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Abstract

In the context of stand alone ocean models, the atmospheric forcing is generally com-
puted using atmospheric parameters that are derived from atmospheric reanalysis data
and/or satellite products. With such a forcing, the sea surface temperature that is sim-
ulated by the ocean model is usually significantly less accurate than the synoptic maps5

that can be obtained from the satellite observations. This not only penalizes the realism
of the ocean long-term simulations, but also the accuracy of the reanalyses or the use-
fulness of the short-term operational forecasts (which are key GODAE and MERSEA
objectives). In order to improve the situation, partly resulting from inaccuracies in the
atmospheric forcing parameters, the purpose of this paper is to investigate a way of10

further adjusting the state of the atmosphere (within appropriate error bars), so that an
explicit ocean model can produce a sea surface temperature that better fits the avail-
able observations. This is done by performing idealized assimilation experiments in
which Mercator-Ocean reanalysis data are considered as a reference simulation de-
scribing the true state of the ocean. Synthetic observation datasets for sea surface15

temperature and salinity are extracted from the reanalysis to be assimilated in a low
resolution global ocean model. The results of these experiments show that it is pos-
sible to compute piecewise constant parameter corrections, with predefined amplitude
limitations, so that long-term free model simulations become much closer to the re-
analysis data, with misfit variance typically divided by a factor 3. These results are20

obtained by applying a Monte Carlo method to simulate the joint parameter/state prior
probability distribution. A truncated Gaussian assumption is used to avoid the most
extreme and non-physical parameter corrections. The general lesson of our experi-
ments is indeed that a careful specification of the prior information on the parameters
and on their associated uncertainties is a key element in the computation of realistic25

parameter estimates, especially if the system is affected by other potential sources of
model errors.
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1 Introduction

One of the most accurate and ubiquitous information about the surface state of the
ocean is provided by the satellite measurements of sea surface temperature. It is in
particular significantly more accurate than the sea surface temperature that is simu-
lated by any state-of-the-art general circulation ocean model. Part of this discrepancy5

is explained by the relative inaccuracy of the atmospheric parameters that are used
to compute the air-sea momentum, heat and fresh water fluxes which determine the
surface boundary condition of the ocean model (WGASF, 2000). There is thus an im-
portant potential benefit to expect from the improvement of these parameters using the
available sea surface observations. In practice, the atmospheric parameters controlling10

the air-sea fluxes (i.e. air temperature, relative humidity, cloud fraction, precipitation or
wind speed) are derived from atmospheric reanalysis data (as delivered for instance
by the ECMWF or NCEP centers) and from a variety of satellite products. For instance,
the atmospherically forced ocean hindcast simulations performed by The DRAKKAR
Group (2007) compute their air-sea fluxes by using forcing data that merge a variety15

of different data sets (in situ, satellite and NWP products), with objective corrections
based on observations (Large and Yeager., 2008; Brodeau et al., 2009). Hence, as
long as forced models are used to simulate the ocean component alone, the control of
the atmospheric parameters using ocean surface observations is certainly an appro-
priate way of improving the realism of model interannual simulations, the accuracy of20

ocean reanalyses or the usefulness of sea surface temperature operational forecasts.
It is thus also an important contribution to the GODAE1 objectives (GODAE, 2008),
which is the reason why a large part of the MERSEA2 effort in the development of data
assimilation has been devoted to this problem.

In this study, which has been conducted as part of the MERSEA project, this prob-25

1http://www.godae.org
2http://www.mersea.eu.org
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lem is investigated using idealized experiments in which Mercator-Ocean3 ocean re-
analysis data are used as the reference simulation (i.e. the “truth” of the problem).
Synthetic observation datasets (for sea surface temperature and sea surface salinity)
are extracted from the reanalysis to be assimilated in a coarse resolution global ocean
model. With respect to Skachko et al. (2009), who investigated a similar problem us-5

ing twin assimilation experiments, the present study is thus more realistic, since the
difference between model and reanalysis is now very similar in nature to the real er-
ror. It is closer to the real problem even if the experiments are still somewhat ideal in
the sense that no real observations are assimilated, and that the full reference model
state (the reanalysis, in three dimensions) is available for validation. Another differ-10

ence with respect to Skachko et al. (2009) is that, in this paper, we extend the control
vector with 6 atmospheric parameters instead of 2 turbulent exchange coefficients in
their example (but we exclusively focus on the control of the parameters, while they
also considered the joint optimal estimate of the ocean state vector together with the
atmospheric parameters). However, in order to solve this more realistic problem, we15

needed to further develop the methodology towards a better specification of the prior
information about the parameters and their associated uncertainty. We observe indeed
that making appropriate assumptions on that respect is increasingly important as the
estimation problem is becoming more realistic, because it is more and more difficult
to make the distinction between forcing errors and the other potential sources of error20

in the system. An additional important objective is thus to find means of identifying
properly the part of the observational misfit that can be interpreted as resulting from
inaccurate atmospheric parameters.

