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Review of "Application of a hybrid EnKF-OI to ocean forecasting”, by Counillon et al.
The authors present a description of a hybrid EnOI - EnKF data assimilation system.
They include a description of the theory behind the approach, a series of results using
a small quasi-geostrophic model and a realistic general circulation model. The authors
clearly demonstrate the benefits of the hybrid approach. Furthermore, the authors
explain why the hybrid system works better - with reference to the ensemble-based
covariance structures, and the increase the in sub-space of the ensemble. I've included
some comments below that the authors might address before this paper is finalised,
but I recommend that the paper be accepted. It’s a good contribution, with important
implications for both operational oceanography and Numerical Weather Prediction.

Comments:
Not enough is said about how the static ensemble is generated. On page 657, line 19,
the authors state that a "static ensemble may contain : : :", but I can’t see where they

describe how they generated the static ensemble for the cases presented in this paper.
This is important.

For the GOM application, we believe that the info was already given: “The EnOl uses a
historical ensemble that is composed of 122 weekly model outputs over a 2.5 years period”.
The missing information for the QG experiment has been added (p 3, 3rd paragraph): “The
hybrid covariance blends 200 static members gathered randomly over a period of 500000
model time steps with .... “. Thank you.

The authors need to be clear about the meaning of the term "diverging". I think they

use it to refer to the errors - that is, the errors diverge, or grow (see line 26 of pg 661 for
eg). But for an ensemble, it could mean the ensemble diverges, or for the application, it
could mean that the circulation diverges. I suggest the authors adopt a different phrase.
They tend to say "the method diverges". Perhaps they simply mean the system fails.

Thank you. We have replaced the sentence by the following (Page 4, 3rd paragraph):
Note that the hybrid covariance method with beta=1 is failing when inflation (or deflation)
is used.

re: equation 4 - did you test what happens if you just augment the stationery ensemble
with a few dynamic members? This would expand the sub-space of the ensemble
(following the arguments on pg 656, following line 18), but would eliminate the need for
the "blending factor" beta. Also, assuming the number of dynamic members is always
small, c_d will always suffer from sampling error - but augmenting the static ensemble
should only act to improve sampling error due to finite ensemble size. I suspect the

ratio of the number of static members (n_s) to the number of static + dynamic members



(n_s+n_d), (n_s)/(n_s+n_d) _ optimal beta. Note the the "optimal" beta for the HYCOM
case is 0.95.n_.d=10,n_s=122,s0 (n_s-n_d)/n_s=112/112 _0.92 - pretty close to
just augmenting the static ensemble with the dynamic members.

We have tried different methodology on the QG model, (i.e. Dressing EnKF, augmenting the
state vector, scaling the alpha locally with the variance of the dynamic ensemble) but they
all lead to larger RMSE that the method proposed here.

In the following figure, the dashed black line shows your suggested formula for the case of
the QG model. It is different from the optimal values estimated.

We suspect that the optimal beta, will always have an exponential decrease, but that the
horizontal range of the decrease will be dependent on the model subspace.

Here, it appears that with localization of 25 grid cells, 40 members seems almost sufficient
to reach maximum accuracy, which might suggest a model subspace of about 40.

[ also add a plain black line where instead of ns=200, | am assuming that ns is the model
subspace in the formula suggested and that ns=40. This curves is then matching much
better the optimal.
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The results in Figure 2 are quite unsatisfying. | suggest they be excluded. Figure

3 gives the same story without the uncertainty. The configurations that succeed/fail
seem quite random. There’s not a very clear trend for configurations that succeed or
fail. For example, for EnKF-OI (beta = 0.8) the system works ok when the inflation

is <1.2, equals 1.45 or 1.55, but fails if inflation is 1.25-1.4, and fails for 1.5 and 1.6.
Perhaps the experiments weren’t run for long enough, so the statistics still suffer from
sampling error. Figure 3, when more dynamic members are used, doesn’t have the
same problem.

For 5 members, although a value of beta=0.7 shows the minimum error, a value of beta=0.9
gives almost as accurate result and is more stable, as all the experiments are converging
(independently of the scheme or of the innovation used). In addition this values would
better match the exponential curve. But we agree with your comment and the Figure has
been removed.

On pg 662, line 18 the authors state that "The flow dependent covariance is expected
to be more consistent than static covariance." I don’t agree with this. Perhaps

the flow dependent covariance could be more optimal, but I'd expect it to be less
dynamically consistent. Recall that the static covariance is generated from a long run
that is not frequently updated, or initialised. The static ensemble is therefore dynamically
consistent. By contrast, because the dynamic ensemble is regularly updated, or
initialised, it includes some noise associated with the shock of the initialisation. The
dynamic ensemble is therefore probably less dynamically consistent than the static
ensemble.

I therefore don’t accept the explanation in the paragraph following line 18 of

pg 662. Perhaps this is why these results contradict those of Wang et al. (2007) - see
line 28 of pg 662.

We disagree with some of your statements. It is true that small ensembles suffer from
sampling error, however historical ensemble assumes that temporal variability is
representative of instantaneous forecast error. When the dynamic ensemble is large
enough, the sampling error becomes negligible. On the contrary, the assumption made in
the EnOI can remain wrong regardless of the ensemble size. For example, if there are two
distinct processes, occurring at different time of year, then the EnOI will provide a
combination of the two processes as an optimal estimate.

However, we agree that the sentence was not clear and we have chosen to reformulate it
(Page 4, last paragraph):

“When the dynamic ensemble is large enough, the sampling error becomes negligible.
The EnOI makes the additional assumption that historical ensemble is representative of
instantaneous forecasting error. Therefore, when dynamical ensemble is self-sufficient, one
merely expects the adjunction of static covariance to deteriorate the results...”

Assimilation shocks in our case are small and does not last more than 2 days even when
alpha is purposely strengthen (see Counillon et al. 2009b). Our perturbation system does



not produce much noise neither (only small noise has been observed on the first days when
perturbing the lateral boundary condition, Counillon et al 2009a).

