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R. Ostasch4, G. Palioselitis7, G. E. Păvălaş32, P. Payre8, J. Petrovic7, P. Piattelli20,
N. Picot-Clemente8, C. Picq21, R. Pillet18, V. Popa32, T. Pradier25, E. Presani7, C. Racca2,
A. Radu32, C. Reed8,7, G. Riccobene20, C. Richardt4, M. Rujoiu32, G. V. Russo30,
F. Salesa1, F. Schoeck4, J.-P. Schuller21, R. Shanidze4, F. Simeone14, M. Spurio11,12,
J. J. M. Steijger7, Th. Stolarczyk21, C. Tamburini22, L. Tasca10, I. Taupier-Letage34,∗∗,
S. Toscano1, B. Vallage21, V. Van Elewyck9, M. Vecchi13, P. Vernin21, G. Wijnker7,
E. de Wolf7,29, H. Yepes1, D. Zaborov33, J. D. Zornoza1, and J. Zúñiga1
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Abstract

An Acoustic Doppler Current Profiler (ADCP) moored at the deep-sea ANTARES neu-
trino telescope site near Toulon, France, measured downward vertical currents of am-
plitudes up to 0.03 m s−1 in spring 2006. The currents were accompanied by enhanced
levels of acoustic reflection by a factor of about 10 and by horizontal currents reaching5

0.35 m s−1. These observations coincided with high levels of bioluminescence detected
by the telescope. Although during winter 2006 deep dense-water formation occurred
in this area, episodes of high levels of suspended particles and large vertical currents
continuing into the summer are not direct evidence of this process. It is hypothesized
that the main process allowing for particles to be moved across the entire water col-10

umn (2500 m) within a few days, is local convection, triggered by small-mesoscale
phenomena, such as meanders including a bipolar vortex, linked with boundary cur-
rent instabilities.

1 Introduction

The ANTARES detector is designed to search for high-energy neutrinos coming from15

galactic and extra-galactic astrophysical sources. The detection principle is based on
the collection of Cherenkov photons induced by relativistic charged particles, produced
in neutrino interactions, using a 3-D-array of about 900 sensitive optical sensors, Photo-
Multiplier Tubes (PMTs) (Amram et al., 2002). The PMTs, together with electronics, are
integrated into Optical Modules (OMs) on 12 mooring lines between about 1900 and20

2400 m in the Mediterranean Sea. An extra line is used for seismic and oceanographic
observations including those on water motions, marine biology and sedimentology. The
telescope is at great depths, mainly to have the water act as a shield for sunlight and
cosmic rays, and also to avoid large levels of bioluminescence. In general, biolumines-
cent organisms are progressively less abundant at greater depths (Vinogradov, 1961).25

Their presence in the Mediterranean Sea is a factor of about 10 less abundant than,
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e.g., parts of the North-Atlantic Ocean. In the Mediterranean values may differ by more
than a factor of 10 as a function of time, location and depth (Priede et al., 2008).

The ANTARES site is off the French Provençal coast, close to the base of the steep
continental slope (Fig. 1). A 40 km long electro-optical cable provides power and the
connection for data transmission to and from a shore station (Aguilar et al., 2007).5

The Northern Current (NC) flows counter-clockwise along the boundary slopes of the
Ligurian and Provençal subbasins and is O(10) km wide. As the NC is meandering, its
rim skims over the ANTARES site. The NC borders the area of dense water formation
in the subbasin (Crépon et al., 1982, 1989). As a result, this site offers oceanographers
excellent opportunities to study details of water motions, sediment transport and marine10

biology for long periods of time in the sea interior just off a continental slope. Here, we
report on Acoustic Doppler Current Profiler ADCP-data (RDI, 1992) measuring echo
intensity and current in all three Cartesian components: East-West (u), North-South
(v), vertical (w), including periods of large persistent downward w, “subduction”.

In the western basin of the Mediterranean, two physical processes can exist, char-15

acterized by downward w having O(10−2 m s−1) surface-to-bottom amplitudes (Millot,
1999). Both can affect the ANTARES site: i) deep dense water convection due to
evaporation and cooling of near-surface waters mixing with intermediate waters below,
which is predominantly known to occur off the shelf of the Gulf of Lions (GoL), in the
Provençal subbasin, “MEDOC”-area, and in the Ligurian subbasin (e.g., Voorhis and20

Webb, 1970; Gascard, 1973), ii) convection due to frontal zones and mesoscale eddies,
such as occurring in the Algerian subbasin (van Haren et al., 2006). In both processes,
the larger amplitude downward motions are found in areas of smaller horizontal extent
than those of the upward motions. The former are typified by O(102−103 m) horizontal
radius for downward motion “plumes” and 10–100 times larger upward motion areas25

(Marshall and Schott, 1999). The latter are typified for O(105 m) radius mesoscale ed-
dies by strong downward currents in an O(103 m) wide rim around its perimeter (van
Haren et al., 2006). So far, no direct observations have been reported of the effects on
deep biomass by such vertical currents, but a patch of elevated bioluminescence was
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observed at about 1000 m underneath a mesoscale eddy in the Atlantic (Heger et al.,
2008).

