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Flow and mixing around a glacier tongue

Abstract

A glacier tongue floating in the coastal ocean @nésa significant obstacle to the
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1. Introduction
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challenge in high-latitude earth system sciencaps Grevaag et al. 201Rignot et al.
2010 where relatively long timescales and complexrti@raline and pressure effects

interact with cryogenic topography that is contihuehanging. Oceanic mixing in polar
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behaviour and there are the additional frictior@irddary effects of the frozen upper
surface (McPhee 2008).

Glacier (or ice) tonguesdd additional complexity to coastal ice-ocean

interaction. These featurgermed by glacier outflows into the coastal ocezamn extend

many ten®f kilometers from shore (Frezzotti 1997) and be mamydreds of meters
thick in places. Such cryogenic structures sigaiitly influence local circulation and

mixing (Jacobs et al. 1981; Legresy et al. 200#)the case of flow around a glacier
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Ice-ocean interaction processes are importantituation like southern
McMurdo SoundAntarcticawhere Haskell Strait forms an oceanic connectigtvben

the western Ross Sea and the cavity beneath thieimedhRoss and McMurdo Ice
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Ross Sea waters (Robinson et al. 2010). The falese waters is dependent on
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transport and mixing processes in the region. &kahange influences sea ice grqwth,
which in turn affects climate processes over laggce and time scales (Hellmer 2004;

Dinniman et al. 2007; Robinson et al. 2010).
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been observed to influence local vertical stradifien through formation of diffusive- -

convective layeringJacobs et al. 1981)t has also been suggested that such glacier/ice

tongues generate local sources of supercooled yaatprDebenham 1965; Jeffries and

Weeks 1992) — water cooled at depth to the infesezing temperature but then advected
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interaction between, small-scale mixing and adveqgtrocesses. Much work has been
developed relating to the cryomechanics and thexedff the ocean on the glacier tongue

(see Squire et al. 1994 and papers therein). Alsas@roviding evidence for the effect
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is to present newheamicrostructure observations providing evidencelef/ated ocean
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of local supercooling andl{) generalization of the results beyond the Ef&@ how an
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2. Methods

In November 2009 we conducted exploratory oceamigcaneasurements

within 30 m of the sidewall of the EGT at a stat@ailed Microstructure Camp (MSC).

Whilst brief, the sampling was timed such that wptared a diurnal tidal cycle of

turbulence data during the fastest tidal flows glaith several tidal cycles of upper

water column velocity data. Tidal elevation datxrevrecorded at Scott Base near Cape
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experiment.
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Razorback IslandFigure 2, Figure 3a)Water depths near its tip are around 400 m
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1911 and at some point during the 1940s (RobinadrHaskell, 1990).

2.2 Acoustic Doppler current profiler

A 300 kHz acoustic Doppler current profiler (ADCRDPI Workhorse) was

deployed through a 650 mm diameter hole in thenPtBick first year ice at the MSC for
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a four day periodHigure 4) ~1 km shoreward from the tip on the north sidéhefEGT -~
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the first measurements starting 4 m below thise ABCP used the same hole as the

microstructure profiler, with the ADCP being hetddne side. Because of judicious

beam orientation there were no obvious effectaégnADCP data due to the profiler

(whereas we have experienced substantial inteiderensimilar applications in other

experiments). The sampling recorded two-metrekth@docity bins every five minutes.

Good quality data were typically resolved down épiths of 70 m and as much as 120 m.

This is good penetration for this type of instrumi@rthese waters where we have

previously observed far shallower penetration duledk of suitable scatterers (Leonard

et al., 2006; Stevens et al. 2006).

Velocity shear magnitudghs was resolved from the ADCP vertical derivative of

horizontal velocity componentsandv (east-west and north-south respectively) so that
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A magnetic declination offset of 144 degrees wakited. Compass testing did not

1/2

indicate any inconsistencies due to the near-aniagnetic field.

2.3 Microstructure profiler
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action to counter the rotation by reversing theshas as well as leaving the profiler to
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As described in Stevens et al. (2009), energy ghsisin rates were resolved from

the dual shear probe profiler using standard teglas (Prandke 2005). The profiles

were segmented into five-thick bins that were overlapped by 50%. Analysst f

corrected for profiler vibration, identified thdieble section of the spectrum by
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comparing with the vibration spectrum derived fraocelerometers, and then isolated a

dissipation spectrum. The tail beyond this vilmatimit was substituted with the tail of

a Nasmyth model spectrufRoget et al. 2006)The dissipation rate was then calculated

with the integrale = 7.5vISmdk (Prandke 2005) wheteis the wave number ar®}, is
k

the shear spectrum. The noise floor in termswés around 3xI8 m?s®. This was,

however, not a fixed quantity as it depended ooraber of variables like cable influence

that were not exactly the same in every profiléirty eightprofiles were recordeavith

a total profiled distance of over 11 km.
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whereg, is a reference (background) density grig gravitational acceleratioriThe
gradient Richardson NumbeRj, = N2/ Sh,” provides a measure of shear-induced

instability whereby values substantially less thaity are likely to be or become

unstable.Values ofRi, whereN? was less that 19s? were rejected (around 8% of data

values).