In order to reach this objective, the plan is to apply sequentially a Bayesian inference
method to compute piecewise constant optimal parameter corrections. A possible algo-25

rithm to solve this problem is to compute the optimal parameters by direct maximization
of the posterior probability distribution for the parameters, using for instance a 4DVAR

3http://www.mercator-ocean.fr
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scheme (as done in Roquet et al., 1993 or Stammer et al., 2004). But, in addition
to the technical difficulties that the algorithm may involve, this solution requires that
the cost function resulting from the optimal probabilistic criterion be quadratic or at
least differentiable everywhere in parameter space, so that it is by no way straight-
forward to optimally impose strict inequality constraints to the parameters (by setting5

zero prior probability in prohibited region of the parameter space for instance). This is
why, in this study, we prefer using a Monte Carlo algorithm to simulate the ocean re-
sponse to parameter uncertainty, and use the resulting ensemble representation of the
prior probability distribution to infer optimal parameter corrections from the ocean sur-
face observations. It is in the specification of this prior probability distribution that two10

methodological improvements are introduced with respect to Skachko et al. (2009).
First, the error statistics are computed locally in time for each assimilation cycle, by
performing a sequence of ensemble forecasts around the current state of the system
(while they are assumed constant in their study). And second, the probability distri-
bution is assumed to be a truncated Gaussian distribution (as proposed by Lauvernet15

et al., 2009, as an improvement to the classical Gaussian hypothesis), in order to avoid
the most extreme and non-physical parameter corrections. These two improvements
are indeed found to be necessary to solve the more realistic assimilation problem at
stake in this paper.

However, before explaining this in more detail, we first summarize in Sect. 2 the20

background existing elements that are used to perform the study: the ocean model,
the assimilation method for parameter estimation and the Mercator-Ocean reanalysis
data. Then, in Sect. 3, we present the details of the method that is used to perform
the assimilation experiments: experimental setup and statistical parameterization. And
finally, in Sect. 4, we discuss and interpret the results, focusing on the accuracy of25

the mixed layer thermohaline characteristics and on the relevance of the parameter
estimates.
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2 Background

In this section, we present the three existing ingredients that are used later as a back-
ground information to set up our assimilation system (Sect. 3) and to perform the
experiments (Sect. 4): (i) the ocean model, focusing on the role of the atmospheric
forcing parameters, (ii) the assimilation method, in order to introduce the various ap-5

proximations and parameterizations that are needed to solve the problem, and (iii) the
Mercator-Ocean reanalysis, from which the synthetic observations are extracted.

2.1 Ocean model

The OGCM used in this study is a global ocean configuration (ORCA2) of the NEMO-
OPA model (Madec et al., 1998), using a 2◦×2◦ ORCA type horizontal grid, with a10

meridional grid spacing reduced to 1/2◦ in the tropical regions in order to improve the
representation of the equatorial dynamics. This is a free surface configuration based on
the resolution of primitive equations, with a z-coordinate vertical discretization. There
are 31 levels along the vertical, and the vertical resolution varies from 10 m in the first
120 m to 500 m at the bottom. The lateral mixing for active tracers (temperature and15

salinity) is parameterized along isopycnal surfaces, and the model uses a turbulent
kinetic energy (TKE) closure scheme to evaluate the vertical mixing of momentum and
tracers (see Blanke and Delecluse, 1993 for more details).

The model is forced at the surface boundary with heat, freshwater and momentum
fluxes. The fluxes through the ocean surface are estimated from the atmospheric pa-20

rameters at the anemometric height, using the bulk semi-empirical aerodynamic formu-
las. The daily atmospheric variables (wind, humidity, air temperature, cloud coverage)
from the NCEP are used to interactively diagnose the net heat and fresh water fluxes,
respectively QNET and F WNET. The use of monthly mean precipitation CMAP (CPC
Merged Analysis of Precipitation) proposed by Xie and Arkin (1996) are prefered to the25

NCEP model precipitation due to the important errors of the later as compared to the
observations. The net heat and fresh water fluxes at the ocean-atmosphere interface
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can be written respectively:

QNET = QS +QL +QLW +QSW (1)