We are still confident that the reason Wang et al. didn’t reach as accurate result with ETKF-
Ol than ESRF, is because they do not use localization nor the hybrid covariance for updating
the ensemble anomalies.

On pg 672, line 15, the authors say that as the size of the dynamic ensemble is increased,
the optimal beta (blending coef) decreases - that is the dynamic ensemble is

given more weight. But the authors also find that the hybrid system always outperforms
the dynamic system. How can these conclusions be reconciled?

To us these two conclusions are not contradictory. The optimal beta reflects the diminishing
returns from additional dynamical members as the size of the dynamical member increase.
We believe that if ensemble size tends to infinity, the optimal parameter beta will converge
to 0 remaining positive.

Minor comments:

- the statement on pg 656, line 10, that the cost of the assimilation will remain negligible
is not accurate. This depends on many factors that vary with each applications

- the number of obs assimilated, the localisation radii, the model resolution etc. This
statement should be removed.

We softened our statement including the term often (page 2, 2rd paragraph):

“For ocean applications, observations are typically less frequent than for the atmospheric
applications, so that the model integration step often dominates the computational cost
relative to the assimilation step. In this case, an update of both the ensemble mean and
covariance using the hybrid covariance will lengthen the assimilation step, but will remain
negligible with respect to the total computational cost.”

Thank you.

- The captions for Table 1 and 2 need to include the
application’s they are valid for. ie Table 1 for QG model, Table 2 for HYCOM.

Thank you

- it's meaningless to include labels 5.2, 5.4 etc on fig 7b. The values for the horizontal axis
are run numbers. For clarity, you could extend the horizontal range to 4.5-7.5.

Thank you.

This is correct, we have removed the meaningless labels, but we did not feel necessary to
extend the horizontal range. Thank you.

- is the sentence on pg 672, line 11 correct?
Yes.
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Abstract. Data assimilation methods often use an ensem-1 Introduction

ble to represent the background error covariance. Two ap-

proaches are commonly used; a simple one with a static enbata assimilation methods can use ensembles to obtain and
semble, or a more advanced one with a dynamic ensembleropagate the system state and the background error covari-
The latter is often non-practical due to its high computaiio ance. Two different approaches are often used. The first
requirements. Some recent studies suggested using a hgne, referred to as ensemble optimal interpolation (EnOl,
brid covariance, which is a linear combination of the covari Evensen, 2003), uses a static ensemble of model states. The
ances represented by a static and a dynamic ensemble. Herscond and theoretically more consistent approach, uses a
the use of the hybrid covariance is first extensively testeddynamic ensemble, as for example the ensemble Kalman fil-
with a quasi-geostrophic model and with different analysister (EnKF, Evensen, 2006). Dynamic ensembles provide a
schemes, namely the Ensemble Kalman Filter (EnKF) andlow-dependent background error covariance, but they can
the Ensemble Square Root Filter (ESRF). The hybrid covari+equire of the order of 100 model realizations for realistic
ance ESRF (ESRF-OI) is more accurate and more stable thaoceanic applications\atvik and Evensen, 2003). Therefore,

the hybrid covariance EnKF (EnKF-Ol), but the overall con- in practice one has to either favor the high model resolu-
clusions are similar regardless of the analysis scheme usedion combined with an inferior data assimilation methodaor
The benefits of using the hybrid covariance are large com-more optimal data assimilation method at the expense of the
pared to both the static and the dynamic methods with a smalinodel resolution. However, in many applications it is im-
dynamic ensemble. The benefits over the dynamic methodportant to have a sufficient model resolution for obtaining a
become negligible, but remain, for large dynamic ensemblesrealistic representation of the dynamics. For exanphas-

The optimal value of the hybrid blending coefficient appearssignet et al. (2005) show the importance of the model resolu-
to decrease exponentially with the size of the dynamic en4ion for placing accurately the fronts in the Gulf of Mexico.
semble. Finally, we consider a realistic application with t Yin and Oey (2007) and laterCounillon and Bertino
assimilation of altimetry data in a hybrid coordinate ocean(2009a) investigate ensemble forecasting with a small en-
model (HYCOM) for the Gulf of Mexico, during the shed- semble (10 members) and a high resolution model of the
ding of Eddy Yankee (2006). A 10-member EnKF-Ol is Gulf of Mexico. Yin and Oey (2007) show that a probabilis-
compared to a 10-member EnKF and a static method callegic forecast provides a better accuracy than a single feteca
the Ensemble Optimal Interpolation (EnOl). While 10 mem- andCounillon and Bertino (2009a) show using an advanced
bers seem insufficient for running the EnKF, the 10-membemperturbation system that the ensemble spread is corrétated
EnKF-Ol reduces the forecast error compared to the EnOlgspace and time with the model error. This indicates that even
and improves the positions of the fronts. small dynamic ensembles can be useful for data assimilation
purposes.

Hamill and Shyder (2000) suggest a hybrid scheme called
EnKF-3DVAR that combines the covariance from a dy-
namic ensemble with the static background covariance from
3DVAR. Each ensemble member is updated variationally
Correspondenceto: Counillon Francois with perturbed observations. The method is tested with a
(francois.counillon@nersc.no) quasi-geostrophic model, and it shows improvements rela-
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tive to 3DVAR. The improvements are largest in case of ato both the ensemble mean and ensemble covariance, by do-

sparse observation network. A similar approach was alsang a clear cut comparison for different analysis schemes

suggested byorenc (2003). Etherton and Bishop (2004)  (EnKF, ESRF). A secondary objective resides in applying the

suggest a hybrid scheme called the ETKF-OI. It uses the enhybrid covariance to a realistic application and to an ocean

semble transform Kalman filter (ETKBishop et al., 2001)  application.

analysis scheme for updating the dynamic ensemble. In order The outline of this paper is as follows. The hybrid co-

to reduce the computational cost, only the ensemble mean igariance method is presented in Section 2. The method is

updated with the hybrid covariance, whereas the ensembléhen validated on a simple 1.5-layer reduced gravity quasi-

is updated using the ETKF. The ETKF-OI is shown to out- geostrophic model in Section 3. Finally, we demonstrate the

perform the 3DVAR in a two-dimensional turbulent model. benefit of the hybrid covariance for a realistic applicafion