3. Observations

3.1 Sea-ice conditions, regional circulation adedi

At the time of sampling McMurdo Sound sea ice covas in retreat after a

decade of record coverage due to the large iceloétie early 2000’s (Robinson et al.

2010). Pack ice and open water were present gfé ®oyds some 20 km to the north of

the sampling location. Much of the Sound from tine, down to a little south of the
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EGT was first year ice5gure J) with multiyear fast ice confined to the westehoes -

and Erebus Bay. The tip of the EGT extends inon2 thick first year ice beyond the

fast ice by a few km. There was a residual mudtiiee bridge of ice at least 4 m thick
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tides in the region are around 1 m in peak-peakagilen (Goring and Pyne, 2003) with a
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3.2 Velocity data
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than the local depth of the EGT (=50 m) shows theite were some clear differences in

apparent trajectory. There was partial flow régaifion around day 323 with the deeper

flow reversing whilst the shallower flow did nothis diagram shows the westward trend

clearly along with the anti-clockwise sense of ibition.
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P { Formatted: Not Highlight

(323.6-324.6) enables closer examinatiorhefipulse During this day, (this was the .-

strongest measured flow during the sampled petfepulsevas located on the rising

phase of the tid€323.85-324.05and, at the observation point at least, this veas |s

10



Flow and mixing around a glacier tongue

) { Deleted: Figure 6 ]

p { Deleted: deepened

p { Deleted: around
lasted=4 hours. It was followed kgpparenpscillationswhereby there were moderate - { Deleted: some

AN

A

W
\

N ‘[ Deleted: wave-like

flow accelerations for short periOdS Spatgzé—g U"J[‘UEQS@P@E'[, ,Q'IQQUQQQ'MUQJJQW, o : Deleted: “ringing” (using an
N I acoustic analogy)
within the pulse was directed the northeast whilst the flow before and after varied buit . | peletea:
\z\ \\\\\\‘{ Deleted: a
with a net westerly directiopFlow magnitudg®ther than during the pulse were ' "\ { petetea:

o 0 (N

[T -
[ \\{ Deleted: little over an hour
\

comparable witHocations away from the coagst (Stevens et al. 2B@Binson2017).

************************************************** -\ | Deleted: pulse, including its

b\ | trailing ringing, moved mainly

Theflow pattern includeglelatively strong vertical flogthat reached up to 10 CI’\;T\\\ [ eastward. The
P

Vol

7777777777777777777777777777777777777777 R { Deleted: preceding J
- . . i A
s (Fiqure 6c). The main body of the pulgeas preceeded by a downwards flow at the | '  Deleted: ]
7777777777777777777777777777777777777777777777777777777 h Y
\‘ t‘\ \:\\\\ Deletgd: around 180 degrees
start, largelyupwards flonduring the pulse and finally with a strong inceeas the |1t | from this, heading W whilst the

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff a1 \\‘ \\ \ | flow directly after the ringing was
R 1o the north-NW.

cessation of the pulse. The vertical flomsrereducedn magnitudenear the surface. ﬁ\‘\\\\ | \{De,eted: S )

Deleted: relatively weak but still

a moderate proportion of the tidal
\\\ amplitude observed at

"

\
\{ Deleted: Leonard et al. 2006; ]
(B}
1" '| Deleted: 2010
\

(!

