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While this paper is substantially improved from previous versions, especially as regards
self-contained derivations and argument, it continues to be misleading in a number of
regards. While I do not agree with the model presented in this paper, I do think that
there is something to be learned from the derivations herein, especially as regards the
role of eddy kinetic energy. However, this result cannot be claimed to be new as it is
a standard practice in turbulence scaling (see, for example Pope, 2000). The other
aspects of the paper do not seem new and are reproductions of the earlier works of
Canuto & Dubovikov on the mesoscale adapted to the submesoscale (1997, 2005,
2006).

My primary disagreement with this work is the authors’ assertion that this is a ’solu-
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tion’ of the submesoscale problem, while certain assumptions used cannot be recon-
ciled with nonlinear simulations, especially the assumption of deformation scale eddies.
Furthermore, I do not think that it is fair to state that "In both cases, the model results
reproduce the simulation data satisfactorily." Indeed, a statistical analysis of this model
has proven exactly the opposite to be true regarding the FFH simulations (as will be
shown below).

Canuto & Dubovikov are well aware of this statistical analysis, and they neglect to
mention it here. It was performed in a reply to a previous unpublished paper of Canuto
& Dubovikov closely related to this paper that was submitted to the Journal of Physical
Oceanography as a comment paper on FFH. The reply was deemed to satisfactorily
refute the arguments of Canuto and Dubovikov without introducing any new material to
FFH, and therefore the two papers were rejected.

As for the comparisons to the Capet et al. simulations, they are encouraging, but
agreement with a few vertical profiles does not validate a parameterization. Indeed
similar profiles would result from the vertical structure for the FFH parameterization.

Canuto & Dubovikov correctly assert that the FFH simulations are limited in that they
do not have wind stress. However, if the Canuto & Dubovikov model does not work
in the wind-free case, then there why should it be applied? Furthermore, new results
indicate that the FFH model does work as expected in the presence of winds, so long
as those winds are of typical magnitude (Capet, X., E. J. Campos, and A. M. Paiva,
2008; Mahadevan, A., A. Tandon, and R. Ferrari, 2008; see http://tinyurl.com/ylckbpo
for full bibliography).

I will structure my comments into two sections. The first will address what I think is the
crucial issue of submesoscale eddy lengthscale. The second will address the degree
to which a satisfactory fit of the Canuto & Dubovikov model is found with the FFH data.
It should be noted that while I have many less substantive disagreements with the text,
I will constrain this review to address the issues with my, and my colleagues, own work.
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1 The Lengthscale of Submesoscale Eddies

Eqtn 3a is effectively a Reynolds-stress (see Pope, 2000, Chp 11) scaling for ξ. The
difficulty with such closures is that it is quite easy to assess the dependence on kinetic
energy, but rather hard to find a good scaling for the length, time, or dissipation rate
scale. The ease of modeling the kinetic energy is noted by many turbulence closure
authors, see Pope (2000) for a summary. It is suggested here by Canuto & Dubovikov
that the Rossby radius of the mixed layer is "...the characteristic submesoscale length
scale. As it is stressed in the literature on this subject (e.g., review by Thomas et al.,
2008; Fox-Kemper and Ferrari, 2008; Boccaletti et al., 2007), l is closely related to the
deformation radius in the mixed layer..." This lengthscale is then used throughout the
paper, both as the typical lengthscale in 3a, and also as the typical lengthscale of their
eddy viscosity closures (Appendix A, B). It is thus one of the most crucial assumptions
made in this theory, and I believe it has already been demonstrated to be incorrect.

This statement about the lengthscales found in those works is a misrepresentation of
the literature. Indeed, FFH spent months of research to determine and then demon-
strate that while the deformation radius is a useful scale for the submesoscale linear
instabilities, it is a poor estimate for the finite amplitude eddies that do the restratifica-
tion and mixing to be parameterized. Furthermore, Thomas et al. were well aware of
this research when they wrote the review. Some examples from the articles cited by
Canuto and Dubovikov are specifically mentioned below:

1–Thomas et al. only use the Rossby scale to roughly establish the scales of the
submesoscale. Fronts and other features are mentioned to occur near this scale, but
there is no mention of this lengthscale regarding the submesoscale eddies that form in
their figure 2.

2–There is a lot of discussion in these papers that the deformation radius is an appro-
priate scale for the linear instabilities, to wit:
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2a–From Fox-Kemper Ferrari 08: "The baroclinic instabilities that lead to finite-
amplitude mixed layer eddies (MLEs) occur on length scales near the deformation
radius of the ML..."

