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Understanding mixing efficiency in the oceans:
Do the nonlinearities of the equation of state for seawater matter?
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Abstract. There exist two central measures of turbulent
mixing in turbulent stratified fluids that are both caused by
molecular diffusion: 1) the dissipation rate D(APE) of
available potential energy APE; 2) the turbulent rate of
change Wr,turbulent of background gravitational potential
energy GPEr. So far, these two quantities have often been
regarded as the same energy conversion, namely the irre-
versible conversion of APE into GPEr, owing to the well
known exact equality D(APE) = Wr,turbulent for a Boussi-
nesq fluid with a linear equation of state. Recently, how-
ever, Tailleux (2009) pointed out that the above equality no
longer holds for a thermally-stratified compressible, with the
ratio ξ = Wr,turbulent/D(APE) being generally lower than
unity and sometimes even negative for water or seawater,
and argued that D(APE) and Wr,turbulent actually repre-
sent two distinct types of energy conversion, respectively the
dissipation of APE into one particular subcomponent of in-
ternal energy called the ‘dead’ internal energy IE0, and the
conversion between GPEr and a different subcomponent
of internal energy called ’exergy’ IEexergy . In this paper,
the behaviour of the ratio ξ is examined for different strat-
ifications having all the same buoyancy frequency N ver-
tical profile, but different vertical profiles of the parameter
Υ = αP/(ρCp), where α is the thermal expansion coeffi-
cient, P the hydrostatic pressure, ρ the density, and Cp the
specific heat capacity at constant pressure, the equation of
state being that for seawater for different particular constant
values of salinity. It is found that ξ and Wr,turbulent depend
critically on the sign and magnitude of dΥ/dz, in contrast
with D(APE), which appears largely unaffected by the lat-
ter. These results have important consequences for how the
mixing efficiency should be defined and measured in prac-
tice, which are discussed.
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1 Introduction

As is well known, turbulent diffusive mixing in the oceans
is a physical process that it is crucially important to parame-
terise correctly in numerical ocean models. Indeed, it is the
quality of the parameterised irreversible diabatic processes
in such models that largely determine the realism of the sim-
ulated distribution of water mass properties, as well as of
the behaviour of the so-called meridional overturning circu-
lation and its associated heat transport (Gregg , 1987), which
are two essential components of the large-scale ocean circu-
lation that may interact with Earth climate. For this reason,
much effort has been devoted over the past decades toward
understanding the fundamental characteristics of turbulent
diffusive mixing in stratified fluids, one important goal being
to design physically-based parameterisations of irreversible
mixing processes suitable for implementation in numerical
ocean models used for climate change simulations.

At a fundamental level, turbulent diffusive mixing in strat-
ified fluids is important for at least two distinct — although
inter-related — reasons: 1) for its role as a mechanism re-
sponsible for a significant fraction — called the mixing ef-
ficiency — of the total irreversible decay of available me-
chanical energy (i.e., the sum of the kinetic energy KE and
available potential energy APE); for its role as a mechanism
responsible for the diffusive mixing of temperature across
isopycnal surfaces, called diapycnal mixing. In the oceans,
turbulent diapycnal mixing is essential to transfer the heat
from the surface at a sufficiently rapid rate to balance the
cooling of the deep ocean by high-latitude cooling and its
associated deep water formation. In the turbulence literature,
these two distinct roles of turbulent diffusive mixing are often
being regarded as being associated with a single physical pro-
cess, whereby the diffusively dissipated available potential
energy is converted irreversibly into the background gravi-
tational potential energy GPEr , e.g., Winters & al. (1995);
Peltier & Caulfield (2003). Although there exists a consider-
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able literature about how one should parameterise turbulent
diffusive mixing, the model that appears the most often used
or cited appears to be that of Osborn (1980), viz.,

Kρ =
γmixingε

N2
, (1)

where the turbulent diapycnal diffusivity Kρ is expressed in
terms of the kinetic energy dissipation ε, the so-called mixing
efficiency γmixing , and squared buoyancy frequency N 2.

To the extent that γmixing can be regarded as some kind
of universal parameter, as is often assumed 1, then Eq. (1)
can be interpreted as stating that the amount of irreversible
diffusive mixing is proportional to the sources of mechani-
cal stirring. In the ocean modelling practice, however, the
value of Kρ is usually adjusted in order to reproduce the ob-
served features of the oceanic stratification, which controls
the strength of the simulated heat transport in ocean mod-
els. Such an approach was pioneered by Munk (1966), who
sought to estimate Kρ by assuming the stratification to obey
the vertical advective/diffusive balance:

w
∂θ

∂z
=

∂

∂z

(

Kρ

∂θ

∂z

)

, (2)

where θ is the potential temperature, which led to the
widespread idea that the canonical value Kρ = 10−4 m2/s
was apparently needed to explain the observed structure of
the oeanic thermocline, and consequently for achieving a
meridional heat transport of the observed strength. Phys-
ically, the vertical advection/diffusion equation states that
the upward advection of deep cold water is balanced by the
downward turbulent diffusion of heat, where the upwelling
velocity is assumed to be set by the rate of deep water for-
mation. Such an approach, however, is indirect, and does
not address the issue of whether there is enough mechan-
ical energy in the oceans to maintain the stirring required
to achieve a value of turbulent diapycnal mixing about three
orders of magnitude larger than the molecular diffusivity of
heat, an issue that was only undertaken by Munk & Wunsch
(1998) about a decade ago, as discussed in further details be-
low. Whether this is the case was questioned in subsequent
years, with several observational studies suggesting that Kρ

in the oceans interior was in general typically smaller by an
order of magnitude than Munk (1966)’s value e.g., see Led-
well & al (1998) and the review by Gregg (1987), prompting
much debate in the ocean community as to correctness and
accuracy of Munk (1966)’s estimate. On the other hand, it
is also widely recognised that turbulent mixing in the oceans
is highly variable, both spatially and temporally, and there-
fore certainly not well described by a single value indepen-
dent of space and time. For that reason, Munk and Wunsch
(1998) suggested to resolve that dilemma by regarding the
value Kρ = 10−4 m2/s as a bulk-averaged value to be in-
terpreted as resulting from the overall effect of weak interior

1See Tailleux (2009), however, for physical arguments chal-
lenging this idea.

values combined with intense turbulent mixing occurring in
coastal areas or over rough topography. In a second step, they
also proposed to use Osborn (1980)’s model to see whether
there is enough mechanical energy to support stirring in the
oceans.