\
|
}
******************** i

\\\

\
"
\

Y
\\“
\\
\\
. . . . . )
gualitative picture of a tracer field (Leonard ER@06; Stevens et al 2006). Itis a \\\\\ | Deleted: se horizontal pulse
“‘\\\\\\\
A

o

flows were accompanied by

\
|| Deleted: s

difficult property to interpret as it is an integvehereby the value at a given depth is a

Deleted: Figure 6

\
\

\

function of the water column through which the ataubeams must pass twice. Hence,\\\

\
\

\
)
\

\
\
\

\

| Deleted: at the sampling

position. However,

\
\
\

a low acoustic backscatter at say 80 m might iriditaw reflectors at that depth or a

\
\

Deleted: t

\
\
\

high degree of flow attenuation above the samplerae. There were three periods in Deleted: ringing

O A o U )

(
I
(
(
\[ Deleted: generated
[
(
(
(

Deleted: Figure 6

the 24 hours when the backscatter was reducedisuitiy enough to affect the velocity
signal to noise ratio adversely so that the deepegsth of good quality data would shoal.
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hours after the pulse. This might be a diurnalecyt scattering due to biological
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modulation as, despite the 24 hour daylight, aat@m in signal can persist in the region

(pers. comm. A. Mahoney; Leonard et2010 or due to variations in platelet/frazil ice

concentration (Stevens et al. 200®)ur sampling coincided with a period when the

pulse was essentially around midnight local timé seas co-located temporally with

what should be biologically-induced maximuaiata return (i.e. good signal to nojse) .~

Furthermore, this diurnal variation was not neadystrongly apparent on other days.

Thus, the drop in backscatter may hax&eadbeen a response entirely to the stronger
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not seen in earlier measured tidal periods wheffithewas weaker.

3.3 Temperature and salinity
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The present observations were at a time of extsemweak stratification. Of the

three field seasons we have worked in the are@ th@sditions were the most weakly
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stratified Figure9). Indeed even CTD profiles a week prior to thesent data indicated

substantially stronger stratification. Furthermdhe profiles were also the warmest and

saltiest observed at this location. Wintertimeautess(Mahoney et al., in prep) from a site

several km to the south of the present field sitErebus Bay showed how fronts could

pass through the observation site changing the dssesity structure markedly in only a

few hours. These data end around a month prioutaneasurements and at the end of

their record their temperatures were around 8@2older than our observations — more
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in keeping with previous CTD worle{gure 9). Sound-scale analysis show how L

McMurdo Sound is still adjusting and recoveringnfrthe large iceberg residences of

2002-2005 (Robinson, 2011). The general trend &sdecreasing salinity — the opposite

to that observed here. This suggests local watanm properties might be quite

different to that throughout the sound due to nuximduced by the complex topography

and the presence of substantial glacial ieerther to this we speculate thatthe T and S

variation seen closely tied to the flow might béir@ct manifestation of the flow-glacier

interaction. Cold fresh water might pool in theiwity of the glacier and then be washed
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Flow at the field site was likely a combinationtiofal and Sound circulation

flows that are affected by the islands, local batefry and the glacier tonque itself.

There is unlikely to be direct wind influence agppvater was 20 km to the north. The
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through the internal wave spectrum beneath theun@hisis sensible as (i) vertical
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exploration of the melting processes needs to paraite temporal variation in the
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distance to the tip of the glacier tongue. Thhe,dbservations downstream might
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Platelet growth rates are very difficult to quayntis they inherently depend on

their initial conditions and observations haveidiffty in separating advection versus
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(length/width) when compared to the Drygalski lamgue (and the Mertz and Ninnis
Glacier Tongues prior to their recent break up8}.the same time, the EGT is smaller in
absolute scale by a factor of ten from these gitatier tongues. Possibly the EGT is
atypical in that it is protected from currents avales by the Dellbridge Islands gnd the-
to that of the tongue is likely much larger wite tBGT. However, vertical scales are
greater for the big ice tongues so that verticakfl may be even stronger. Where the
present data are of relevance to both the largetoitgues and indeed ice shelf fronts is

at the small scaleThe EGT observations should be relevant whereweethre

comparable dramatic changes in topography andegtamiluced buoyancy fluxes.

The work here identified the complex flows thatgigraround glacier tongues. It

demonstrated that the resulting mixing can be auifestantial.The data demonstrate the

small temporal scales of variability in turbulenttee strong and fluctuating vertical
flows, and the very large dissipation rates anflslifities possible right next to the ice

wall._Future work on the topic should seek to resopreng-neap differences in mixing

as well as relate the local mixing to the far-figlahsport in the Sound. Furthermore,

headland studies (Edwards et al. 2004) have demnadedtthe effectiveness of spatial

mapping of currents. However, such mapping isaliff in the presence of fast ice

requiring underwater vehicle technology (e.qg. Haamed Morison 2002; Doble et al.