2b–From Boccaletti et al. 07: "For baroclinic instabilities (QG or not) the disturbances
grow at a scale near the local deformation radius (Stone 1966)..."

2c–From FFH: "The smaller MLEs result from ageostrophic baroclinic instabilities that
develop along fronts within the ML. Their scales begin near the linear instability scale
based on ML depth and stratification, O(1 to 5 km), and enlarge as a result of an inverse
cascade, as discussed in [Boccaletti et al., 2007]."

3–However, once the finite amplitude eddies have formed and begun to flux materials
in earnest, the length scale is quite a bit larger:

3a–From FFH: "The mixing length, however, is not fixed in time in spindown problems
such as this one nor is it readily estimated from other horizontal scales: the most
energetic eddies enlarge beyond the most unstable scale (e.g., Cehelsky and Tung
1991) and beyond the initial frontal width (Fig. 2c)."

3b–From FFH: "However the nonlinear spectrum departs the linear prediction as the
instabilities reach finite amplitude. EKE is transferred to scales larger than the most
unstable mode through a vigorous inverse cascade (Fig. 4)." [Figure reproduced here
in Figure 1].

3c–From FFH: "In linear theory, the length scale at which the vertical velocity and the
buoyancy perturbations are correlated specifies the vertical structure of w′b′. Figure 9
shows the dominant length scales contributing to the correlations between w’, v’, and
b’. While the correlations and autocorrelations of v’ and b’ are dominated by features
larger than the most unstable length scale, the typical horizontal scale at which w’ and
b’ correlate remains close to Ls. The difference in correlation scales is con- sistent
with a vertical mode saturation and a horizontal mode inverse cascade. Thus, the
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vertical structure of w′b′ from linear theory persists at finite amplitude (per Branscome
1983a,b)." [Figure reproduced here in Figure 1].

3d–From FFH: "Once the instability becomes fully nonlinear the horizontal scales of
the most energetic eddies are larger than that of the most unstable mode as a result of
a turbulent inverse energy cascade."

4–Finally, two figures from FFH (included here as Figure 1) show that indeed the de-
formation radius is a poor estimate of finite eddy length scale.

The scaling proposed by FFH is crucially different from the scaling proposed here,
and other scalings derived from linear instability (see Section 3d of FFH). The Canuto
& Dubovikov scaling asymptotes to the same result as that found by Stone (1972)
based on an analysis of linear instabilities. It is my belief that the reason why this
asymptotic agreement with Stone occurs is the deformation radius scaling used by
Canuto & Dubovikov. FFH demonstrate conclusively in their figure 14f that this scaling
is inappropriate for the simulation data (which is the same data reproduced here). The
next section explains further.

2 Goodness of Fit to FFH data

In the Reply to the comment by Canuto & Dubovikov (http://tinyurl.com/ylckbpo), the
authors of FFH state: "CD state that their model appears superior to the FFH param-
eterization based on the fact that a few data points appear low in Figure 14e of FFH
and claim that their model explains better the small Ri, small K/KM (i.e., linear regime)
behavior. Once again, the linear regime was not the foucs of FFH because restratifica-
tion is negligible during this phase–eddy effects are small during the linear stages and
do not modify the stratification at leading order. However in response to the criticism
raised by Canuto and Dubovikov, the analysis of the FFH simulation data was extended
to test quantitatively the scaling over a wider range of Ri including the linear regimes.
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Notice that this required analysis of Fox-Kemper, Ferrari, Hallberg unpublished data,
because contrary to the statements of Canuto and Dubovikov (2009b), the data points
presented in FFH were not sufficient to dicuss the low Ri behavior. So, a reanalysis of
the FFH simulation data was performed to test quantitatively whether these claims are
true generally."

The reanalysis of the FFH simulation data is described in the Reply:

Recall that Figure 14e of FFH plots the time-mean Richardson number
over the complete simulation (which is steadily increasing with time) versus
the scaled magnitude of the eddy-induced streamfunction (which is noisy,
but not increasing with time). In this figure, the time-mean over each sim-
ulation was used to reduce the noise, and since little or no depen- dence
on Ri was noted it was inconsequential which Ri was used. FFH chose the
time-mean of Ri for the figure and independence from the initial value of Ri
is also discussed.