Wang et al. (2007) use the ETKF-OI, with localization for the the Gulf of Mexico, in Section 4, and present our conclusion

ensemble mean, and compare it to the ESRF with localizain Section 5.

tion (Whitaker and Hamill, 2002) for a two-layer primitive

equation model. The ETKF-OI outperforms the ESRF for _ )

small dynamic ensemble size (5 members), produces simi? Hybrid covariance methodology

Il:?errrs(;Slf)lltht fics)r(;r;ttzrerrficrj:r?;e(jdg;?hn;%gsg Totiklaasrlgzeer (jfnr;]r?]riz!n sequential data assimilation, the system error coveeiar_\

enser,nbles Finallj\ang et al. (2008a.b) demonstrates that is often calculateq from an ensemble of model state_s. With

the benefit.of hvbrid - " h imilati the EnOl, the static ensemhle, and the centered static en-

[ hybrid covariance remains when assimilating_, 104/ are defined as:

real observation on a coarse model. s
For ocean applications, observations are typically less fr A, = [4,,.., ¥y ] and AL =A,—A, €R"N (1)

_quentth_an for the atmospherlc ap;r)]llcatlons, so_thatlth&ﬂnod where v is a model state vectoly, is the size of the static
integration step often dominates the computational cdet re ensembley is the size of the model state vector, and the

tive to the assimilation step. In_ this case, an updatg of bo“bverbar denotes ensemble average. The square brackets de-
the ensemble mean and covariance using the hybrid covari; e 4 horizontal concatenation of the matrices separatad b
ance will lengthen the assimilation step, but will remaigne ;5 A static ensemble may contain the model states sam-

ligible with respect to the total computational cost. IfnGi 10 from a long model integration. The integration should
the hybrid covariance is beneficial for an update of the enpe long enough to contain a wide variety of possible model
semble mean, it should also be beneficial for updating the eNgiates

semble covariance. Furthermore, an update of the ensemble Similarly A/, € R"*N« represents the centered dynamic
mean and covariance is more in line with the Kalman Filter. ensemble macérix wherd, is the size of the dynamic en-
To analyze the benefit of the hybrid covariance, we compare, pje '

the hybrid covariance I_EnKF (cglled hereafter EnKF-Ol) to The ensemble covariance matrix calculated from the static
the EnKF, and the hybrid covariance ESRF (called hereafte,\ < npie is denoted.. and the one calculated from the dy-

ESRF_'OI) fo the ESRF. Th_e ESRF is a deterministic for- i ensembl€,. They are both assumed to represent the
mulation of the EnKF, and yield to better performance thanforecast erroE:

EnKF for small ensemble siz&\fitaker and Hamill, 2002).

—= o
We see the main reason for using the hybrid covarianceee™ ~ C; = N 1A;(A;)T7 (2)
is expanding the subspace of ensemble anomalies produced *
by a small dynamic ensemble. While systems based on th&"
ensemble Kal_man f_ilter canyield a theore_tically optimal up- T ~ C, = 1 A (AT 3)
date, in practice this can only happen with an ensemble of Na—1

a sufficient rank to span the system error subspace. WithThe superscript T denotes a matrix transpose. The variance

an ensemble of insufficient rank, the analysis becomes nobf the static ensemble is usually different from the forécas

only suboptimal, but degenerative, resulting in a collapilse  error variance, so that a scaling factofis introduced in the

the ensemble. In contrast, a theoretically suboptimal EnOl traditional EnOl frameworkRvensen, 2003). The parameter

based system is often able in similar circumstances to yieldy is part of the tuning of an EnOI system, and is kept constant

meaningful updates and to provide an overall robust data asin the following.

similation system. The hybrid covariance can be therefore As suggested bidamill and Shyder (2000), we compute

viewed as a compromise between a theoretically superior bug linear combination of the two covariance matrices with an

computationally expensive data assimilating system based adjustable blend parametgt:

a dynamic ensemble, and a computationally cheap and robu

but theoretically inferior system based on a static ensembl % =FC:+ (1= B)Ca. (4)
A primary objective of our study is to test the hybrid co-  !g corresponds to & in the notations oHamill and Snyder

variance when localization and hybrid covariance are adpli (2000).
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When3=0 (resp.3=1) the hybrid covariance is expressed 3 A quasi-geostrophic model
entirely by the dynamic ensemble (resp. static ensemble).

Wang et al. (2007) manipulate the matrikHT € R»*™, In order to analyze the capability of the hybrid covariance,
with H being the measurement operator relating the progWe first apply it to a simple 1.5-layer reduced-gravity quasi
nostic model state variables to the measurementsyatie ~ 9eostrophic (QG) model with double-gyre wind forcing and
number of measurements. However, for a |arge number Obbiharmonic friction. It is a non-linear model with dimen-

servationsCH™ remains a large matrix. Here the matrix Sion (122<127) (see Figure 1), and model subspace dimen-
A'HT c RNxm is used instead whera is the matrix sion of order of 18-10°. The model is eddy resolving as it