Recently, these ideas have been used to examine whether
the energetics of turbulent irreversible diffusive mixing im-
pose constraints on the magnitude of the mechanical sources
of stirring. To investigate this issue, Munk & Wunsch (1998)
examined the budget of gravitational potential energy, which
they argue must be a balance between the rate of GPE loss
due to cooling and the rate of GPE increase due to turbulent
diffusive mixing, i.e.,
∣
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this result being obtained by multiplying Eq. (2) by αρ0gz,
after some manipulation involving integration by parts and
the neglect of surface heating, where α is the thermal expan-
sion (assumed constant), g the acceleration of gravity, ρ0 a
reference density, and z the vertical coordinate pointing up-
ward. Assuming the rate of GPE loss due to cooling to be
known from an estimate of the North-Atlantic deep water for-
mation rate, Munk & Wunsch (1998) invoke Osborn model
to link the rate of GPE increase du to turbulent mixing to
the work done by the mechanical sources of stirring G(KE)
by:
∣
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≈ γmixingG(KE) (4)

via the mixing efficiency γmixing . This approach, however,
appears to rely on two important widespread and somewhat
misleading ideas about turbulent mixing, namely: 1) that all
of the kinetic energy eventually dissipated by diffusive tur-
bulent mixing yields a corresponding increase in GPE; 2)
that γmixing is some kind of universal parameter with a fixed
value close to 0.2. Yet, it is clear from the work by Fofonoff
(1998, 2001) that there is no guarantee in general that the
background GPE should necessarily increase as the result
of turbulent mixing, as this depends on the particular vertical
temperature profile and nonlinear character of the equation
of state considered. To be specific, whether the background
GPE should increase or decrease as the result of turbulent
mixing appears to depend on the sign of the following pa-
rameter:

d

dz

(
αP

ρCp

)

(5)

where α is the thermal expansion coefficient, P is the pres-
sure, ρ is the density, and Cp is the specific heat capacity at
constant pressure. Thus, the classical regime for which the
background GPE increases as the result of turbulent irre-
versible mixing corresponds to the case where the sign of the
above parameter is negative, as is the case if α/(ρCp) can
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be regarded as nearly constant, assuming the pressure to be
hydrostatic (so that dP/dz = −ρg < 0). This is the case,
in particular, for a Boussinesq fluid with a linear equation of
state, for which the increase of GPE due to turbulent mixing
is accurately described by the following formula:
{

d(GPE)

dt

}

mixing

=

∫

KρρN2dV. (6)

In the literature, the idea according to which the background
GPE should always increase as the result of turbulent mix-
ing appears to be linked to the widespread belief that when
the available potential energy (APE) is removed by molec-
ular diffusion, it is necessarily irreversibly converted into
background GPE, as proposed by Winters & al. (1995)
for instance. Physically, this idea results from regarding
the APE dissipation rate D(APE) and the turbulent rate
of GPEr change Wr,turbulent as being basically the same
conversion, which is motivated by the fact that D(APE) =
Wr,turbulent for a Boussinesq fluid with a linear equation
of state. This idea, however, was recently challenged by
Tailleux (2009), who pointed out that the previous equality
is actually a serendipitous feature of the Boussinesq approx-
imation, but that D(APE) and Wr,turbulent can in fact be
very different from each other for a real fluid, suggesting on
the contrary that D(APE) and Wr,turbulent represent two
distinct measures of turbulent irreversible diffusive mixing.
Specifically, Tailleux (2009) argued that D(APE) physi-
cally represents the dissipation rate of APE into a particu-
lar subcomponent of internal energy, called the ’dead inter-
nal energy’ IE0, while Wr,turbulent, like Wr,mixing , physi-
cally represents the conversion rate between GPEr and a dif-
ferent subcomponent of internal energy, called the ’exergy’
IEexergy . Physically, the ’dead’ and ’exergy’ components of
internal energy can be regarded as being associated respec-
tively with the equivalent thermodynamic equilibrium tem-
perature T0(t) and vertical temperature stratification Tr(z, t)
of the fluid. Physically, it means that the APE dissipation
mainly results in increasing the equivalent thermodynamic
temperature T0(t), whereas the conversion Wr,turbulent as-
sociated with the GPEr variations results in the smoothing
out of the vertical temperature stratification Tr(z, t).

Until now, most theoretical and numerical descriptions of
turbulent mixing in stratified fluids have most often relied
on the incompressible Navier-Stokes equations, often in the
context of the Boussinesq approximation. With regard to the
thermodynamics of the fluid, it is generally considered to be
unimportant at leading order, and as a result, a linear equa-
tion of state is generally considered to be accurate enough
for the purposes of describing turbulent mixing. As is well
known, however, the equation of state for seawater — which
is the one appropriate for describing the oceans — is strongly
nonlinear in temperature, pressure, and salinity. The ques-
tion arises, therefore, of which particular properties of turbu-
lent mixing, if any, might be affected by the nonlinear nature
of the equation of state for seawater. In order to examine

this issue, this paper seeks to gain insights into how the ratio
ξ = D(APE)/Wr,turbulent is controlled by the nonlineari-
ties of the equation of state, in the case where the fluid is wa-
ter or seawater, and how this affects our understanding of the
so-called mixing efficiency. Physically, mixing efficiency is
often regarded as the fraction of the total mechanical stirring
energy that is eventually dissipated by molecular diffusion,
and is a central quantity in the study of turbulent diffusive
mixing. Section 2 provides a theoretical formulation of the
issue discussed. Section 3 discusses the methodology, while
the results are presented in Section 4. Finally, section 5 sum-
marises and discusses the results.