To test the Richardson number close to Ri = 1 as Canuto and Dubovikov
(2009b) insist, the time averaging must be made over shorter windows–
here two times the fastest growing mode timescale is used as an averag-
ing window [...]. Thus, during the linear stage K will grow by an order of
magnitude over each time window. Furthermore, only simulations that are
geostrophically balanced are useful, as Rossby adjustment yields Ri = 1
immediately .1 FFH chose to neglect times when K/KM < 0.1 to elimi-
nate the linear stage of evolving instabilities. To fully refute the Canuto and
Dubovikov (2009b) scaling, all times where K/KM > 0.01 are now used,
ensuring that any bias is in favor of the CD parameterization over FFH. In
sum, a subset of the 241 runs Fox-Kemper et al. (2008b) are averaged over
windows where mixed layer depth and frontal strength were unambiguous,
resulting in 603 time windows without overlapping from 68 simulations used.

The results from these time-windows are binned by Richardson number
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from 1 to 9000 and shown in Fig. 1.

Figure 1 from the reply is reproduced as Figure 2 here. It is clear that the Canuto &
Dubovikov scaling agrees with the simulation data only where it also agrees with the
FFH scaling (a value of 1 in this figure).

The Table 1 from the Reply (also reproduced in Figure 2 here) shows the results of a
student t-test. This test is explained in the reply:

From the dataset of windowed time-mean values, a student t-test pro-
vides a statistical assessment for rejection of a theory over a particular
range of Ri. The null hypothesis w′b′ = w′b′

theory may be rejected if the
deviations between data and theory are statistically significant given the
scatter of the data. The results of this analysis are given in Table 1. Appar-
ently, CD are correct that their theory cannot be rejected by the simulation
data in the range Ri < 5 [...]. In fact, the more careful test here of the
simulation data reveals too much noise to reject the FFH parameterization
with standard statistical confidence limits. Only the FFH parameterization
cannot be rejected over all Ri ranges considered.

Thus, the assertion here that the Canuto & Dubovikov scaling agrees ’satisfactorily’
with FFH data is unsupported.

More disturbing to me than the lack of mention of the statistical test above is the fact
that the Figure 4 of this paper shows only a limited range of the data where the fit
is ’satisfactory’. Nonetheless, Canuto & Dubovikov claim to compare to simulations
’available in the literature’ without mentioned this reduced comparison. Figure 3 of this
review shows the full range of Ri, as calculated by Canuto & Dubovikov for their earlier
comment paper. Note that the points shaved off at the high Ri end are those in least
agreement with the Canuto & Dubovikov theory.
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Figures 1-3 of this Canuto & Dubovikov paper do not explore a parameter space of Ri,
and show only agreement with vertical columns on Fv. Thus, agreement among these
figures is inconclusive as to whether the parameterization works over a large range of
predicted eddy lengthscales (per preceding section). The vertical structure of Fv here
differs little from that in FFH, and is also the same as occurs in linear instabilities (see
also Branscome, 1983).

3 Conclusion

It is agreed that a comparison to simulation data is a necessary, not sufficient, proof of
a particular parameterization. Even so, the ’satisfactory’ agreement with Figure 4 here
is specious. Since all one needs to disprove a theory is a single counterexample, there
are counterexamples aplenty shown in Figure 3 of this review that occur outside of the
range deemed ’satisfactory’ in Figure 4 of the paper by Canuto & Dubovikov.

Interactive comment on Ocean Sci. Discuss., 6, 2157, 2009.
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linear spectrum only for the first 6 days. During this
period the spectral peak tracks the most unstable wave-
number predicted by (2) and shifts to larger scales be-
cause Ri grows as the stratification increases (Fig. 3).
However the nonlinear spectrum departs the linear pre-
diction as the instabilities reach finite amplitude. EKE
is transferred to scales larger than the most unstable
mode through a vigorous inverse cascade (Fig. 4).

The inverse cascade complicates the parameteriza-
tion problem. Eddy mixing length arguments are rou-
tinely used to study baroclinic eddy fluxes (Haine and
Marshall 1998; Spall 2000; Larichev and Held 1995;
Schneider and Walker 2006). In these arguments the
lateral transport of tracers is dominated by the largest
energy-containing eddies (e.g., Howells 1960). The
eddy saturation strength follows a simple scaling: the
eddy velocity within the front saturates at the initial
mean flow velocity, as shown in Fig. 5 (Stone 1972b).
The mixing length, however, is not fixed in time in spin-
down problems such as this one nor is it readily esti-
mated from other horizontal scales: the most energetic
eddies enlarge beyond the most unstable scale (e.g.,
Cehelsky and Tung 1991) and beyond the initial frontal
width (Fig. 2c).