F WNET = E − P − R (2)

where QS is the sensible heat flux, QL the latent heat flux, QLW the long wave radiation
flux, QSW the short wave solar radiation flux, and E , P , R are the three terms related5

to the fresh water budget, respectively evaporation, precipitations and river runoffs.
The flux parameters which are involved in the computation of these quantities are the
latent heat flux coefficient (CE), the sensible heat flux coefficient (CH), air temperature
(Ta), atmospheric specific humidity (qa), wind speed (W10), cloud coverage (C) and
precipitation (P ). For more detail on these bulk formulas, the reader can refer to the10

CLIO (Coupled Large-scale Ice Ocean) model description in Goosse et al. (1999).
The turbulent latent and sensible heat fluxes are calculated from the classical ocean-

atmosphere transfer equations (Large and Pond, 1982):

– the latent heat flux:

QL = ρaLeCEW10 max(0, qs − qa) (3)15

where Le is the vaporization latent heat, qs is the saturation specific humidity;

– the evaporation fresh water flux :

E = QL/Le (4)

– the sensible heat flux:

QS = ρac
a
pCHW10(Tw − Ta) (5)20

where ρa is the air density, ca
p the air specific heat, Tw the sea surface temperature;
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– the long-wave radiation flux, which is parameterized by following Berliand and
Berliand (1952):

QLW = εσsbT
4
a (0.39 − 0.05

√
ea)(1 − χC2)

+4εσsbT
3
a (Tw − Ta) (6)

where ea (in mb) is the vapor pressure deduced from qa, ε, the surface emissivity,5

σsb the Stephan-Boltzmann constant, (1−χC2), a correction factor to take into
account the effect of clouds;

– the short-wave radiation flux, following the proposed formula by Zillmann (1972):

QSW = (1 − α)(1 − 0.62C + 0.0019β)QCLEAR (7)

where α is the ocean albedo, β, the sun height at noon and QCLEAR, the solar10

radiation at the ocean surface in clear weather.

For the momentum flux, we did not use the aerodynamic bulk formulas to calculate
the wind stress vector at ocean surface. It is directly specified in the model, using
ERS scatterometer wind stresses complemented by in-situ observations of TAO de-
rived stresses (Menkes et al., 1998). No relaxation to observed SST and SSS is used15

in the forcing.

2.2 Assimilation method

The purpose of this section is to briefly describe the assimilation methods that are
applied to perform this study. Only general algorithms and equations are given here;
the specific parameterizations on which they depend are presented in Sect. 3.20
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2.2.1 Estimation of model parameters

The problem of estimating model parameters from ocean observations can be formu-
lated using the Bayesian inference framework. From a prior probability p(α ) for a vector
of uncertain parameters α , and the conditional probability distribution p(y|α ) for obtain-
ing a vector of observations y given the vector of parameters α , the Bayes theorem:5

p(α |y) ∼ p(α )p(y|α ) (8)

provides the posterior probability p(α |y) for the parameters given the observations. A
best estimate α

∗ for the vector of parameters can then be obtained as the mean (mini-
mum variance estimator) or the mode (maximum probability estimator) of this posterior
distribution. The most common methods to compute α

∗ are direct minimization tech-10

niques (to compute the mode), Monte Carlo integration (to compute the mean) or a
direct formula (for instance, if the distributions are assumed Gaussian).

In this problem, the observations y are usually not directly related to the parame-
ters α , but to the model solution x that is a function of α , so that the probability dis-
tribution p(y|α ) is usually defined as a function of the misfit between the observations15

and the model solution corresponding to α : y−Hx(α ) (innovation vector), where H is
the observation operator. This makes the computation of α ∗ more difficult, either with
direct minimization techniques, because every evaluation of the function to minimize
requires one model simulation (and also one adjoint model simulation if the gradient
is also computed), or with Monte Carlo methods, because they require an ensemble20

model forecast using an ensemble of parameter vectors drawn from their prior proba-
bility distribution.

In this study, Monte Carlo simulations are performed to compute the model coun-
terpart x to an ensemble of parameter vectors, sampled from p(α ). This ensemble
forecast characterizes the prior probability distribution p(x̂) for the augmented vector25

x̂=[α ,x(α )], characterizing the model response to parameter uncertainty. It is impor-
tant to note that, up to this point, linearity has not been assumed, and that it is only at
this stage that a Gaussian parameterization is used for the prior distribution p(x̂), with
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the consequence of linearizing the inference rules relating the model parameters α

to the observations y (see below). In order to temper the effect of this linearization,
the problem is divided in a sequence of short periods of time (assimilation cycles) and
the parameters α are estimated separately and sequentially for every element of the
sequence (see Sect. 3 for more detail).5