generates eddies of siz(10) of the model grid (see Fig-
ure 1). More details about the model are giversakov and
_, o =7 Oke (2008). The model is run over 1000 model time steps,
A =+/Ng+N;—1 [\/ A;,\/ ;1, (5) and is assimilating 300 sea surface height (SSH) observa-
Ne =1 Na—1 tions every 10 time steps. The observations are extracted
from a model run with lower viscosity, to which white noise
is added with a varianédeof 4. The observations are dis-
_ 1 R tributed uniformly over the domain, with a different random
C= N v 1 (AT, (6) offset for each assimilation in order to mimic the typica-di
5 d tribution of satellite tracks (represented by dots on Fégur
The Kalman filter equation is then solved as: 1). Both the model code and the framework of the data as-
similating system used in the experiments are availabla fro
I — http: //enkf.nersc.no/Code/EnKF-Matlab.
i=Al+6K(d-HA)), (7) The parameter is fixed at a value for which the EnOlI
is robust and performs with lowest erfojn=0.04). This
Cl=(I- KH)Cg, (8) value is also optimal with the hybrid covariance method (not
shown). The localization is applied with a Gaussian loealiz
tion function to the state error covariance matrix by means
of a Schur productHoutekamer and Mitchell, 2001). The
o [~ T -1 localization radius is set to 25 grid cells. The localizatio
K=CH (HCH + R) (©) and the assimilation time step were both chosen large enough
to challenge the data assimilation method. For comparison
is the Kalman gainR is the observation error covariance Sakov and Oke (2008) assimilate every four time steps, and
matrix, I is the identity matrix,d is a vector of measure- show that a smaller localization radius (of approximately 1
ments. An ensemble data assimilation system gets subogyrid cells) provides more stable and accurate results.
timal due to the limited ensemble size and partlally inade- The hybnd covariance blends 200 static members gath-
quate priors assumptions. Such suboptimalities can lead t@red randomly over a period of 500000 model time steps with
an excessive reduction of the ensemble spread, which cagn increasing number of dynamic members until the perfor-
be maintained pragmatically by multiplying the assimdati  mance in terms of RMSE saturates. Four data assimilation
anomalies with a term called the ensemble inflation. The schemes are Compared here: the EnKF, the ESRF and the
superscript “a” refers to the analysis state and “f" to thefo  hybrid covariance EnKF-Ol and ESRF-OI.
cast. The accuracy of the system is assessed by the time average
Different schemes can be used for solving Equation 8. Inroot mean square error:
the following we apply the two most widely used: the EnKF
and the ESRF. The EnKF is based on a Monte Carlo sam- 1 Py 1 I — 9
pling of Equation 7 and applies perturbations to the obser< = Z T Z (Ag(p, k) — a'(p, k:)) .(10)
vations that can impair the stability of the results for dmal p=po \ ' k=1
ensembles. To circumvent this problem, the deterministic o
ESRF solves the analysis Equations 7 and 8 without perturb¢ 'S calculated from the ensemble mean before assimilation

ing the observations, and can provide more accurate and st%nd start at_||tefrat|o;np (herepo=10in (;]rder tol remot\)/e thfe
ble results Whitaker and Hamill, 2002). ata assimilation spin-up time)y; s the total number o
assimilation steps (herg;=100). " represents a known

of combined ensemble anomalies:

so that

where

pr—po+1

The cost of the assimilation time step is usuallyJdV x
mxmn). When the hybrid covariance Is used,= N + Ny, 2The scales and the units are dimensionless in this synthetic
and the time needed for assimilation becomes longer thap,gge|.
both the dynamic method and the static method. However, 2ournotation ot follows that ofEvensen (2003) andCounillon
usually Ny < Nj, so that the cost remains similar to the and Bertino (2009b) but corresponds te in Oke et al. (2005) and
EnOl. in the EnKF-Matlab toolbox.
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true field, from which synthetic observations are extracted with the ESRF-OI. The first occurrence with the EnKF-OlI

It is similar for all runs, and the random seed is fixed, sois likely to be the result from random variations, @5 is

that all runs of similar ensemble size use the same randoragain positive with a larger dynamic ensemble. The second

perturbation. occurrence with the ESRF-Ol seems more reliable because
We vary the three adjustable parameters of the methodthe ESRF with an ensemble of 40 members does converge

the linear blending coefficient, the inflation parametef to its maximum accuracy. After refining the discretization i

and the size of the dynamic ensemiNg, and evaluate the 3 andd, we obtaing*=0.05. It indicates that even when the

resulting erroe. The parametes is chosen from O to 1 with  EnKF has nearly converged to its maximum accuracy, the use

an increment of 0.1, the parametefrom 1 to 1.6 with an  of hybrid covariances is still beneficial (see Figure 3). sThi

increment of 0.05, as shown in Figure 2 where every circleseems to contradidtang et al. (2007) where the ESRF gives

represents the run average forecast esroalculated for a  better result than the ETKF-OI for a large dynamic ensem-

given, 6 and N;. The values ofV, are chosen as reported ble. However, their result may be caused by the difference

in Table 1. The optimal setting minimizes the ereorThe between the ESRF with full localization and the ETKF with

values at optimum are denotet] 5*, §*, and are reported in  localization only for updating the ensemble mean.

Table 1. In Table 1 and Figure 4, the relationship between the blend
When3=0, the EnKF-OI (resp. ESRF-OI) coincides with parametep and the size of the dynamic ensemblg is an-

the EnKF (resp. ESRF) method. Whgr1, every member alyzed. The value of* decreases with increasidg;. This

of the dynamic ensemble is updated by the static covariancaesult seems natural, as with an increase of the dynamic en-

The best guess is still provided by the ensemble average isemble size, the need for a static ensemble is reduced. In

this case, so that the method does not strictly coincide withFigure 4, the curve of* for the ESRF-OI is relatively reg-

the EnOl. In these experiments we observe that the EnKFular. The relationship is noisier with the EnKF-Ol due to its

Ol and ESRF-OI with3=1 provide a slightly better estimate Monte Carlo nature, but overall the curves match, and can

than the traditional EnOl, which is in agreement with the re- be fitted by an exponential (green line on Figure 4). This

sults of\ang et al. (2007). This is a consequence of the non- indicates that the parametgt may be independent of the

linearity of the QG model, because in a linear model, theanalysis scheme chosen. We suggest that the valy of

integration of the ensemble mean coincides with the meaneflects the balance between the rank of the dynamic ensem-

of the integrated ensemble. Note that the hybrid covariancéle and the model error subspace dimension, which implies

method with3=1 is failing when inflation (or deflation) is that one can predict the optimal valuef for a given size

used. of dynamic ensemble, and the dimension of the model error
We start our experiment with 5 dynamical members. It subspace.