Another popular approach for parameterizing baro-
clinic spindown relies on linear stability theory of the
basic state (e.g., Stone 1972b; Killworth 2005). The core
assumptions are that eddies and mean state satisfy the

same scaling and that finite-amplitude eddies resemble
the fastest-growing linear instability. In the MLE prob-
lem, not only are longer length scales energized by the
inverse cascade, but frontogenesis leads to smaller
length scales as well. The mean state is well described
by quasigeostrophic (QG) scaling, perhaps modified to
allow variable background stratification (e.g., Naka-
mura and Held 1989), but the MLE Richardson and
Rossby numbers approach one as a result of frontogen-
esis at the boundaries. This spontaneous loss of balance
is a distinguishing feature of fronts that outcrop at the
ocean surface (Molemaker et al. 2005).

Nakamura and Held (1989) and Nakamura (1994)
argue that the nonlinear, frontogenetic development of
MLEs can be captured by stability analysis in geo-
strophic coordinates (Hoskins 1976). This approach
correctly predicts frontal development of Richardson
and Rossby numbers O(1). However, this approach
also predicts that the ageostrophic shear generated
through frontogenesis grows as large as the geostrophic
shear and arrests further restratification, as verified in
2D simulations by Nakamura (1994). In three dimen-
sions restratification continues despite the appearance
of fronts (Fig. 2); the MLEs twist and fold the front and
prevent the frontogenetic two-dimensional saturation
(as in Spall 1997).

Traditional approaches therefore provide little guid-
ance in developing a parameterization of frontal slump-
ing and spindown by MLEs. There are, however, as-
pects of the nonlinear frontal spindown that can be

FIG. 4. Perturbation power spectral density E(!) for a simula-
tion from Fig. 3 (solid). Spectra are plotted at 2-day intervals from
day 1.5 to day 29.5. The linear prediction of the spectrum [Es(!),
dashed] is set equal to the nonlinear spectrum on day 1.5 and then
evolved at each along-channel wavenumber as predicted by linear
theory taking into account the changes in Ri and U; that is, Es(!)
is evolved using "s(k) from (1) based on the instantaneous Ri and
U from the nonlinear simulation: Es(!) # e2t/"s(!)$E| t#1.5 (k, l) dl.
The decrease in growth rate with cross-channel wavenumber, l, is
ignored for simplicity and because low l modes soon dominate.

FIG. 5. Kinetic energies and cross-channel perturbation velocity
variance as a function of time from the same simulation as Fig. 3
(solid) and Fig. 4. The slight increase in the basin-average EKE
after day 15 is simply a result of the enlarging eddy scale widening
the area of eddy activity into previously motionless fluid (see Fig.
4). That is, the basin average of perturbation KE continues to
grow (dashed line) while the average over only the center of the
front saturates (solid line).
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Figures reproduced from Fox-Kemper, Ferrari and Hallberg, 2008

Friday, December 18, 2009

Fig. 1. Inverse Cascade Figures Reproduced from FFH
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Figures reproduced from Fox-Kemper, Ferrari and Hallberg, 2009
Fox-Kemper, Ferrari, Hallberg 17
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Figure 1: Simulation data for w�b�, rescaled by the FFH expectation. The lines indicate
expectations of different theories: blue solid for FFH, red solid for CD, green dashed for
Green (1970), and black dashed for Stone (1972b).

Fox-Kemper, Ferrari, Hallberg 20

Table 1: Results of student t-test for various theories with w�b� = w�b�
theory as the null

hypothesis. The results are the same for 0.05 and 0.01 significance levels and with 2 or 4 τs

time-averaging windows.

Theory All Ri Ri < 5 Ri < 100 Ri > 100

CD Reject Can’t Reject Reject Reject
FFH Can’t Reject Can’t Reject Can’t Reject Can’t Reject
Stone Reject Reject Reject Reject
Green Can’t Reject Reject Reject Reject

Friday, December 18, 2009

Fig. 2. Figure and Table from Reply to Canuto \& Dubovikov.
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Fig. 3. A previous version of Figure 4 Canuto \& Dubovikov use here, also by those authors,
showing the full range of Ri in the FFH simulations and profound disagreement with this theory
at large Ri.
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