In the Ligurian subbasin, water motions show a seasonal variation, with mesoscale
horizontal current speeds up to 0.5 m s−1 in winter compared to O(10−2) m s−1 in
summer (Taupier-Letage and Millot, 1986). The larger-scale NC is directed counter-5

clockwise and driven by buoyancy and Coriolis forces (Crépon et al., 1989). Generally
in January, the NC can become baroclinically unstable with intense mesoscale activity
reaching from the surface to the bottom. The NC forms waves of typical horizontal
extent O(104−105 m) with a phase speed relative to the upper layer flow O(10−1 m s−1)
or less. Due to coupling with lower layer motions the wave propagation is almost sta-10

tionary with respect to the continental slope (Griffiths and Pearce, 1985). Along the
NC-border, enhanced levels of near-surface phytoplankton grow in spring and may be
transported downward along the front, although evidence was so far limited to the up-
per few 100 m (e.g., Boucher et al., 1987; Gorski et al., 2002). Presently unknown is
the influence of the NC in transporting downward other suspended materials including15

zooplankton to great depths. The NC can also cause variability in horizontal motions
of water masses past the ANTARES site.

2 Data

In spring 2005, the ANTARES Collaboration deployed and operated a so-called Mini
Instrumentation Line equipped with Optical Modules (MILOM) at the site 42◦48′ N,20

06◦10′ E, 2475 m water depth (Aguilar et al., 2006) (Fig. 1). In March 2006 the first
detector line became operational (Ageron et al., 2009). The MILOM consisted of an
instrumented releasable anchor and of three storeys located at 100, 117 and 169 m
above the sea bed. It was equipped with four OMs: a triplet of OMs on the middle
storey and a single OM on the upper storey. A downward-looking 300 kHz, four-beam25

Teledyne RDI-ADCP was mounted on the upper storey. In this apparatus the beam
slant is 20◦ to the vertical. This leads to current estimates that are averages over

745

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/7/739/2010/osd-7-739-2010-print.pdf
http://www.ocean-sci-discuss.net/7/739/2010/osd-7-739-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
7, 739–756, 2010

Rapid subduction in
the deep North

Western
Mediterranean

J. A. Aguilar et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

horizontal beam spreads of 3–80 m as a function of the vertical range. As the ADCP
operates a redundant 4th beam, it offers an extra “error” velocity (e) that is composed
of the difference between two w’s estimated from the independent beam pairs. Thus,
reasonable estimates are obtained for errors in w that include horizontal current inho-
mogeneities over the beam spread and effects of ADCP’s tilt- and heading variations.5

As ADCPs rely completely on the reflection of sound on “particles” in the water, larger
than about 0.003 m at 300 kHz (RDI, 1992), they sample variations in these reflections
as “echo intensity” (I). Part of the I-variation with depth is the inevitable acoustic energy
loss in water. A simple method to correct for sound loss is the computation of a “relative
echo intensity”, dI=I-Imin, by subtracting the minimum Imin from the original signal at10

each depth. A single-frequency instrument cannot be used to distinguish the cause of
variations in dI with time. The origin of variations ranges from changes in shape and
species to number of particles. Most often however, variations in dI imply variations in
the number of particles passing through the beams. A 300-kHz ADCP is sensitive to
particles like large suspended flocs of material and especially zooplankton that have15

sizes > 10−3 m, or larger animals. It is not sensitive to bacteria and phytoplankton,
which have typical sizes O(10−5−10−4 m) or less.

The ADCP sampled data-ensembles in 50 vertical bins of 2.5 m every 10 min. The
shoreward data-transport was frequently interrupted (Fig. 2) especially in the first year.