2.2.2 Optimal estimate under Gaussian assumption

If the probability distribution p(x̂) and p(y|x̂) can be assumed Gaussian:

p(x̂) ∼ N (x̂b, P̂) and p(y|x̂) ∼ N (Ĥx̂,R) (9)

where x̂b is the background simulation, P̂ is the background error covariance matrix
in the augmented space, Ĥ=[0,H] is the augmented observation operator and R the10

observation error covariance matrix, it is known that the posterior probability distribu-
tion p(x̂|y) is also Gaussian:

p(x̂|y) ∼ N (x̂a, P̂a) (10)

where the mean x̂a and the covariance P̂a are given by the standard linear observa-
tional update formulas:15

x̂a = x̂b + K(y − Ĥx̂b) and P̂a = (I − KĤ)P̂

with K = (ĤP̂)T (ĤP̂ĤT + R)−1 (11)

Equation (11) are also the equations of the observational update of a Kalman filter
written for an augmented control vector (including model parameters in addition to the
model state). This method can be applied to control other sources of error in addition20

to parameter error (as explained, for instance, in Skachko et al., 2009). However, in
the present study, Eq. (11) are only going to be used to obtain improved parameter
estimates.
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It is interesting to note that the solution given by Eq. (11) is not equivalent to mini-
mizing

J(α ) =
1
2
αTP−1

α α

+
1
2

[y − Hx(α )]T R−1 [y − Hx(α )] (12)

(where Pα is the block of P̂ corresponding to the vector of parameters) using a varia-5

tional method, as soon as the function x(α ) relating the model solution to the parame-
ters is nonlinear. This variational solution only assumes Gaussianity of p(α ) and p(y|x)
while keeping the nonlinear function x(α ) in the expression of

p(α |y) ∼ p(α )p(y|α ) ∼ exp[−J(α )] (13)

which is not Gaussian. However, there is no prerequisite of Gaussianity in Monte Carlo10

methods, that may also offer other advantages. It is for instance easier to apply strict
inequality constraints (by modifying the prior Gaussian assumption). This possibility is
exploited in this study to confine the parameter estimates in a predefined region of the
parameter space (see Sect. 3.5).

2.2.3 Reduced rank approximation15

If the background error covariance matrix is available in square root form P̂=ŜŜT , with
a rank given by the number r of independent columns in Ŝ (the error modes), then the
problem can be simplified to the estimation of a reduced vector ξ (of size r), giving the
amplitudes of the correction to x̂b along each column of Ŝ, using a reduced observa-
tion vector η (of size r) resulting from the projection of the innovations onto the error20

modes Ŝ:

x̂ = x̂b + ŜUξ

and η = Λ(ĤŜU)TR−1(y − Ĥx̂b) (14)
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where U (unitary matrix) and Λ (diagonal matrix) are the matrices with eigenvectors
and inverse eigenvalues of the r×r matrix:

(ĤŜ)TR−1(ĤŜ) = UΛ−1UT (15)

By transformation (14), the probability distributions (9) transforms to

p(ξ) ∼ N (0, I) and p(η|ξ) ∼ N (ξ,Λ) (16)5

so that

p(ξ|η) ∼ N (ξa,Λa) with ξa = [I + Λ]−1η

and Λa = [I + Λ]−1Λ (17)

With the transformation U, the observational updates for every components of the ξ

vector are independent (all matrices in Eqs. 16 and 17 are diagonal). This is a simple10

way of obtaining directly the equation of the observational update for the SEEK filter
(the reduced order Kalman filter developed by Pham et al., 1998), that are otherwise
deduced from Eq. (11) using the Sherman-Morrison-Woodbury formula.

2.3 Mercator-Ocean reanalysis

Mercator-Ocean is an operational oceanography center based in Toulouse, France. It15

develops and runs operational ocean analysis/forecast systems specially designed to
provide useful products for several downstream applications such as: research, in-
stitutional and operational applications, private sector applications and environmental
policy makers. Mercator Ocean also periodically delivers ocean reanalyses, that are
produced using up-to-date ocean models, observations and assimilation methods. In20

this study, we are using the data from a Mercator Océan coarse resolution global re-
analysis (PSY2G2). The main application of this reanalysis was to provide ocean ini-
tial conditions for coupled seasonal prediction applications (Balmaseda et al., 2008).
PSY2G2 reanalysis is also used for research purposes as it provides a long coherent
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time series of the ocean state (from 1980 to present). The ocean model used for the
reanalysis is similar in many points to the one that is used in our experiments (same
numerical code OPA, same grid, same physics, but different atmospheric forcing). The
ocean model is forced with daily fluxes of momentum, heat and fresh water from the
ERA-40 reanalysis for the period January 1979 to December 2001 and from the opera-5

tional analysis thereafter. It assimilates subsurface temperature and salinity, SLA data
and SST maps. The subsurface data come from the ENACT/ENSEMBLES data base
until 2001. These data are quality controlled and provided by the CORIOLIS4 data
center in delayed mode and in real-time. The altimetric data are along-track SLA (from
November 1992 to present) provided by SSALTO/DUACS. The reanalysis data assimi-10

lation scheme is a reduced order Kalman filter based on the SEEK formulation (Pham
et al., 1998). The forecast error covariance is based on the statistics of a collection
of 3D ocean state anomalies (typically a few hundred) and is seasonally variable. The
analysis produces temperature and salinity as well as barotropic velocity increments.
Physical balance operators are used to deduce zonal and meridional velocity fields15

from these increments. For the present study, we extracted the years 1993 and 1994
(temperature and salinity) for use in our assimilation experiments.