is characterized by a big proportion of failed runs. How-

ever, there is a clear core of runs that complete for hybrid

covariance methods (EnKF-Ol and ESRF-OI) with high val- 4 A realistic application: Gulf of Mexico nested model

ues of3, whereas neither the EnKF nor the ESRFe (with

B=0) have completed. This indicates that the hybrid covari-The dynamics in the Gulf of Mexico (GOM) are domi-

ance methods avoid divergence in some configurations witthated by the northward Yucatan Current flowing into a semi-

a small dynamic ensemble, in agreement viing et al. enclosed basin. This current forms a loop (called the Loop

(2007). Using the hybrid covariance also reduces the erroCurrent, LC) and exits through the Florida Straits. At ir-

¢ by approximately 26% compared to the EnOI. The hybrid regular intervalsukovich, 1988;Surges and Leben, 2000)

covariance methods become more stable with 10 dynamithe LC sheds large eddies that propagate westward across

members, as fewer runs fail. At the same time, only a singlethe GOM. The eddy shedding involves a rapid growth of

run have complete with the ESRF, but it is of similar accu- non-linear instabilities Cherubin et al., 2005b), and these

racy to the EnOl. For 15 members (see Figures 2), all of theare difficult to forecastGhassignet et al., 2005;Counillon

four schemes converge. When more than 25 dynamic memand Bertino, 2009b). In particular, Eddy Yankee (2006) was

bers are used, the benefit from using the hybrid covarianc@roblematic for the offshore industry operating in the hert

over the EnKF/ESREF is only slight, and the bests loosely  ern shelf of the GOM. Thus, it is used for investigating the

defined on a broad range of valuesséndo. benefits of hybrid covariance for a realistic system coneftict
When the dynamic ensemble is large enough, the samplingelow.

error becomes negligible. The EnOIl makes the additional

assumption that historical ensemble is representative-of i 4.1 Experimental setup

stantaneous forecasting error. Therefore, when dynamical

ensemble is self-sufficient, one merely expects the adjuncChassignet et al. (2005) demonstrate the skill of HY COM for

tion of static covariance to deteriorate the results, floeee  the GOM. They emphasize the importance of both horizontal

in this case3*=0. In Table 1, this occurs two times: for 30 resolution and lateral boundary conditions for accurage pr

dynamic members with the EnKF-OI and for 40 membersdiction of the fronts there. A nested configuration can Batis
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these two requirements with reasonable computing cost. Thduce the spin-up time of the ensemble. The ensemble spread
TOPAZ3 system provides lateral boundary conditions to ais then maintained by using perturbations and inflation over

high-resolution model of the GOM (Chapter 15Hmensen, the successive assimilation cycle. @ounillon and Bertino
2006) using nesting techniques describediowning and (2009a), perturbations are applied to the atmospheriafgyrc
Kreiss (1982). the lateral boundary conditions, and the assimilated &vate

TOPAZ3 is a real-time forecasting system for the Atlantic the GOM model. The perturbations of the assimilated state
and Arctic basins with a configuration of HYCOM, capable appear to control the main position of the large featuresef t
of monitoring the circulation patterns in the Atlantic. The GOM (e.g. LC, eddies), whereas perturbations of the bound-
grid is created using a conformal mapping of the poles toary conditions (atmospheric and lateral) control the ghowt
two new locations by the algorithm outlinedBentsen et al. of cyclonic eddies at their boundary. The same technique
(1999). The horizontal resolution varies from 11 km in the is used here for perturbing the boundary conditions, but the
Artic to 18 km near the Equator (approximately %¥8The  assimilated state is perturbed similarly to the EnKE; by
model is initialized from the GDEM3 climatologyi¢ague  perturbing the measurements during assimilation. The per-
et al., 1990) and spin-up for 16 years. The TOPAZ3 proto- turbations of the atmospheric fields (wind stress, air tempe
type used in this work only provides the boundary conditionsature) are simulated with a spectral methBdghsen, 2003),
and does not include data assimilation, because of computersing a 50 km decorrelation radius, which is too small to be
costs. represented in the ECMWF data, but large enough to stimu-

The high-resolution GOM model is set-up with 5 km hori- late the ocean model. The perturbations of the lateral bound
zontal resolution, which is sufficient to resolve the meatesc  ary conditions are simulated by introducing a time lag to
features considering the Rossby radius in the arga{R0 the boundary conditions, which is set randomly at the be-
km). The model uses a fourth order numerical scheme foginning of each model run, between -37 and +37 days from
treating the advection of momentum in the primitive equa-the actual date. This perturbation system introduces &alini
tions (Wnther et al., 2007). To minimize the spin-up time, barotropicimbalance, which is damped within a day. In addi-
the initial state is interpolated from an equilibrium stafe  tion, we use an ensemble inflation of 15 %, which increases
TOPAZ3, and spin-up for 3 years. the ensemble spread and slightly improves the accuracy over