2 Theoretical formulation of the problem

2.1 Energetics of mixing

An important and longstanding issue in the study of turbu-
lence has been to design satisfactory ways to cleanly separate
the effects due to the adiabatic and reversible stirring process
from those due to irreversible molecular diffusion. From a
theoretical viewpoint, it is increasingly realized that the stir-
ring and mixing processes are most easily distinguished if
the potential energy (i.e., the sum of gravitational potential
and internal energies) is partitioned into its “available” and
“non-available” components, as initially proposed by Lorenz
(1955) in the context of atmospheric energetics, and more re-
cently by Winters & al. (1995) to study irreversible mixing
in stratified turbulence. Physically, the underlying idea of
the method is linked to the result that the probability density
function (pdf in short) of the fluid parcels’ entropy is only
affected by molecular diffusion, but unaffected by the stir-
ring process. From this, it follows that irreversible mixing
effects can be neatly isolated by computing the time evolu-
tion of the pdf of entropy. As it turns out, the latter quantity
coincides with the entropy distribution of the reference state
entering the definition of Lorenz (1955)’s available poten-
tial energy. Such result is important, because it establishes a
direct connection between the study of turbulent irreversible
mixing and that of the energetics of stratified turbulence. In
a Boussinesq fluid with a linear equation of state, the role of
entropy is played by either temperature or density.

Following Winters & al. (1995) (using somewhat different
notations), the use of Lorenz (1955)’s available potential en-
ergy to study irreversible mixing in the context of freely de-
caying turbulence in an insulated domain relies on describing
the energetics of the fluid in terms of the volume-integrated
kinetic energy (KE), available potential energy (APE), and
background gravitational potential energy GPEr as follows:

d(KE)

dt
= −C(KE, APE) − D(KE), (7)

d(APE)

dt
= C(KE, APE) − D(APE), (8)
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d(GPEr)

dt
= Wr,mixing = Wr,laminar + Wr,turbulent. (9)

The right-hand side of the above equations represent vari-
ous energy conversion terms. In absence of any irreversible
processes, only one energy conversion term would remain,
namely C(KE, APE), which physically represents the re-
versible conversion between KE and APE, often referred
to as the buoyancy flux. All other energy conversion terms
are associated with irreversible processes, with D(KE) the
viscous KE dissipation rate, D(APE) the dissipation rate
of APE due to molecular diffusion, and Wr,mixing the rate
of change of GPEr due to molecular diffusion, which it is
customary to separate into a background laminar and turbu-
lent contribution. It is important to note that the above equa-
tions represent domain-averaged equations, not local formu-
lations, which are characterized by the lack of lateral energy
fluxes in and out of the domain. Such budgets, therefore, are
well suited to understanding laboratory experiments of tur-
bulent mixing. In the ocean interior, the question arises of
the importance of the lateral fluxes of kinetic and available
potential energy.

As discussed by Tailleux (2009), Eqs. (7- 9) provide a uni-
fying way to describe the energetics of both the incompress-
ible Boussinesq and compressible Navier-Stokes equations,
by adapting the definitions of the energy reservoirs and en-
ergy conversion terms to the particular set of equations con-
sidered. Explicit expressions for D(APE) and Wr,mixing

are given by Tailleux (2009) in the particular cases of: 1) a
Boussinesq fluid with a linear and nonlinear equation of state
in temperature; 2) for a compressible thermally-stratified
fluid obeying the Navier-Stokes equations of state with a gen-
eral equation of state depending on temperature and pres-
sure. These expressions are recalled further below for case
2). While Wr,laminar is well understood to be a conversion
between IE and GPEr, the nature of the energy conversions
associated with D(APE) and Wr,turbulent is still a matter
of debate. Currently, it is widely assumed that D(APE) and
Wr,turbulent represent the same kind of energy conversion,
namely the irreversible conversion of APE into GPEr ow-
ing to the fact that for a Boussinesq fluid with a linear equa-
tion of state (referred to as the L-Boussinesq model here-
after), one has the exact equality D(APE) = Wr,turbulent.
It was pointed out by Tailleux (2009) that this equality is
a serendipitous artifact of the L-Boussinesq model, which
does not hold for more accurate forms of the equations of
motion. More generally, Tailleux (2009) found that the ratio
ξ = Wr,turbulent/D(APE) is not only systematically lower
than unity for water or seawater, but can in fact also takes on
negative values, as previously discussed by Fofonoff (1962,
1998, 2001) in a series of little known papers. In other words,
the equality D(APE) = Wr,turbulent is only a mathemati-
cal equality, not a physical equality, by defining a physical
equality as a mathematical equality between two quantities
that persists for the most accurate forms of the governing
equations of motion. To clarify the issue, Tailleux (2009)

sought to understand the links between D(APE), Wr,mixing

and internal energy, by establishing the following equations:

d(IE0)

dt
≈ D(KE) + D(APE), (10)

d(IEexergy)

dt
≈= − [Wr,laminar + Wr,turbulent]

︸ ︷︷ ︸

Wr,mixing

, (11)

which demonstrate that the viscously dissipated KE and dif-
fusively dissipated APE both end up into the dead part of
internal energy IE0, whereas Wr,mixing represent the con-
version rate between GPEr and the ’exergy’ component of
internal energy IEexergy . A schematic energy flowchart il-
lustrating the above points is provided in Fig. 1.

2.2 Efficiency of mixing and mixing efficiency

The available potential energy framework introduced by
Winters & al. (1995) and extended by Tailleux (2009)
greatly simplifies the theoretical discussion of the concept
of mixing efficiency, which plays a central role in the study
of turbulent mixing, but whose nature is little understood. To
that end, it is useful to start with the evolution equation for
the total “available” mechanical energy ME = KE+APE,
obtained by summing the evolution equations for KE and
APE, leading to:

d(ME)

dt
= −[D(KE) + D(APE)]. (12)

Eq. (12), along with Eq. (10), are very important, for
they show that both viscous and diffusive processes con-
tribute to the dissipation of ME into deal internal energy
IE0. From this viewpoint, understanding turbulent diapyc-
nal mixing amounts to understanding what controls the ratio
γmixing = D(APE)/D(KE), that is, the fraction of the to-
tal available mechanical energy dissipated by molecular dif-
fusion rather than by molecular viscosity. The amount of ME
dissipated by molecular diffusion, i.e., D(APE), is impor-
tant, because it is directly related to the definition of turbulent
diapycnal diffusivity, which one may write as

Kρ =
D(APE)