3 Method

3.1 Setup of the assimilation experiments

The general idea of the experiments presented in this paper is to use the Mercator-20

Ocean reanalysis as reference simulation from which synthetic observation datasets
are extracted, and to assimilate these observations into our ocean model as a con-
straint to the atmospheric forcing function. These experiments are ideal in the sense
that no real observations are assimilated and that the full reference model state (in

4http://www.coriolis.eu.org
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three dimensions) is available for validation. But they are also realistic (clearly distinct
from twin experiments) because differences of model simulations with respect to the re-
analysis are similar in nature to differences with respect to the real world. The starting
date of the experiments is 30 December 1992 (with an initial condition from a standard
simulation performed by Castruccio et al., 2008). The first six months are used as an5

initialization period for the assimilation system, so that the one year diagnostic period
extends from 30 June 1993 to 29 June 1994. Figure 1 (left panel, top black line) shows
the time evolution of the RMS error (difference with respect to the reanalysis) in the
free simulation (i.e. without parameter corrections) for sea surface temperature (SST)
and sea surface salinity (SSS), as computed over the world ocean south of 70◦ N, to10

avoid some problematic ice covered regions. We can observe on the figure that the
SST RMS error is stable in time (in the interval 0.85–1.05◦C) but that the SSS RMS
error is drifting from the beginning of the simulation (at a rate of about 0.1 psu per year).

The error is however very inhomogeneous horizontally, as can be seen in Fig. 2,
showing maps of SST and SSS systematic error (top panels) and maps of SST and15

SSS error standard deviations (bottom panels). Both are computed for the one year di-
agnostic period. The largest systematic errors (up to 2◦C and 0.8 psu) or error standard
deviation (up to 1.5◦C and 1 psu) are localized in the regions of the Western boundary
currents and the Antarctic Circumpolar Current (ACC). These large errors are due to
the poor representation and localization of the ACC and the boundary currents in our20

low resolution ocean model. Since these currents are associated to the most intense
SST and SSS fronts in the ocean, it is mostly the misplacement of the currents that
leads to the largest SST and SSS errors. In these regions, the atmospheric forcing
function is not the dominant cause of error, so that the identification of forcing errors is
almost impossible there (with a low resolution model). This is why they will be masked25

in several diagnostics involving horizontal averages. The right panel of Fig. 1, for in-
stance, shows the same result as the left panel as obtained by masking the 10% of
the ocean with the largest free run RMS misfit (i.e. essentially the Western boundary
currents and a part of the ACC). The RMS error for this 90% subdomain remains quite
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large in the free simulation with a reduction of about 10% for SST and 30% for SSS
with respect to the global RMS error.

The purpose of our experiments is to identify the part of the misfit between model
simulation and reanalysis that can be explained by errors in the atmospheric forcing
function. This means that the experiments are dedicated to the improvement of the5

forcing function of long term free model simulations: no correction is applied directly
to the evolution of the model state, which remains a solution of the model dynamical
equations. But we will need to apply corrections on the forcing parameters using a se-
quential assimilation method. For that purpose, the simulation is divided in a sequence
of time intervals (the assimilation cycles, with a length of 7 days) and, for each interval10

we estimate the forcing parameters by combining optimally forcing prior knowledge and
available ocean observations. In our experiments, the forcing parameter estimates are
obtained using SST and SSS observations extracted from the reanalysis at the model
resolution with global coverage and perfect accuracy.

3.2 Initial condition15

In such a kind of experiment, an important difficulty occurs if we start the assimilation
experiment from the initial condition of the free model simulation on 1 January 1993,
because at the end of the first one-week assimilation cycle, most of the error (differ-
ence with respect to reanalysis) is due to initial condition error and not to errors in the
atmospheric forcing (corresponding to this first cycle). In order to avoid this difficulty,20

we first present results that are obtained without initial condition error. In that way, a
better view of the behaviour of the method can be produced, thus facilitating the inter-
pretation of the results. The influence of initial condition error is only briefly considered
in a second stage.