For both models, there are 22 layers in the vertical. Thetime.
bathymetry is specified using the General Bathymetric Chart The assimilated SLA maps are provided by Ssalto/Duacs
of the Oceans database (GEBCO) with 1’ resolution, inter-on a 1/3 Mercator grid {raon et al., 2003), with a one week
polated to the model grids. The models are forced by thedelay. The standard deviation of the measurements is as-
6-hourly and 0.5 analyzed fields from the European Cen- sumed to be constant, and it is using the average value spec-
ter for Medium range Weather Forecasting (ECMWF, seeified by the provider in the GOM area (3 cm). The measure-
http://mww.ecrmwi.int). The system is described in more de- ments are less accurate in the coastal area, therefore raeasu
tail in Counillon and Bertino (2009b). ments are selected only in regions deeper than 300 m, which
At the time of writing the article, we can afford a dynamic correspond in the GOM to distances of at least 50 km from
ensemble of 10 members in real-time. Here we compare dhe coast. Accordingly, a Gaussian covariance with a decor-
10-member EnKF-Ol, a 10-member EnKF, and an EnOl byrelation radius of 50 km is used for the observation error. As
assimilating altimetry data. The EnOl uses a historical en-the SLA needs to be referred to a mean SSH, a two-years av-
semble that is composed of 122 weekly model outputs over £rage of TOPAZ3 SSH is interpolated to the high-resolution
2.5 years period, without data assimilation. All methods us 9rid. Qualitatively, it compares well with the mean dynamic
a fixed localization radidsof 150 km. A smooth transition topography based on satellites and in situ measurentfgiats (
is ensured at the edges of the localization area by applyingnd Hernandez, 2004).
a weight function to the innovations. This function depends The experiment starts six weeks prior to the shedding of
on the distance between the observation and the target poiftddy Yankee, in order to spin-up the perturbation system (as
(Counillon and Bertino, 2009b). A value o£:=0.23 is found  in Counillon and Bertino (2009a)). Seven runs are processed
to be optimal for both the EnOl and the EnKF-Ol set-up at with weekly assimilation of sea level anomaly (SLA) and are
the nowcast forecast horizon, and has is used in the experhereafter referred to as Run 1 to Run 7 (see Figure 5). The
ments below. In order to identify the optimal value®fwe  first assimilation is applied on thé'7of June and the last one
run the EnKF-Ol with the values shown in Table 2. on the 19" of July 2006. Each run is integrated for 7 days,
The dynamic ensemble for the EnKF and the EnKF-Ol which corresponds to a nowcast with respect to the availabil
is spin-up in order to provide realistic correlation. The in ity of the near real-time altimeter data.
tial set of restart files is randomly extracted from an a three
weeks EnOl run that precedes the starting date, in order to reé4.2 Forecast Errors

“This may be refined by a depths-dependent radius @stinil- The benefit of the hybrid EnKF-OI over the EnOI and the
lon and Bertino (2009b) EnKF is analyzed by calculating the RMSE between the
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model daily average SLA with the daily SLA data maps. hybrid covariance methodCounillon and Bertino (2009a)
The calculation starts from theé'5of July (.e. Run 5) to  show that a high value af allows for higher accuracy ini-
allow sufficient ensemble spin-up prior to the pre-sheddingtially but diverges faster with model integration. A lower
(with the non-linear growth of cyclonic eddies), the sheddi  value of« tested for both the EnKF-OI and the EnOl leads
and the near-reattachment of Eddy Yankee. Furthermose, thito more stable but less accurate predictions at the nowcast
starting date corresponds to the start of available dditypat stage.
try maps. During the shedding event, the fast dynamics of the The EnKF-OI with3 = 1 is performing better than the
eastern GOM contrast with the slower activity of the remain- EnOl, as shown with the QG model. It is more accurate to 5%
ing domain. In order to clearly identify the benefit in the on average, and to 8% at the nowcast stage to the EnOl (see
shedding area, the statistics are calculated over a festric Table 2). This indicates that imbalances caused by the per-
area such that the longitude is withi9°WW; 83.5°W] and  turbation system are too low to deteriorate the performance
the latitude north of 22.25N. The areas shallower than 300 and that the sources of variability are efficient.
m are also excluded from the statistics due to inaccurate mea
surements. 4.3 Frontal analysis
In order to analyze different aspects of the performance of
the data assimilation methods that use the hybrid covagianc Our main objective is to represent accurately the position
we form the following characteristics of the system errors: Of eddies (orientation, center, shape) during the shedding
events. Large velocities are located at the fronts, at therou
— The overall average erref, for obtaining the optimal  edge of eddies; with maximal values where the cyclonic and
value of 3 (see Table 2). anticyclonic eddies interact. In this Section, we conduct a

h fih f vzing th bi frontal analysis for the EnOl and for the EnKF-OI (with
B T e average of the run erroy, orana_yzmgt esta - = 0.95) in order to qualitatively interpret the statistical
ity of the methods over the successive runs (see F'gur%ain observed above

6 D). Chassignet et al. (2005) show that ocean color (OC) datais
useful for identifying the position of the fronts of the LCdan
rihe eddies. Furthermore, it provides an independent source
of validation, and has higher resolution than the altimetry
data. In Figure athe deep blue contour area represents the
low chlorophyll water & 0.3 mg/n¥) that originates from the

The EnKF with 10 members yields a larggrthan all the ~ Caribbean Sea. The light green areas characterize the water
other schemes (see Table 2). This result is expected becaugéth higher chlorophyll concentration-(0.5 mg/n¥), which
the dynamic ensemble has too few members. In particularis usually found in areas of high biological production aon
we note that the errar, (Figure 6 b) should decrease in the the coast or within cyclonic eddies. The high chlorophyll
last run because the eddy has almost reattached to the L@yater often propagates along the outer edge of the LC eddies,
and the complexity of the prediction is reduced. This doesand clearly defines the front.
not occur for the EnKF system, for which the run error av- The position of the front is analyzed for the last three runs
eragee, increases with successive runs. The error for theat the nowcast stage (represented with the letters a-c iné-ig
EnKF-Ol with 5=0.2 also does not decrease for the last run.5) for the EnKF-OI withg = 0.95 and for the EnOl. This
This indicates that with 10 members, the EnKF might di- period covers the shedding and the near reattachment of Eddy
verge, and that a minimum value 6f>0.2 is necessary for Yankee (2006). On the 12 of July (Figure 7a) there is a
reaching stability with the hybrid covariance method. pre-shedding scenario with a deep cyclonic penetratian fro