3 Observations20

In March 2006, the PMTs counting rates, which at low levels are mainly due to 40K-
decay and to bioluminescent bacteria, suddenly increased by a factor of 10 or more
(Fig. 2a). Low levels are observed before day 69 and after day 170. Sudden in-
creases are apparent for 30 days after day 69 and high levels are maintained until
about day 170. Similar observations were made using different PMTs on MILOM and25

line 1 (Ageron et al., 2009). An increase in counting rate is usually attributed to larger
levels of bioluminescence.
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The ADCP’s dI suddenly increased by a factor of about 10 on day 69 (Fig. 2b).
Relatively large acoustic reflections occurred until day 190, and episodically later in
the year. However, it is noted that optical and acoustic data may imply variations of
different origin. The former are sensitive to variations due to distributed light sources,
such as luminescent bacteria or zooplankton species. The latter is mostly sensitive to5

echos due to accumulation of zooplankton and higher order species, not necessarily
light-emitting objects. Associated with the increase in dI are: a doubling in current
amplitude, |U|, (Fig. 2c) and a large downward w (Fig. 2d). Aside from the period
between days 70 and 100 of enhanced dI, large negative w and large |U|, periods of
typically 10–30 days of similar but slightly weaker absolute values are observed later10

in the year as well, e.g., days 220–230 and 285–300. Variations with time may be
more clearly seen in series from a particular depth (Fig. 3). Large negative w and
larger dI and |U| are occasionally accompanied by increases in temperature, but the
correlation is ambiguous despite the tendency of large |U| with small T (Fig. 3a). The
measurement of e shows that it has a mean of about zero and standard deviation of15

noise of 0.002 m s−1 (Fig. 3c). The observed w are systematically negative throughout
the year. As a result, current inhomogeneities over the beam spread are not causing
any negative bias in w and its apparent noise is mostly due to high-frequency internal
waves and small-scale convection.

Focusing on the first half of 2006, it is seen that variations in negative w and in-20

creased dI and |U| also occur at shorter periods of 1–10 days (Fig. 3). From day
70 to 80, the mean downward motion was about 0.01 m s−1 and regularly exceeded
0.025 m s−1, or 2000 m day−1. Particles can be transported from the surface to the
bottom within 1–3 days by this subduction if extrapolated over the water column, due
to its persistence with time. The w contain a lot of high-frequency variations that are25

not noise, but internal waves near the buoyancy frequency. It is noted that these w are
measured close to the sea bottom and larger amplitudes are expected higher-up. Such
large downward motions cannot be associated with sinking particles like heavy diatoms
and faecal pellets, whose speeds are 1–2 orders of magnitude smaller (Passow, 1991;

747

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/7/739/2010/osd-7-739-2010-print.pdf
http://www.ocean-sci-discuss.net/7/739/2010/osd-7-739-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
7, 739–756, 2010

Rapid subduction in
the deep North

Western
Mediterranean

J. A. Aguilar et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Lampitt et al., 1993). Also they cannot be associated with zooplankton migration, which
has the following characteristics. It moves at such speeds, but down and up, in various
cycles including a diurnal and a seasonal cycle, in the latter going up in spring (van
Haren, 2007).

Similar, although less intense, variations later in the record also can cause verti-5

cal transports across at least 1000 m and maybe the entire water column, assuming
continuity of vertical currents. Due to warming from May onwards the stratification
prevents any deep convection, so that this process definitely cannot explain large au-
tumnal downward currents. Similarly, cascading events in nearby canyons transporting
debris down are not expected other than in winter and during short periods O(days)10

(Khripounoff et al., 2009).
Progressive Vector Diagrams (PVDs) constructed via time integration of horizontal

particle velocities using the deep ADCP data show predominant westward “displace-
ment” between days 69 and 79, preceded by northward and followed by southward
displacements (Fig. 4a). Although ambiguous, this could be interpreted as due to the15

passage of a mesoscale meander or clockwise eddy passing with its core between
the ANTARES site and the coast during westward propagation with the prevailing NC,
such as observed previously (Crépon et al., 1982). Generally, the baroclinically unsta-
ble, meandering NC passes inshore of the ANTARES site (e.g., Fig. 4b). Particularly
on day 69 we observe a strong baroclinic instability forming a vortex pair or dipole just20

to the East of the ANTARES site (Fig. 4b), with a seaward jet. The dimensions are
40×80 km, about twice the amplitude and wavelength of typical NC-instabilities that
are visible to the West of the dipole and which occur at 10–20 days intervals. The size
of the dipole compares well with previous observations affecting surface plankton in
the Atlantic Ocean (Gower et al., 1980). Due to cloudiness not many good satellite25

images were obtained the following days, but the seaward flowing jet seemed more or
less stationary over the ANTARES site for at least a fortnight. In addition, the active
dipole developed connection with a surprisingly northward extent of mesoscale eddies
in the central basin that finally touched the NC at the ANTARES site (Fig. 4c).
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Our observations compare to some extent with models on dipoles, which have near-
zero phase speed due to their interaction with the sheared current deep below (Griffiths
and Pearce, 1985; Crépon et al., 1989). As a result, a particular area can receive
persistent vertical flux of material during the lifetime of a jet or mesoscale meander
or eddy. Later in the ADCP-record indication is found for more meanders or eddies,5

associated with times of large downward vertical currents. The PVDs show eddies of a
clockwise nature, but it is noted that eddy interpretation from PVD can be ambiguous
when no other information is available.