In order to build a perfect initial condition for the assimilation experiments, we simply25

perform an ideal assimilation experiment with perfect increment δxk , computed as
the difference between the model forecast of the current cycle (number k) and the
corresponding ocean state in the reanalysis. This increment is then introduced into
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the model using the incremental analysis update algorithm (as in Ourmières et al.,
2006). Moreover, in order to distribute the effort over the first p assimilation cycles,
this increment is divided by the factor max(p−k+1,1). In that way, only one pth of the
full increment is applied during the first cycle, and the cycle p is the first cycle with
the full perfect increment. Figure 1 (left panel, dashed black line) shows the SST and5

SSS RMS error reduction during this initialization procedure from 30 December 1992
to 10 March 1993 (10 cycles of 7 days with p=8). This last date is the initial condition
of our simplified assimilation experiments (with negligible initial condition error). For
comparison purpose, a free model simulation starting from this perfect initial condition
is also presented in Fig. 1 (lower black solid line), showing that the corresponding SST10

and SSS misfits quickly increase with time to reach asymptotically the typical misfit (for
SST) or the typical trend (for SSS) that is observed in our original free model simulation
(with wrong initial conditions).

3.3 Forcing parameters prior probability distribution

As explained in Sect. 2.2, the estimation of model parameters using Bayesian inference15

requires the definition of a prior probability distribution for the parameters. And the first
thing to decide about this probability distribution is the list of uncertain parameters to
include in the control vector (step a in Table 1); other parameters are then considered
perfectly accurate In this study, we decide to estimate the following parameters of the
atmospheric forcing function: air temperature (Ta), air relative humidity (qa), cloud frac-20

tion (C), precipitation (P ), the latent heat flux coefficient (CE ) and the sensible heat flux
coefficient (CH ). The reason for this choice is that they are expected to be the most
important inaccurate parameters that are involved in the computation of the net heat
and fresh water fluxes at the air-sea interface. They are assumed to be responsible for
most of the error in the computation of these net fluxes, and thus to be one of the most25

important source of error in the heat and salt budget of the ocean mixed layer. One im-
portant missing parameter is wind velocity, which is a key parameter to control the heat
flux computation (Mourre et al., 2008). The reason for which it is not included in the
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list of control parameters is that it is also correlated to the momentum flux (zonal and
meridional wind stress components), which have chosen not to control in this study.

In order to define the prior probability distribution for these control parameters (step b
in Table 1), we first assume that the error on the parameters is constant over the current
assimilation cycle, which already means that the overal flux correction in our experi-5

ments is necessarily piecewise constant (with weekly forcing parameter increments).
Second, we assume that the parameter error pdf is Gaussian N (0,Pα ), with zero mean
and with the covariance Pα of the time variability of the parameters in the free model
simulation (here over the period 1992–1998). In the definition of Pα , we retain the
200 first EOFs of the full signal, representing about 92% of the total variance. Fig-10

ures 3 and 4 show respectively the resulting mean and standard deviation maps for
every parameter. As SST and SSS misfit standard deviations shown in Fig. 2, the pa-
rameters standard deviations are very inhomogeneous horizontally, and the patterns of
maximum variability are very diverse. These figures are used as a reference in further
discussions.15

However, it must be mentioned here that most parameters are constrained by
bounds:

0 ≤ qa ≤ 1, 0 ≤ C ≤ 1, P ≥ 0,

CE ≥ 0, CH ≥ 0 (18)

so that the prior pdf cannot be really Gaussian. In practice, this means that each time20

that maps of parameter increments are sampled from the prior distribution N (0,Pα )
and added to the reference parameter maps, all values falling outside the physical
bounds are reset to the value of the closest bound. For instance, a negative precipita-
tion value is reset to 0, or a cloud fraction value exceeding 1 is reset to 1. This set of
operations implicitly define the prior pdf that is effectively assumed. This also means25

that the parameter perturbation may not be constant in time (and consequently that the
correction may not be exactly piecewise constant) as soon as parameter values are
found outside of their physical bounds.
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As a last approximation in our experiments, the prior pdf for the error on the param-
eters is kept unchanged from one assimilation cycle to the next. This means that it
is assumed that nothing is learnt about the parameters of the current cycle from the
previous estimates. This is quite an important difference with respect to the experi-
ments performed by Skachko et al. (2009), with the advantage that we do not need to5

parameterize the time dependence of parameter errors (since zero correlation is as-
sumed). It is also safer to keep a zero mean error pdf around the reference parameter
value. In that way, we can be certain to avoid any drift of the parameters from the
reference (as observed in Skachko et al., 2009) and we do not need to add feedback
to the reference (as they did) to prevent for filter instability. With a predefined prior pdf10

for the parameters, we keep an explicit view on the parameter uncertainties that are
assumed in the assimilation system, and this opens the way to useful refinements in
the parameterization of these prior pdfs (see Sect. 3.5).