In Table 2, there is a clear trend indicating that high valuesthe east. On the 18 of July (Figure 7b), Eddy Yankee is
of 3 are preferable, but the minimum is once again looselyon the verge of being shed from the LC. On thé&"2@f July
defined, possibly due to the random perturbations of observa(Figure 7c) Eddy Yankee has shed, rotated around a cyclonic
tions and boundary conditions. However, the three stasisti eddy located on its eastern side, and started to reattach fro
€1, €2, andes indicate that a value of abogt= 0.95 is opti- the east.
mal for the hybrid EnKF-OI. On average over the three runs, In Figure 7, the ensemble fronts from the EnKF-OlI are
the EnKF-OI with3=0.95 reduces the total error average represented by pink lines over the OC data. The EnKF-OI
by approximately 10 %, and the nowcast error aveeadey ensemble mean provides the best guess and is represented by
approximately 14 % compared to the EnOl. Although the the thick red line. The front calculated from the EnOl is in-
blending parameter is largely on the EnOl side, the gain indicated by the thick yellow line. The front position derived
accuracy seems important. from altimeter SSH maps (hereafter referred to as SSH data)

In Figure 6 a, the errars is doubling during one week of is represented by a thick black line. Although OC data has
model integration with all schemes. However, one can ob-a higher resolution, the SSH data may also be a useful indi-
serve that the EnOl is diverging faster than the run with thecator of the error in the assimilated SSH data, or be used to

— The error average at a given forecast horizan for
characterizing the persistence during model integratio
(see Figure @&). In particular, the error average at the
nowcast is reported in Table 2.
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locate the front when clouds mask the OC data. The fronts othe basin should be small because the variance from the stati
the model and SSH data are the 10 cm SSH isolines, whiclkensemble dominates there.
appears to fit best with the front from OC data. In the center of the basin (point A in Figure 8), the corre-
On the 12" of July, the shape of the front obtained with lation of SSH and velocity from the static ensemble clearly
the EnKF-Ol is better positioned than that obtained with thereflects the geostrophy, as a higher SSH increases the anti-
EnOl. In particular, the eddy sheds too early with the EnOl. cyclonic currents around the target point (see Figure 9j, an
Furthermore, the northern frontis slightly too far to thetho  there is a slight anisotropy due to the interaction with & r
One can also notice that both nowcasts are relatively ateuraident LC. The SSH correlation from the dynamic ensemble
with respect to the altimetry data. highlights the position of the southern front of the eddy, bu
On the 19" of July, both methods misrepresent the north- it is noisy and uneasy to interpret. In total, the hybrid eerr
ern front. Indeed in the OC data, the shape of Eddy Yankedation is nearly identical to the static ensemble.
is deformed by a cyclonic eddy that is squeezed between its In the coastal area, (point B in Figure 8), the correlation
northern front and the northern shelf. The reason is that thi of SSH and velocity from the static ensemble is dominated
cyclonic eddy was poorly represented in the gridded SLADy the seasonal variability. An increase of SSH at the target
data assimilated on the 2of July, because of its proxim- point increases the SSH almost uniformly in the whole area,
ity to the coast. In the rest of the domain, the EnKF-Ol de-and induces a weak shelf current (see Figure 10). In the dy-
scribes the remaining connection of Eddy Yankee with thenamic ensemble, there is a positive correlation with a small
LC, whereas the eddy appears as already shed in the EnOl.anticyclonic ring, and with a vortex of opposite sign at its
On the 26" of July, the EnOI has placed Eddy Yankee boundary. This correlation seems realistic because small a
slightly too far to the west, and the EnKF-OI better représen ticyclones and cyclonésnteract with the shelf therd-amil-
its northern front. The “comet” shape of the eddy seems toton and Lee, 2005), but it is noisy due to a small number of
be better represented in the EnKF-OI than in the altimetrydynamic members. In the hybrid ensemble, the correlation
data. with the anticyclonic ring is clearer than in the static ense
One can notice that the eastern LC base is systematicallf!€: Poth for the SSH and currents. Furthermore, the hybrid
too broad in the model, with both assimilation schemes. Thiscorrelation is smoother than that of the dynamic ensemble.
may be caused by a model bias. Overall, the EnKF-Ol im- The benefits of using hybrid covariance compared to the

proves the representation of the fronts over the EnOI duringftatic covariance may not appear as large, but they are still
the shedding of Eddy Yankee. important as they occur at locations where the static covari

ance is known to be inadequate.
4.4 Hybrid correlation

In order to obtain a better understanding of the benefits5 Conclusions

from the hybrid covariance, the correlation of SSH from the

static, dynamic and hybrid ensembles are analyzed belowr his study follows the work frontlamill and Snyder (2000);

In Counillon and Bertino (2009b), a statistical analysis of Lorenc (2003); Etherton and Bishop (2004); Wang et al.

the static ensemble throughout the GOM is conducted at tw@2007, 2008a,b) and analyzes the benefits of using the hy-

typical locations, one in the center of the basin and one orbrid covariance. The hybrid covariance combines the co-

the upper-shelf. The correlation is found to be realistihim  variance from a dynamical ensemble and from a static en-

center of the basin, but has some limitations near the uppersemble. Unlike previous works, the hybrid covariance and

shelf area. Here, we analyze the spatial correlation of 3SH aocalization are applied to updates both the ensemble mean

the same locations, marked with letters A and B in Figure 8.and the covariance. We also evaluate the hybrid covariance

This analysis is repeated for the static, dynamic, and dybri with the EnKF and the ESRF analysis schemes instead of the

ensembles (witly=0.95). ETKF (Etherton and Bishop, 2004;Wang et al., 2007), or of
Figure 8 shows the variance of the static ensemble and tha variational approactHamill and Snyder, 2000). As a con-

of the dynamic ensemble. As expected, the variance of théeduence, we found the hybrid covariance to be beneficial

static ensemble shows a maximum value induced by the rescompared to the dynamical approach; even when a large dy-

ident LC base, and a positive track induced by the passaggamical ensemble is used. In addition, the hybrid covaganc

of eddies that drift westward. However, the variance atloca methods are applied for the first time to a realistic appibcat

tions closer to the shelf is very small, in particular at p&n ~ (i-e. assimilating real observations, using a state of the a

The dynamic ensemble shows a large variance near the frofflodel at a resolution capable of resolving the dynamics, and

of Eddy Yankee, because a small displacement of a front inthus applicable in an operational setting), and to the acean

duces a large difference in the SSH. The dynamic ensemble The results with the QG model indicate that:

is expected to be most useful in the dynamic areas and in the

upper-shelf coastal area, but its contribution in the nadufl Swith a radius smaller than 75 km
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Fig. 1. Typical sea level elevation state (in dimensionless uriiteh the quasi-geostrophic model; the dots indicate an eiamf the
observation locations.