N2
, (13)

e.g., Osborn and Cox (1972), where N 2 is the squared
buoyancy frequency. From the viewpoint of turbulent
diapycnal mixing, a turbulent mixing event will be re-
garded as “efficient” if the mixing efficiency γmixing =
D(APE)/D(KE) is high. The concept of mixing efficiency
is important, because provided that the value of γmixing is
known, it provides a way to estimate Kρ from measurements
of turbulent viscous dissipation rates from

Kρ =
γmixingD(KE)

N2
, (14)
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as proposed by Osborn (1980). This approach, however,
is potentially misleading, because viscous and diffusive dis-
sipation mechanisms are largely distinct and independent
physically, except in very special circumstances. It is im-
portant to realize, indeed, that a turbulent inviscid fluid 2

with nonzero molecular diffusion would have zero viscous
dissipation of kinetic energy, but would still exhibit finite
diapycnal mixing, in apparent contradiction with Osborn
(1980)’s formula (unless one accepts the possibility of hav-
ing γmixing = +∞). This is because at a fundamental level,
Osborn (1980)’s formula merely represents the definition of
mixing efficiency, rather than a causality relationship linking
D(APE) and D(KE). This point seems to be overlooked
in many observational studies that simply measure viscous
dissipation rates, assuming that a straightforward inference
about Kρ can be made by using γmixing = 0.2 regardless
of circumstances, which seems questionable given that the
available evidence is that γmixing may vary significantly de-
pending on circumstances.

The above definition of mixing efficiency γmixing =
D(APE)/D(KE) was introduced by Tailleux (2009), who
referred to it as the “dissipation” mixing efficiency, as it
based on dissipation quantities, which differs somewhat from
the way mixing efficiency has been discussed so far. The
link between the dissipation mixing efficiency and more tra-
ditional definitions of mixing efficiency can be clarified in
the light of the above energy equations, by investigating the
energy budget of a notional “turbulent mixing event”, de-
fined here as an episode of intense mixing followed and pre-
ceded by laminar conditions (i.e., characterised by very weak
mixing), during which KE and APE undergo a net change
change ∆KE < 0 and ∆APE < 0. As far as we understand
the problem, most familiar definitions of mixing efficiency
appear to implicitly assume ∆APE ≈ 0, as is the case for
a turbulent mixing event developing from a unstable strati-
fied shear flow for instance, e.g., Peltier & Caulfield (2003).
This point can be further clarified by comparing the energet-
ics of turbulent mixing events developing from the shear flow
instability with that developing from the Rayleigh-Taylor in-
stability, treated next, which by contrast can be regarded as
having the idealised signature ∆KE ≈ 0 and ∆APE < 0.

In the case of the stratified shear flow instability, assumed
to be such that ∆KE < 0 and ∆APE ≈ 0, integrating the
above energy equations over the time interval over which the

2Inviscid is to be understood here as meaning zero viscosity
only. The point is made because some authors used the term to
also mean zero diffusivity, e.g., Paparella & Young (2002).

turbulent mixing event takes place 3 yields:

∆KE = −C(KE, APE) − D(KE), (15)

0 = C(KE, APE) − D(APE), (16)

∆GPEr = W r,mixing = W r,turbulent + W r,laminar, (17)

where the overbar denotes the time integral over the mix-
ing event. For a Boussinesq fluid with a linear equation
of state, Winters & al. (1995) showed that D(APE) =
W r,turbulent. If we combine the latter result with the APE
budget (i.e., Eq. (16)), one sees that one has the triple equal-
ity:

C(KE, APE) = D(APE) = W r,turbulent. (18)

The triple equality Eq. (18) suggests that any of the three
quantities C(KE, APE), D(APE), or W r,turbulent can a
priori serve to measure “the fraction of the kinetic energy that
appears as the potential energy of the stratification”, which is
the traditional definition of the flux Richardson number pro-
posed by Linden (1979). Historically, the buoyancy flux
C(KE, APE) is the one that was initially regarded as the
natural quantity to use for that purpose in an overwhelming
majority of past studies of turbulent mixing. As a result, most
existing studies of turbulent mixing define the turbulent di-
apycnal diffusivity, mixing efficiency, and flux Richardson
number in terms of the buoyancy flux as follows:

Kflux
ρ =

C(KE, APE)

N2
, (19)

γflux
mixing =

C(KE, APE)

N2
, (20)

Rflux
f =

C(KE, APE)

C(KE, APE) + D(KE)
. (21)

It is easily verified that the above equations are consistent
with those considered by Osborn (1980) for instance. Phys-
ically, however, there are fundamental problems in using the
buoyancy flux to quantify irreversible diffusive mixing, be-
cause as pointed out by Caulfield & Peltier (2000), Staquet
(2000) and Peltier & Caulfield (2003), C(KE, APE) rep-
resents a reversible energy conversion, which usually takes
on both large positive and negative values before settling on
its long term average D(APE). Moreover, as pointed out
below, the buoyancy flux is only related to irreversible dif-
fusive mixing only if ∆APE ≈ 0 holds to a good approx-
imation, for otherwise, it becomes also related to the irre-
versible viscous dissipation rate as shown by the KE budget

3It is usually assumed that the time average should be short
enough that the viscous dissipation of the mean flow can be ne-
glected. Alternatively, one should try to separate the laminar from
the turbulent viscous dissipation rate. The following derivations as-
sume that the viscous dissipation is dominated by the dissipation of
the turbulent kinetic energy rather than that of the mean flow.
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(Eq. (15)). Eq. (18) makes it possible, however, to use either
D(APE) or W r,turbulent instead of C(KE, APE) in the
definitions (19) and (20). For this reason, both Caulfield &
Peltier (2000) and Staquet (2000) proposed to measure the
efficiency of mixing based on W r,turbulent, i.e.,

KGPEr
ρ =

W r,turbulent

N2
, (22)

γGPEr
mixing =

W r,turbulent

D(KE)
, (23)

RGPEr

f =
W r,turbulent

W r,turbulent + D(KE)
, (24)

such a definition being motivated by Winters & al. (1995)’s
interpretation that D(APE) and Wr,turbulent represent the
same energy conversion whereby the diffusively dissipated
APE is irreversibly converted into GPEr. The parame-
ter RGPEr

f was called the “cumulative mixing efficiency”
by Peltier & Caulfield (2003) and modified flux Richardson
number by Staquet (2000). As argued in Tailleux (2009), it
is D(APE), rather than W r,turbulent, that directly measures
the amount of KE eventually dissipated by molecular dif-
fusion via its conversion into APE, suggesting that the flux
Richardson number should actually be defined as:

RDAPE
f =

D(APE)

D(KE) + D(APE)
. (25)

While the above formula makes it clear that all above defini-
tions of Rf are equivalent in the particular case considered,
it is easily realized that they will in general yield different
numbers if one relaxes the assumption ∆APE ≈ 0 in Eq.
(16), as well as the assumption of a linear equation of state,
yielding a ratio ξ = Wr,turbulent/D(APE) that is gener-
ally lower than unity and sometimes even negative for water
or seawater. For this reason, it is crucial to understand the
physics of mixing efficiency at the most fundamental level.
From the literature, it seems clear that most investigators’s
idea about the flux Richardson number is as a quantity com-
prised between 0 and 1. From that viewpoint, the dissipation
flux Richardson number RDAPE

f is the only quantity that sat-
isfies this property under the most general circumstances, as
cases can easily be constructed for which both W r,turbulent

and C(KE, APE) are negative. Indeed, cases for which
ξ < 0 are described in this paper, whereas C(KE, APE) is
easily shown to be negative in the case of a turbulent mixing
event for which all mechanical energy is initially provided
entirely in APE form. In that case, assuming ∆APE < 0
and ∆KE ≈ 0 in the above energy budget equations yields:

C(KE, APE) = D(APE) + ∆APE = −D(KE), (26)

which shows that this time, C(KE, APE) directly measures
the amount of viscously dissipated kinetic energy, rather
than diapycnal mixing. The latter case is relevant to under-
stand the energy budget of the Rayleigh-Taylor instability,
see Dalziel & al (2008) for a recent discussion of the latter.

2.3 Link between D(APE) and Wr,mixing

In order to help the reader understand or appreciate why the
ratio ξ = Wr,turbulent/D(APE) is generally lower than
unity for water or seawater, and hence potentially signif-
icantly different from the predictions of the L-Boussinesq
model, it is useful to examine the structure of Wr,mixing and
D(APE) in more details. As shown by Tailleux (2009),
the analytical formula for the latter quantities in a fully com-
pressible thermally-stratified fluid are given by:

Wr,mixing =

∫

V

αrPr

ρrCpr

∇ · (κρCp∇T ) dV, (27)

D(APE) = −

∫

V

T − Tr

T
∇ · (κρCp∇T ) dV, (28)

where as before α is the thermal expansion coefficient, P is
the pressure, Cp is the specific heat capacity at constant pres-
sure, ρ is density, with the subscript r indicating that values
have to be estimated in their reference state. The parame-
ter Υ = αP/(ρCp) plays an important role in the problem.
Physically, it can be shown that in an isobaric process during
which the enthalpy of the fluid parcel increases by dH , the
parameter Υ represents the fraction of dH that is not con-
verted into internal energy, i.e., the fraction going into work
(and hence contributing ultimately to the overall net change
in GPEr). As a result, Υ plays the role of a Carnot-like ther-
modynamic efficiency. In Eq. (27), Υr denotes the value that
Υ would have if the corresponding fluid parcel was displaced
adiabatically to its reference position.

In order to compare these two quantities, we expand T as
a Taylor series around P = Pr, viz.,

T = Tr + Γr(P − Pr) + . . . (29)

where Γr = αrTr/(ρrCpr) is the adiabatic lapse rate. At
leading order, therefore, one may rewrite D(APE) as fol-
lows:

D(APE) =

∫

V

αr(Pr − P )

ρrCpr

Tr

T
∇ · (κρCp∇T )dV + . . .

= Wr,mixing +

∫

V

(Tr − T )

T

αrPr

ρrCpr

∇ · (κρCp∇T ) dV

−

∫

V

αrTrP

ρrCprT
∇ · (κρCp∇T ) dV + · · · (30)

These formula shows that D(APE) can be written as the
sum of Wr,mixing plus some corrective terms. One sees that
the L-Boussinesq model’s results derived by Winters & al.
(1995) can be recovered in the limit T ≈ Tr, P ≈ −ρ0gz,
αr/(ρrCpr) ≈ α0/(ρ0Cp0), ρCp ≈ ρ0Cp0, where the
subscript 0 refers to a constant reference Boussinesq value,
yielding:

D(APE) ≈ Wr,mixing − Wr,laminar = Wr,turbulent. (31)
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These results, therefore, demonstrate that the strong corre-
lation between D(APE) and Wr,mixing originates in both
terms depending on molecular diffusion in a related, but nev-
ertheless distinct, way, the differences between the two quan-
tities being minimal for a linear equation of state. The fact
that the two terms are never exactly equal in a real fluid
clearly refutes Winters & al. (1995)’s widespread interpre-
tation that D(APE) and Wr,turbulent physically represents
the same energy conversion whereby the diffusively dissi-
pated APE is irreversibly converted into GPEr. In real-
ity, D(APE) and Wr,turbulent represent two distinct types
of energy conversions that happen to be both controlled by
stirring and molecular diffusion in related ways, which ex-
plains why they appear to be always strongly correlated, and
even exactly equal in the idealised limit of the L-Boussinesq
model. If one accepts the above point, then it should be clear
that what is now required to make progress is the understand-
ing of what controls the behaviour of the parameter ξ, since
the knowledge of the latter is obviously crucial to make infer-
ences about turbulent diapycnal mixing from measuring the
net changes of GPEr for instance. The purpose of the nu-
merical simulations described next is to help gaining insights
into what controls ξ.