3.4 Augmented control vector prior probability distribution

In order to use the ocean observations to estimate the parameters, we need to derive15

a prior probability distribution for the augmented control vector (step c in Table 1), in-
cluding the ocean state and the forcing parameters (as explained in Sect. 2.2). In our
experiments, this prior probability distribution is approximated by a 100-member sam-
ple, that is obtained by sampling the forcing parameter probability distribution N (0,Pα )
(described in Sect. 3.3): α

(i ), i=1, . . . , n=100 (using the method described in the ap-20

pendix of Fukumori, 2002) and by performing the corresponding ensemble model fore-
cast for the current assimilation cycle: x(i ), i=1, . . . , n=100. The 100 model forecasts,
with their associated parameter maps x̂(i )=[x(i ),α (i )] represent the sample that we need
to parameterize the prior probability distribution for the augmented control vector. This
sample characterizes the sensitivity of the model forecast to parameter error around25

the current state of the system. This is a very important point because this sensitivity
depends very much on the current ocean state. This is why it is impossible to perform
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the ensemble forecast once for all; it must be computed for each assimilation cycle
from the current initial condition. It must also be stressed here that the forcing param-
eters are the only source of error that is introduced in our ensemble experiments (no
perturbation of the initial condition, no other model noise), so that the resulting proba-
bility distribution only represents that part of the total error that is caused by the forcing5

parameters. This is fully consistent with the experimental setup described in Sect. 3.1,
since we only seek to control the forcing parameters, but this also means that all other
sources of errors in the system must be considered as observational error (and thus
included in the parameterization of the observation error covariance matrix).

From the 100-member ensemble forecast x̂(i ), we parameterize the prior probability10

distribution of the augmented control vector as a Gaussian distribution N (x̂b, P̂), where
x̂b is the background forecast obtained with zero parameter perturbation, and P̂ is given
by

P̂ =
1
n

n∑
i=1

(
x̂(i ) − x̂b

)(
x̂(i ) − x̂b

)T
(19)

In parameterizing N (x̂b, P̂), we do not use the mean and covariance of the sample as15

x̂b and P̂ because model nonlinearities can create a bias between xb and the sample
mean x̄= 1

n

∑n
i=1 x(i ). In our experiments, what we want to improve is the background

model solution xb and not the ensemble mean x̄, which is never used as best estimate
of the state of the system (as it could be in ensemble methods). To be consistent, we
thus also need to characterize the sensitivity of the model forecast around xb and not20

around x̄. An additional reason is that the value obtained for the bias x̄−xb is related
to the shape of the prior pdf for the forcing parameters p(α ), which is not likely to
be very accurately represented by our arbitrary Gaussian choice N (0,Pα ). This bias
problem arises because we try to solve a non-Gaussian problem approximately using
a Gaussian approach. A rigourous solution can thus only be obtained by moving to25

a more general non-Gaussian scheme for the observational update. In this paper, we
choose to leave these developments for further studies and to use the above Gaussian
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parameterization as an approximation.
Moreover, as an additional approximation, we only retain the first 50 principal com-

ponents of the covariance matrix defined by Eq. (19), representing in general most
of the total sample variance (around x̂b). Figure 5 presents one column of the re-
sulting correlation matrix (correlation with respect to SST at 66◦ E, 1◦52 S), for Ta, qa,5

C and CE , showing for instance that the correlation is the largest close to the refer-
ence SST location, and decreases with the distance (as a general behaviour). It is
dominantly positive for air temperature Ta and negative for the other parameters qa,
C and CE , consistently with the common physical sense. The horizontal shape of the
correlation structure is highly anisotropic, with zonal correlations (along the equator)10

remaining significant over larger distance than the meridional correlations, as a direct
consequence of the anisotropy of the equatorial dynamics. We can even identify the
correlated and anti-correlated separation zones for qa and C, to the separation be-
tween the North Indian Ocean currents (influenced by the Asiatic Monsoon) and the
currents of the South Indian Ocean (influenced by the atmosphere anticyclonic circu-15

lation). The figure also shows that, due to the low rank (r=50) parameterization of the
covariance matrix P̂, the correlations do not vanish at long distances as they do in the
real world. This is why, in order to compensate for this deficiency in the parameteriza-
tion of P̂, we use a local algorithm for the observational update, that imposes vanishing
long range correlation coefficients (see Testut et al., 2003; Brankart et al., 2003). These20