2009). Modelling needs to progress at two sc@esr long timescales continual

elevated mixing at a sub-grid location will influmncirculation. Intermediate scales of
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A subjective series of sketches
(Figure 11) shows the likely flow
evolution around the EGT. The
tidally-driven flow is highly
rectified and also variable with
depth and so generates quite
specific mixing events in time and
presumably space. It would be
useful to translate this descriptior
to other systems.
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regional modeling would elucidate this influenceilgtifinescale modeling would L
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generate a valuable picture of where and how thémis generatedThis modeling

would need to be informed by velocity, scalar amthtilence measurements in a wide

range of background stratification regimes.
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FIGURE Captions

Figure 1 Satellite image (SAR) captured on 19 Get®009 showing McMurdo Sound
located in the south western Ross Sea connectbeé Ross Ice Shelf cavity via Haskell
Strait beneath the McMurdo Ice Shelf. The greyssgive an indication of open water
and pack ice off Cape Royds and the first yearmauaffiyear ice in the Sound. The inset

shows the locale within the western Ross Sea.

Figure 2 ASTER satellite image of south east McMugdund including the Erebus
glacier tongue (EGT), the Dellbridge Islands (DBluding Tent Island (TI) and Big
Razorback Island (BRI), Erebus Bay (EB), Cape B&E). Cape Armitage (CA),
Haskell Strait (HS), Scott Base (SB) and the micuzsure field camp (MSC). The

dashed box shows the locale for Fig. 3a.

Figure 3 (a) The sampling locale including the nostructure field camp (MSC), around
1000 m east of the tip of the EGT. The grey linghlight the known 100 m contour
whilst the blue dashed line shows a tongue of nyeliir fast ice (i.e. ice connected to the
coast or glacier) extending out from the EGT to Ragorback Island. (b) A cross-

section of the EGT simplified from DeLisle et d989).
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segment within which our ADCP (blue box in a) anbtilence profiling (green box in

all panels) were recorded. Easterly and northariyents, roughly approximating along
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and across glacier directions) are shown for depitijs) 11 and (d) 71 m. The grey bar

was a period of no data return from the 71 m degutige.

Figure 5 Horizontal velocity data as a progressector diagram showing 11 (black)

and 71 (blue) m depths. The start of each slayarked.

Figure 6 ADCP data products. The ADCP resol@dastward velocity, (b) westward

velocity, (c) upward velocity w, and (d) backscatieplitude. The approximate local

depth range of the glacier is shown as horizordahdd lines. The tidal elevation is

shown above panel (a).

Figure 7 CTD scalar data products showing (@@l temperature, (b) degree of
supercooling (in situ temperature-local freezingperature), (c) salinity and (d)

potential density.The approximate local depth range of the glaisishown as

horizontal dashed lines. The tidal elevation isvat above panel (a).
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Figure 8 Calculated properties including (a) AB&solved she&h, and VMP

. { Deleted: ]
profiler-resolved (b) buoyancy frequency squak&g(q) turbulent energy dissipation rate - { Deleted: and ]
o { Deleted: h ]
g.and (d) theRi,. The approximate local depth range of the glasishownas - { Formatted: Font: Times New }
A Roman
horizontal dashed lines. The tidal elevation isvah above panel (a). . { Formatted: Font: Italic )
Formatted: Font: Italic,
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Figure 9 (aPotential @mperature and (b) salinity profijat various locations within 500~ { Deleted: data collected with J
Seabird Electronics 19+ CTD

m of the tip of the EGT from the Oct.-Nov. periagrithg 2005, 2008 and 2009, plus a

single representative example from the presentastiarcture data (2009-ms). The
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Flow and mixing around a glacier tongue

dashed line in the upper part of (a) is the fregt@mperature at a nominal salinity of
34.65 PSU. The maximum depth from the 2005 prefivere limited by operational
issues. The otheé2TD profiles all penetrated to within 20 m of the badicating the

large variation in depth in the region.

Figure 10 Spectra of ADCP-derived vertical vefies from depths 9-17, 35-43 m and
59-67 m. The spectra are shown scaled by the drexyuvector to provide an area-

preserving form.

Figure 11 (a) Dissipation rate as a functiofRigf showing individual estimates (hollow
squares), bin-log-space-averaged (solid squareshars showing standard deviation of
estimates for 0.15 loB{y) spaced bins. (b) The same plot format for tifeisivity K,
estimate and including the Fer (2006) estimateedtical diffusivity of mass (dashed

line).

Figure 12 Dissipation rate as a function of pleefthorizontal displacements” X and Y

using a timescale &5 minutes
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do not yield any strong differences associated dirtbction of rotation except

for (i) a weak emphasis on clockwise motion at Iofwequencies and (ii) a
significant difference at around 20 cpd. Thisdattifference might be associated
with the “ringing” timescale seen in the ADCP défegure 3). When comparing
spectra from the two depths, the only obvious tifiee is the different slopes in the

1-24 cpd bands,