4 Discussion

The beginning of 2006 was characterized by particularly strong convection observed10

in the GoL- and MEDOC-areas during two major periods, January and March/April,
and which lasted well into spring (Durrieu de Madron, personal communication, 2008).
However, although MEDOC-dense water formation may extend to the East into the
Ligurian subbasin, it is unlikely that the present observed rapid subduction is directly
associated with either of these water masses and even with local deep convection, for a15

number of reasons: i) GoL dense water cascading downwards from the shelf will follow
the Spanish coast towards the Balearic Islands due to deflection by the rotation of the
earth and hampered by deep convection in the MEDOC region above the abyssal plain,
ii) deep convection occurs also in the Ligurian subbasin which showed anomalous high
salinity and temperature in 2006 (Schroeder et al., 2008; Smith et al., 2008) whilst no20

persistent T-excess is found in the present record, iii) downward motions are observed
throughout the year, not only in winter/early spring. The NC is a permanent current, as
is its meandering activity, although modulated by seasonal variation and (re)inforced
by dense water formation (Crépon et al., 1989). The meandering NC-front is a good
candidate to cause temporal variations in current and dI at the ANTARES site all year25

long, when forced to great depths.
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As a result, and given the support by sea-surface satellite images, active mesoscale
motions could cause the observed large downward motions. As such motions are gen-
erated via instabilities of the coastal NC-system in response to atmospheric forcing
above the deep open subbasin, they follow periods of exceptional dense water forma-
tion and last for months.5

The present acoustical observations support the optical observations of the
ANTARES array that large amounts of particles are transported downward from higher
up, possibly from the surface to the bottom, resulting sometimes in particularly high
counting rates in the PMTs. As both acoustics and optical sensors respond at the
same time and because acoustics are insensitive to bacteria, an important contribu-10

tion to bioluminescence can be ascribed to crustacea and zooplankton, or, perhaps
though unlikely, to large suspended material carrying luminescent bacteria. This pro-
vides unique indications that the sea replenishes fresh organic material to the abyssal
plains when mesoscale meanders or eddies appear, not just over the ANTARES site,
but anywhere where unstable currents occur.15
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Fig. 1. ANTARES site (red star) on the northern part of the Ligurian subbasin, western basin
Mediterranean, with a sketch of the Northern Current NC (solid line) and areas of dense-water
formation (dw). Isobaths every 500 m between [−500, −2500] m.
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Fig. 2. (a) Optical counting rate observed 50 m below the ADCP at MILOM (blue) and on Line 1
(red) as a function of time. (b–d) Raw MILOM-ADCP data, time-depth series. In all panels the
vertical white lines indicate absent data. The two horizontal lines at 2350 and 2365 m are direct
sound reflections from two storeys below the ADCP. (b) Relative echo amplitude from a beam,
limited to [0, 12] dB. (c) Current amplitude, between [0, 0.2] m s−1. (d) Vertical current, between
[−0.01, 0.01] m s−1. In (c, d) useful data are available down to about 2390 m, and to about
2420 m between days 70 and 100 when echos are large. The time convention is 1 January,
12:00 UTC=day 0.5, 2006.
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Fig. 3. (a) Horizontal current amplitude at 2320 m (blue; raw data) and temperature (green;
smoothed) measured at the ADCP. (b) Relative sound-echo amplitude (blue; smoothed) and
PMT baseline data from 2350 m (red). (c) Vertical current (blue: raw data; red: smoothed) and
error velocity (green: raw data; purple: smoothed). Applied smoothing is using a 20-points
running mean.
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Fig. 4. (a) Progressive Vector Diagram of integrated Eulerian horizontal currents observed
at 2320 m. In black the total 2006-time series that start at (0,0), in colours portions between
the days indicated. (b) Satellite image of false-coloured near-surface chlorophyll-a on day 69.
(c) As (b), but for near-surface suspended particulate matter on day 88. In (b) and (c). the
ANTARES site is marked by a cross. Note the images are used qualitatively for pattern recog-
nition.
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