3 Methodology

To get insights into how the equation of state of seawa-
ter affects turbulent mixing, we compared D(APE) and
Wr,turbulent for a number of different stratifications having
the same buoyancy frequency vertical profile N , but different
vertical profiles with regard to the parameter αP/(ρCp), as
illustrated in Fig. 2. The quantities D(APE) and Wr,mixing

were estimated from Eqs. (27) and (28), while Wr,turbulent

was estimated from

Wr,turbulent = Wr,mixing − Wr,laminar, (32)

where Wr,laminar was obtained by taking T = Tr in
the expression for Wr,mixing . The quantities D(APE)
and Wr,turbulent were estimated numerically for a two-
dimensional square domain discretised equally in the hori-
zontal and vertical direction. In total, 27 different stratifica-
tions were considered, all possessing the same squared buoy-
ancy frequency N2 illustrated in the left panel of Figure 2,
but different mean temperature, salinity, and pressure result-
ing in different profiles for the αP/(ρCp) parameter illus-
trated in the right panel of Figure 2. In all cases considered,
the pressure varied from Pmin to Pmax = Pmin + 10dbar,
with Pmin taking the three values (0 dbar, 1000 dbar, 2000
dbar). In all cases, the salinity was assumed to be con-
stant, and taking one of the three possible values S = (30
Psu, 35 psu, 40 psu). With regard to the temperature pro-
file, it was determined by imposing the particular value
Tmax = T (Pmin) at the top of the fluid, with all remain-
ing values determined by inversion of the buoyancy fre-

quency N2 common to all profiles by an iterative method.
The imposition of a fixed buoyancy profile N , salinity S,
pressure range, and minimum temperature Tmin was found
to yield widely different top-bottom temperature differences
T (Pmin) − T (Pmax), ranging from a few tenths of degrees
to about 4 degrees C depending on the case considered, as
seen in Fig. 3. In each case, the thermodynamic properties
of the fluid were estimated from the Gibbs function of Feis-
tel (2003). Specific details for the temperature, pressure, and
salinity in each of the 27 experiments can be found in Table
1 along with other key quantities discussed below.

Numerically, the two-dimensional domain used to quan-
tify D(APE) and Wr,turbulent was discretised into Npi ×
Npj points in the horizontal and vertical, with Npi = Npj =
100. Mass conserving coordinates were chosen in the verti-
cal, and regular spatial Cartesian coordinate in the horizontal.
For practical purposes, the vertical mass conserving coordi-
nate can be regarded as standard height z, as the differences
between the two types of coordinates were found to be in-
significant in the present context, and thus chose ∆x = ∆z.
In order to compute D(APE) and Wr,turbulent for turbulent
conditions, we modelled the stirring process by randomly
shuffling the fluid parcels adiabatically from resting initial
conditions. Shuffling the parcels in such a way requires a
certain amount of stirring energy, which is equal to the avail-
able potential energy APE of the randomly shuffled state.

4 Results

For each of the 27 particular reference stratifications consid-
ered, synthetic turbulent states were constructed by gener-
ating hundreds of random permutations of the fluid parcels,
thus simulating the effect of adiabatic shuffling by the stirring
process, in each case yielding a particular value of D(APE),
Wr,mixing , Wr,turbulent and APE. One way to illustrate
that Wr,turbulent depends more sensitively on the equation
of state than D(APE) is by plotting each quantity as a func-
tion of APE, as illustrated in Fig. 4. Interestingly, the figure
shows that all values of D(APE) appear to be close to a lin-
ear straight line, with no obvious sensitivity to the particular
value of Υ. In contrast, the right panel of Fig. 4 demonstrates
the sensitivity of Wr,turbulent to Υ, as a separate curve is ob-
tained for each different stratification. Note that one should
not construe from Fig. 4 that D(APE) is a linear function
of APE. Physically, D(APE) depends both on the APE,
as well as on the spectrum of the temperature field. It so
happens that the method used to randomly shuffle the parcels
tends to artificially concentrate all the power spectrum at the
highest wavenumbers, the effect of which being to suppress
one degree of freedom to the problem, which is responsible
for the appearance of a linear relationship between D(APE)
and APE in Fig. 4. It is easy to convince oneself, however,
that stratifications can be constructed which have the same
value of APE, but widely different values of D(APE).
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In order to understand how the equation of state affects
Wr,turbulent, it is useful to rewrite Wr,mixing as given by
Eq. (27) as follows:

Wr,mixing = −

∫

V

κρCp∇T · ∇

(
αrPr

ρrCpr

)

dV

≈ −

∫

V

ρκCp

∂

∂zr

(
αrPr

ρrCpr

)
∂Tr

∂zr

‖∇zr‖
2dV + · · · (33)

by using an integration by parts, assuming insulated bound-
aries, and using the approximation∇T ≈ ∇Tr +O(T −Tr),
by noting that the reference quantities depend only upon zr.
Eq. (33) suggests that Wr,mixing and Wr,turbulent are pri-
marily controlled by the vertical gradient of Υ = αP/(ρCp),
and that both Wr,mxing and Wr,turbulent are likely to be pos-
itive only when dΥ/dz is negative. This is obviously the case
when the vertical variations of α/(ρCp) can be neglected, as
in this case dΥ/dz ≈ α/(ρCp)dP/dz ≈ −αg/Cp < 0, as-
suming the pressure to be hydrostatic. The case when the
vertical gradient of αP/(ρCp) is positive was extensively
discussed by Fofonoff (1962, 1998, 2001), and can be easily
encountered in the oceans.

In all experiments considered, we found the ratio ξ =
Wr,turbulent/D(APE) to be systematically lower than
unity, as already pointed out in Tailleux (2009). In order
to better understand how dΥ/dz controls the behaviour of
Wr,turbulent, the ratio ξ = D(APE)/Wr,turbulent was av-
eraged over all randomly shuffled states separately for each
stratification, the results being summarised in Fig. 5 and Ta-
ble 1, along with the minimum value of dΥ/dz, as well as
with the top-bottom difference ∆Υ = Υ(Pmin)−Υ(Pmax).
Panels (a) and (c) show that as long that dΥ < 0, the equality
Wr,turbulent ≈ D(APE) holds to a rather good approxima-
tion, up to a factor of 2, the approximation being degraded
at the lowest temperature and salinity. Note, however, that
in the cases considered, ξ > 0 only at atmospheric pressure,
with ξ being systematically negative at Pmin = 1000 dbars
and Pmin = 2000 dbar respectively. Both Table 1 and
Fig. 5 (a) and (c) show that ξ becomes increasingly neg-
ative as [dΥ/dz]min becomes increasingly large and posi-
tive, the worst case being achieved for the lowest T , lowest
salinity, and highest pressure. As a further attempt to un-
derstand this behaviour, we also computed the average ratio
AGPE/APE for each particular reference stratification. In-
terestingly, we find that the classical case ξ ≈ 1 coincide with
APE ≈ AGPE, as expected in the Boussinesq approxima-
tion. We find, however, that the decrease in ξ coincides with
AGPE being an increasingly bad approximation of APE.
As the latter implies that AIE becomes increasingly impor-
tant, it also implies that compressible effects become increas-
ingly important. This suggests, therefore, that the effects of a
nonlinear equation of state are apparently strongly connected
to non-Boussinesq effects, a topic for future exploration.

