = I(Z1, Z2) (1)

which can easily be verified by introducing the change of variables in the definition of
entropy [H(X2)] and conditional entropy [H(X2|X1)]. Consequently, it is only the effect
of anamorphic transformations on linear correlations that we are going to investigate,
since this is the only kind of correlation that can be described by a Gaussian model.

A first insight into this problem can easily be obtained by remarking that, if there exists
separate bijective transformations for X1 and X2 transforming their joint non-Gaussian
distribution into a bi-Gaussian distribution for Z1 and Z2, then the anamorphic trans-
formation given by Eq. (1) [in the paper] provides the required transformations. This is
obvious since the marginal pdfs of a bi-Gaussian distribution are both Gaussian, and
the only backward anamorphosis (except for any unimportant additional linear change
of variable) transforming the Gaussian marginal pdf for Z1 and Z2 into the right marginal
pdfs for X1 and X2 is the one given by Eq. (1). In this ideal case, the mutual information
is related to the linear correlation coefficient ρZ1Z2 between the transformed variables
(e.g. Cover and Thomas, 2006) by:

I(X1, X2) = I(Z1, Z2) = −1
2

ln(1− ρ2
Z1Z2

) (2)

As a direct corollary, we can see that, if the variable X1 and X2 are tightly correlated
along a monotonic nonlinear curve (i.e. the ideal situation to estimate X2 from an ob-
servation of X1, but in which linear estimation methods can be very inaccurate), then
the anamorphic transformation will transform this curve into a straight line (so that the
two marginal pdfs can be simultaneously Gaussian). In this case, the nonlinear depen-
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dence between X1 and X2 (resulting from their non-Gaussian behaviour) is fully trans-
formed into a linear dependence, which is then perfectly described by the bi-Gaussian
pdf (i.e. linear estimation methods become truly optimal). And the linear correlation co-
efficient, which only imperfectly described the perfect nonlinear dependence between
X1 and X2, is always amplified by the transformation (|ρX1X2 | < |ρZ1Z2 | ' 1). This first
explanation thus covers all situations in which |ρZ1Z2 | is close to 1, because this means
that all transformed values are aligned close to a straight line (as a result of the trans-
formation of a nonlinear regression curve into a straight line). This kind of behaviour is
what is observed for spatial correlations in most examples described in section 3 to 7.

Nevertheless, it is important to stay aware that, in general, only the marginal distribu-
tions p(Z1) and p(Z2) are ensured to be Gaussian, and that assuming that p(Z1, Z2)
is bi-Gaussian is only an approximation. This is why, in this case, it is much more
difficult to make general mathematical statements about the transformation of linear
correlations. A useful way to understand how linear correlations are modified by the
transformation X1, X2 → Z1, Z2 is to observe that the linear coefficient between the
transformed variables Z1 and Z2 corresponds to a nonparametric measure of correla-
tion between the original variables X1 and X2, because there is an abundant statistical
literature explaining the advantages of nonparametric correlations as compared to lin-
ear correlations (e.g. Hollander and Wolfe, 1973; Corder and Foreman, 2009). In sum-
mary, the two main advantages are (a) that they are more adequate to see a nonlinear
dependence between random variables (for the same kind of reason as in the ideal
case described above), and (b) that they are more robust to the presence of outliers
in the data. These two cases correspond to the situations in which the linear correla-
tion can provide an inaccurate representation of the dependence between the random
variables (as illustrated in the examples of Anscombe, 1974). And the basic reason
underlying these two improvements is the derivation of variables that are identically
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distributed (Z1 and Z2 are both normal in our case).