1.7 1.7 24
min is :1.3784 with beta= 0.5 and inflation is 1.4 min is :1.2111 with beta= 0.4 and inflation is 1.25
1, O @ ©¢ e e @ ¢ ¢ O O i 1 ®e @ @ @ @ O ®@ O O O 25
@ O © @ ¢ ¢ ¢ ¢ © O ®e ¢ @ @ @ @ @ O O O
i ®e ©¢ ©¢ ¢ ¢ ¢ ¢ ¢ O O 22 1. ® @ @ @ ® ® @ O O O
s ® O ©¢ @ ¢ O © © © O s e ¢ ¢ ¢ ¢ @ @ 0 O O |?
g 1. O © © © e ¢ o o o O F1 e ¢ ¢ ¢ @ @ @ @ O O
£ e ©o e O o @ @ 0@ @ OfF £ e ©o o ® ® @ @ ® O O lis
1. e ©¢ ¢ ¢ ¢ ¢ ¢ © o O 1 e © ¢ @ @ @ @ @ @ O
®e O © © © ©¢ ¢ 0 o O 18 e @ @ o @ @ @ @ @ O 16
1. © © ¢ ¢ ¢ ¢ o 0o o O 1. ® @ ¢ ¢ ¢ @ @ 8 @ O
@ O @ O © @ @ @ ® O - ® ®© @ ¢ ¢ ® @ ® @ O
1. O @€ O @ O @ @ @ @ O } 1. e ¢ ¢ @ @ @ @ @ © O 14
0O O O O @ @ @ @ @ O © @ @ @ @ @ @ @ © O
o—8 o509 09 L
Beta
(@ (b)

Fig. 2. EnKF-OlI (a) and ESRF-OI (b) values of errarslepending on the inflatiod and the blend parametgr for 15 dynamic members
and 200 static members. A white circle is used for the runishtaee failed.
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Table 1. Quasi-geostrophic summary table of #ie 3*, andd* obtained for each number of dynamic members with the EnKF=OKF,
ESRF-OI, and ESRF analysis schemes. The EnKF-Ol with aesthgiamic member corresponds exactly to the EnOIl. Empty talicate
that all runs have failed for a given number of dynamic member

Na IERON| 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40
EnKF-Ole* | 2.32 | 1.70 | 1.45 | 1.38 | 1.29 | 1.23 | 1.22 | 1.17 | 1.15
EnKF-OI 5° 1 07 | 06 ] 05| 06| 01 0 | 04| 01
EnKF-Ol6" 155 1.35| 1.4 | 1.26 | 1.15 | 1.26 | 1.2 | 1.2
EnKFe 2.03] 1.65| 1.31 | 1.22 | 1.20 | 1.19
EnKFo* 145|145 115 | 1.26 | 1.2 | 1.2
ESRF-Ole” | 232 | 1.61| 1.34] 1.21] 1.19| 1.10 | 1.087] 1.06 | 1.02
ESRF-OI3” 1 07 | 06 | 04| 03] 02| 01 | 01 O
ESRF-OI3" 1 15 | 1.25| 1.25 | 1.15| 1.15 | 1.15 | 1.15| 1.15
ESRFe" 227 ] 149 ] 1.23] 1.114 | 1.116 | 1.07 | 1.02
ESRFo" 15 | 135| 1.3 | 115 | 1.2 | 1.15| 1.15

Table 2. Gulf of Mexico model total average RMSE and nowcast average RMSE for a 10-member EnKF-Ol with different values of

[ and for the EnOl. The gain represents the percentage of iraprent relative to the EnOl.

EnKF —OI 5=0 (EnKF) | 3=0.2 | 3=0.5 | 3=0.65| 3=0.8 | 3=0.9 | 3=0.95| B=1 | EnOI
e1(m) 0.147 0.075| 0.069 | 0.07 | 0.065| 0.066 | 0.063 | 0.067 | 0.070
Total average gain (% -110 -7 2 0 7 6 10 5 0
g3(m) at nowcast 0.166 0.094 | 0.093 | 0.094 | 0.089 | 0.088 | 0.084 0.09 | 0.097
Nowcast gain (%) -70 3 5 4 8 9 14 8 0
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Fig. 7. Overlay of model ensemble fronts with the non-assimilatesba color data (contour in mghnfor the 12" of July (a), the 18"

of July (b), and the 28 of July (c). Blue color (resp. green) indicates low (respghhiiconcentration of chlorophyll, and cloud covered
areas are in white. The thick black line represents the filenived from SSH altimeter data. The pink lines represemntiwcast of each
ensemble member of the EnKF-OlI, and the red thick line is tisemble mean. The thick yellow line is the EnOl front. Theng®A and B
represent the locations where correlations are analyz8édtion 4.4
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Lat
Lat

Fig. 8. Ensemble variance (in i of the static (a) and of the nowcast dynamic ensemble EnK®t 3 = 0.95 on the 19" of July (b).
The points A and B represent the locations where correlsioe analyzed in Section 4.4. The black line representsOBer3sobath.
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Fig. 9. Ensemble spatial correlation of SSH at the target point Arket by a cross) for the static ensemble (a), the dynamimebise(b),
and the hybrid ensemble (c). The white arrows representdirelation with eastward and northward velocities. Thebleircle represents
the localization radius.
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SH (01): 0.20.30. 060708091.0 SSH-corr: 0.20.30
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Fig. 10. Ensemble spatial correlation of SSH with the target pointrarked by a cross) for the static ensemble (a), dynamic drisg(i),
and hybrid ensemble (c). The white arrows represent thelketion with eastward and northward velocities. The blaoderepresents the
localization radius. The black line represents the 300 ibdtfo The correlation with SSH is all positive.
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