The key point of the present results is that while there
exist stratifications such that Wr,turbulent ≈ D(APE) to

a good approximation, and hence that conform to classical
ideas about turbulent mixing in a Boussinesq fluid with a lin-
ear equation of state, there also exist stratification for which
Wr,turbulent and D(APE) differ radically from each other.
The main reason why this is not more widely appreciated
is suggested by the results summarised in Table 1, which
shows that Wr,turbulent ≈ D(APE) appears to hold well
under normal temperature and pressure conditions, which are
usually those encountered in most laboratory experiments of
turbulent mixing. In that case, the classical results of Boussi-
nesq theory are applicable, and there is no problems in mea-
suring the mixing efficiency of turbulent mixing events from
measuring the net change in GPEr, as often done, e.g.,
Barry (2001), in accordance with the definition of mixing
efficiency proposed by Caulfield & Peltier (2000) and Sta-
quet (2000), since ξ ≈ 1 to a good approximation. Temper-
ature, salinity, and pressure conditions in the real oceans can
be very different than in the laboratory, however, especially
in the abyss. In the latter case, the present results suggest
not only that ξ can potentially become very large and nega-
tive, but that the discrepancy between AGPE and APE can
become significant to the point of making the Boussinesq ap-
proximation and the neglect of compressible effects very in-
accurate. This point seems important in view of the current
intense research effort devoted to understanding tidal mixing
in the abyssal oceans that was prompted a decade ago by the
influential study by Munk & Wunsch (1998). The point is
also important because values of mixing efficiency published
in the literature have been traditionally been reported without
mentioning the associated value of ξ, which may explain part
of the spread in the published values, and adds to the uncer-
tainty surrounding this crucial parameter. The present results
suggest that an important project would be to seek to recon-
struct the missing values of ξ, which is in principle possible if
sufficient information about the ambient conditions are avail-
able.

5 Conclusions

The nonlinearities of the equation of state for water or sea-
water make it possible for a stratification with given mean
vertical buoyancy profile N to have widely different ver-
tical profiles of the parameter Υ = αP/(ρCp), depend-
ing on particular oceanic circumstances. The main result
of this paper is that the sign and magnitude of dΥ/dz
greatly affect Wr,turbulent — the turbulent rate of change of
GPEr — while they correspondingly little affect D(APE),
the dissipation rate of APE. As a result, the ratio ξ =
Wr,turbulent/D(APE) is in general lower than unity, and
sometimes even negative, for water or seawater. For this rea-
son, the fact that D(APE) and Wr,turbulent happen to be
identical for a Boussinesq fluid with a linear equation of state
appears to be a very special case, which is rather misleading
in that it fails to correctly address the wide range of values
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assumed by the parameter ξ in the actual oceans, while also
leading to the widespread erroneous idea that the diffusively
dissipated APE is irreversibly converted into GPEr, and
hence that turbulent mixing always increase GPE. As far as
we understand the problem, based on the analysis of Tailleux
(2009), D(APE) and Wr,turbulent represent two physically
distinct kinds of energy conversion, the former associated
with the dissipation of APE into ‘dead’ internal energy, and
the latter associated with the conversion between GPEr and
the ’exergy’ part of internal energy. The former is always
positive, while the latter can take on both signs, depending
on the particular stratification.

From the viewpoint of turbulence theory, the present re-
sults indicate that the equality D(APE) = Wr,turbulent ob-
tained in the context of the L-Boussinesq model by Winters
& al. (1995) should only be construed as implying a strong
correlation between D(APE) and Wr,turbulent, not as an
indication that the diffusively dissipated APE is converted
into GPEr. As the present results show, the correlation
between the two rates strongly depends on the nonlineari-
ties of the equation of state. Fundamentally, D(APE) and
Wr,turbulent appear to be correlated because they both de-
pend on molecular diffusion, and on the gradient of the adi-
abatic displacement ζ = z − zr of the isothermal surfaces
from their reference positions. Based on the present results,
the ratio ξ = Wr,turbulent/D(APE) appears to be deter-
mined at leading order mostly by the sign and magnitude of
dΥ/dz = d/dz[αP/(ρCp). Further work is required, how-
ever, to clarify the precise link between ξ and dΥ/dz under
the most general circumstances, which will be reported in a
subsequent paper.

The present results are important, because they show that
the two following ways of defining a flux Richardson number
Rf and mixing efficiency γmixing , viz.,

γDAPE
mixing =

D(APE)

D(KE)
, (34)

RDAPE
f =

D(APE)

D(APE) + D(KE)
(35)

called the dissipation mixing efficiency and flux Richardson
number by Tailleux (2009), and

γGPEr
mixing =

Wr,turbulent

D(KE)
, (36)

RGPEr
f =

Wr,turbulent

Wr,turbulent + D(KE)
, (37)

as proposed by Caulfield & Peltier (2000) and Staquet
(2000), which are equivalent in the context of the L-
Boussinesq model, happen to be different in the context of
a real compressible fluid, as the conversion rules

γGPEr
mixing = ξγDAPE

mixing , (38)

RGPEr
f =

ξRDAPE
f

1 − (1 − ξ)RDAPE
f

. (39)

now involve the parameter ξ. Note that historically the flux
Richardson number was defined by Linden (1979) as “The
fraction of the kinetic energy which appears as the poten-
tial energy of the stratification.” Physically, the kinetic en-
ergy that appears as the potential energy of the stratification
is the fraction of kinetic energy being converted into APE
and ultimately dissipated by molecular diffusion. This frac-
tion is therefore measured by D(APE), not by Wr,turbulent,
since the latter technically represents the “mechanically-
controlled” fraction of internal energy converted into GPEr,
if one accepts Tailleux (2009)’s conclusions. From this
viewpoint, it is RDAPE

f rather than RGPEr

f that appears to
be consistent with Linden (1979)’s definition of the flux
Richardson number, and hence γDAPE

mixing rather than γGPEr

mixing

that is consistent with Osborn (1980)’s definition of mixing
efficiency.