The oldest and most simple example of a nonparametric measure of correlation is the
rank correlation (Spearman, 1904; Kendall, 1962), which is defined as the linear cor-
relation between the rank of each member in the ensemble. Hence, this corresponds
to computing a linear correlation between uniform sets of integers between 1 and m,
which is thus close to computing a linear correlation after a uniform anamorphosis (i.e.
with a uniform target pdf), instead of a Gaussian anamorphosis. (This is only approxi-
mate because, unlike uniform anamorphosis, the computation of the rank is not invert-
ible, so that there is a small loss of information in the operation.) The close similarity
between the rank correlation between X1 and X2 and the linear correlation between Z1

and Z2 was already discussed in Béal et al. (2010), and it is further illustrated here in
the example of section 4 (Fig.6). And it is the use of such a nonparametric measure of
correlation between X1 and X2 (i.e. the linear correlation coefficient ρZ1Z2 between the
transformed variables Z1 and Z2) instead of the linear correlation coefficient ρX1X2 that
is the fundamental reason explaining the improvement of the correlation structure that
is observed in the rest of this paper, and that was also observed in other applications
of anamorphosis in Geostatistics (e.g. Chilès and Delfiner, 1999).

Other remarks:

1. We do not agree with the statement that “the authors rely on the assumption
that only a Gaussian description of uncertainties is reliable”, since we explain
troughout the paper that anamorphic transformations (if diagnosed from the en-
semble) provide a general non-Gaussian description of the marginal distributions,
and since it is explained in the introduction why it may often be a good practical
compromise:

“However, even if an explicit stochastic modelling is used to solve a practical
problem, there is often a strong temptation (in large size applications) to sim-
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plify the result using a Gaussian model, because it is much more efficient (i) to
describe the uncertainties (by the mean and covariance), and (ii) to assimilate
observations (using linear update formulas, as in the ensemble Kalman filter,
see Evensen and van Leeuwen, 1996). Without a prior assumption about the
shape of the probability distribution, large size problems are indeed very com-
plex in general (van Leeuwen, 2009; Bocquet et al., 2010), mainly because the
size of the sample that is required to identify a general multivariate distribution
increases exponentially with the number of dimensions (curse of dimensionality).
To circumvent this difficulty, one possible simplification is to look for univariate
nonlinear changes of variables (anamorphosis transformations) transforming the
marginal distribution of each random variable into a Gaussian distribution. One-
dimensional probability distributions can indeed be identified with a much smaller
sample, and it may well happen that such a separate transformation for each
random variable also helps improving the Gaussianity of their joint distribution
(although this needs to be checked in every practical application).”

The first paragraph of the conclusion looks also quite clear about that:

“Many kinds of ocean uncertainties cannot be accurately described using a Gaus-
sian model. This is particularly obvious in the examples of ecosystem uncertain-
ties (in sections 4, 5 and 7) and sea ice uncertainties (in section 6), although this
may also be true for ocean dynamics uncertainties (as in the mixed layer depth
example in section 3). (. . . ) Nevertheless, even with the available ensemble (a
few hundred members in all examples described in the paper), it is certainly pos-
sible to go beyong the Gaussian assumption in the description of the marginal
distribution for any individual random variable (. . . ). In this paper, we suggested
that a very significant improvement can already be obtained with a very simple
non-Gaussian description of the marginal distributions (histograms), based on a
few quantiles of the ensemble (typically deciles, as in our examples). (. . . )”
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2. It is incorrect to say that “the anamorphosis transformation is performed inde-
pendently for each single grid point”, or that they are “different and unknown
functions”, because they are diagnosed from the ensemble to transform (approx-
imately) each marginal pdf into a Gaussian pdf. Thus, if the random variables at
every model grid point are not independent, then the transformation are also not
independent. On the contrary, the transformations are exactly what is needed to
transform a linear correlation into a nonparametric correlation (resembling rank
correlation, see above).

3. About the large correlation between the Loop current and the Western coast of
the Gulf of Mexico, we agree that they cannot be expected to represent real
model errors. The large correlations are due to the very simplistic assumption
that is made to generate the ensemble (constant parameter perturbations over
the whole Gulf of Mexico). Our purpose is here to evaluate the effect of anamor-
phosis transformations on correlations, not to discuss the validity of the ensemble
to represent actual model errors. See our answer to the minor comment 2 of re-
viewer 2 for more details, and for the clarification that we have included in the
paper.
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