From a practical viewpoint, however, the above conceptual
objections against γGPEr

mixing and RGPEr

f do not mean that it is
equally physically objectionable to seek estimating the effi-
ciency of mixing from measuring the net changes in GPEr

taking place during a turbulent mixing event, as is commonly
done, e.g., Barry (2001). Such a method is perfectly valid,
owing to the correlation between D(APE) and Wr,turbulent.
The present results show, however, that such an approach re-
quires the knowledge of the parameter ξ, which is usually
not supplied. For most laboratory experiments performed at
atmospheric pressure, the issue is probably unimportant, as ξ
appears to be generally close to unity in that case. The issue
becomes more problematic, however, for measurements car-
ried out in the ocean interior, as there is less reason to assume
that ξ ≈ 1 will be necessarily verified. A critical review of
published values of γmixing would be of interest, in order to
identify the cases potentially affected by a value of ξ signifi-
cantly different from unity.

So far, we have only considered the case of an equation of
state depending on temperature and pressure only, by holding
salinity constant. In practice, however, many studies of tur-
bulent mixing are based on the use of compositionally strat-
ified fluids. Understanding whether ξ can be significantly
different from unity in that case remains a topic for future
study.
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APE GPEr
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C(KE,APE)
  Wr,laminar

Wr,laminar

Wr,turbulent
C(KE,APE)

D(KE)

= D(APE)

D(APE)

A) New view of energetics of turbulent mixing (Tailleux, 2009)

B) Classical view of energetics of turbulent mixing (Winters et al, 1995)

+    D(APE)ξ

Fig. 1. A) New view of the energetics of freely decaying turbulent stratified mixing as proposed by Tailleux (2009) versus B) the earlier
interpretation proposed by Winters et al. (1995). In the new view, internal energy IE is subdivided into a dead part IE0 and exergy part
IEexergy. The double arrow linking IEexergy and GPEr means that both Wr,laminar and Wr,turbulent can be either positive or negative
in general.
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Fig. 2. (Top panel) The squared buoyancy frequency N 2 common to all stratifications considered. (Bottom panel) The thermodynamic
efficiency-like quantity αP/(ρCp) corresponding to the 27 different cases considered. Note that the Fofonoff regime, i.e., the case for
which GPE decreases as the result of mixing, is expected whenever the latter quantity decreases for increasing pressure. The classical case
considered by the literature, i.e., the case for which GPE increases as the result of mixing corresponds to the case where the latter quantity
increases with increasing pressure on average (see Table 1 for more details).
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Fig. 5. (a) The averaged ratio ξ = Wr,turbulent/D(APE) as a function of the experiment number; (b) The averaged ratio AGPE/APE
as a function of the experiment number; (c) The minimum value of d/dz[αP/(ρCp) as a function of the experiment number; (d) The
top-bottom difference of αP/(ρCp) as a function of the experiment number.
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Table 1. Averaged values of the two ratios ξ = Wr,turbulent/D(APE) and AGPE/APE for the 27 different types of stratifications
considered in this paper. The quantities [dΥ/dz]min and ∆Υ refer to the minimum value of the vertical derivative of Υ = αP/(ρCp) and
top-bottom difference of Υ respectively. S is the salinity used in the equation of state for seawater, T is the mean temperature of the profile
considered, and Pmin denotes the minimum value of the vertical pressure profile. The top-bottom temperature differences are displayed in
Fig. 3, while the pressure interval is 10 dbar in all cases. The tabulated values demonstrate that increasingly negative values of ξ coincide
with increasingly large positive values of dΥ/dz, as well as with with the increasing importance of non-Boussinesq compressible effects
associated with an increasing discrepancy between AGPE and APE. The standard case for which ξ ≈ 1 is achieved close to atmospheric
pressure. The maximum negative value of ξ occurs for the lowest S, lowest T , and largest Pmin values considered.

Expt ξ AGPE/APE [dΥ/dz]min × 106 ∆Υ × 106 S(psu) T (◦C) Pmin(dbar)

1 0.98 1.0003 -6.70 -0.64 40 22.6 0
2 0.98 1.0003 -6.53 -0.63 35 22.6 0
3 0.98 1.0003 -6.36 -0.61 30 22.6 0
4 0.95 1.0005 -4.50 -0.40 40 12.5 0
5 0.95 1.0005 -4.23 -0.37 35 12.5 0
6 0.94 1.0006 -3.95 -0.33 30 12.4 0
7 0.71 1.0015 -1.20 0.03 40 1.9 0
8 0.55 1.0018 -0.51 0.15 35 1.6 0
9 0.10 1.0026 0.67 0.35 30 1.2 0
10 -2.41 1.0369 5.07 2.42 40 22.6 1000
11 -2.67 1.0391 5.89 2.61 35 22.6 1000
12 -2.96 1.0416 6.76 2.81 30 22.6 1000
13 -4.93 1.0682 14.42 4.87 40 22.7 2000
14 -5.36 1.0724 15.72 5.18 35 22.7 2000
15 -5.84 1.0768 17.09 5.51 30 22.6 2000
16 -6.35 1.0772 14.05 4.44 40 12.5 1000
17 -7.35 1.0835 15.97 4.89 35 12.5 1000
18 -8.53 1.0905 18.10 5.40 30 12.5 1000
19 -10.73 1.1372 27.10 7.87 40 12.6 2000
20 -12.17 1.1476 30.02 8.58 35 12.5 2000
21 -13.86 1.1591 33.23 9.37 30 12.5 2000
22 -30.73 1.2109 42.67 11.36 40 2.1 1000
23 -38.06 1.3306 63.86 16.93 40 2.3 2000
24 -41.26 1.2482 51.06 13.42 35 2.0 1000
25 -47.46 1.3751 73.20 19.26 35 2.2 2000
26 -58.84 1.3010 63.09 16.37 30 1.9 1000
27 -61.06 1.4318 85.31 22.28 30 2.1 2000