local observational updates are anyway performed in a reduced dimension space us-
ing Eq. (17), with locally defined Ŝ and R matrices. Once the observational update
has been performed, it may be that the parameter correction, added to the reference
sequence of parameter maps that are used for the model simulation do not satisfy
the inequality constraints Eq. (18). If this situation occurs, the out-of-range parameter25

values are simply reset to the closest valid value as explained in Sect. 3.3 for the en-
semble experiments. This is of course an additional and quite crude approximation in
the computation of the posterior parameter estimates. The difficulty originates from the
assumption of a constant parameter increment that is added to parameter maps that
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are not constant over the assimilation cycle. It is thus impossible to impose inequality
constraints on the increment, and to use them to improve the shape of its prior prob-
ability distribution (for instance, by a truncated Gaussian assumption, as in Lauvernet
et al., 2009 or by a nonlinear change of variable, as in Béal et al., 2009).

3.5 Truncation of the prior Gaussian distribution5

In any inference problem, the accuracy of the posterior estimates crucially depends on
the quality of the assumptions on the prior probability distributions, which in our prob-
lem are parameterized as Gaussian distributions: p(x̂) = N (x̂b, P̂), p(y|x̂) = N (Ĥx̂,R).
In the first distribution, we only include error that are due to forcing parameters, so
that all other sources of errors must be included in the second distribution to correctly10

explain the dispersion of the observations (i.e. their covariance must be included in
the observation error covariance matrix R). In our experiments, underestimating R is
dangerous, because this means giving too much confidence to the observations, or
in other words, interpreting an excessive part of the misfit with respect to the obser-
vations as due to forcing errors. The direct consequence is an excessive correction15

applied to the forcing parameters, that corresponds to very low prior parameters prob-
ability. Prohibitive values of the parameters, never occuring in the real system, can be
reached because of the excessive desire of fitting the observations (whose dispersion
can only be explained by the existence of other sources of error in the system). Nat-
urally, overestimating R is also dangerous, because this means not exploiting enough20

the observational information, and missing a part of the error variance that can be
explained by forcing errors.

In order to reconcile the necessity to maintain the estimated forcing parameters in-
side a realistic range of values with the difficulty of producing a parameterization of the
observation error covariance matrix R that is sufficiently accurate, we decide to proceed25

in the following way. First, we use a quite crude parameterization for the observation
error covariance matrix: uncorrelated errors (diagonal R matrix) with uniform and quite
small standard deviation: 0.1◦C for SST observations ans 0.02 psu for SSS observa-
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tions. We can thus be quite sure that too much confidence is given to the observations
(underestimated R). But second, we truncate the prior probability p(x̂) by imposing
zero prior probability to large parameter increments. More precisely, the distribution in
the reduced space p(ξ) is truncated by the inequality constraints: |ξi |≤γ, i=1, . . . , r .
|ξi | values larger than γ are thus assumed impossible. This corresponds to excluding5

an increment of the parameters along each error mode (each eigenmode in Eq. 14, left
equation) if it is larger than γ times the standard deviation along that error mode. In
our experiments, we set γ=3, which excludes any increment (along each mode) that is
outside the 99.7% prior Gaussian confidence interval (i.e. occcuring typically in 0.3%
of the parameter maps sampled from a free model simulation, according to a Gaussian10

assumption).
From this modified prior probability distribution p(ξ), it can be deduced from the

Bayes theorem (8) that the posterior pdf p(ξ|y) is given by the same solution Eq. (17)
as in the Gaussian problem but truncated by the constraints |ξi | ≤ γ (since there is only
multiplications by zero in Eq. (8), see Lauvernet et al., 2009, for more detail). The dif-15

ference is that the previous Gaussian best estimate ξ
a may not satisfy the constraints,

and thus no more corresponds to maximum probability (but to zero probability). With
the set of simple constraints |ξi |≤γ, it is not difficult to see that the new maximum prob-
ability is obtained for

ξ∗i = ξai min

(
1,

γ

|ξai |

)
, i = 1, . . . , r (20)20

Since the r inference problems are still independent, the maximum joint probability
is indeed obtained if each one-dimensional pdf is maximal (i.e. nearest to ξai within
the valid interval). With this assumption, we can thus compute from ξai the forcing
parameters that are capable of explaining the largest part of the misfit with respect
to the observations, while remaining in a realistic range of variation (along each of25

the error modes). In that way, we expect that we can answer to the initial question
(Sect. 3.1): identifying what part of the misfit between model simulation and reanalysis
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can be explained by errors in the atmospheric forcing function.

4 Results

4.1 1-year model simulation with parameter optimization

In this section the results of the free simulation are compared to those obtained with
parameter optimization (without direct correction of the model state). In Fig. 1, the5

red line corresponds to the SST or SSS time evolution of the RMS error (difference
with respect to the reanalysis) in the optimal simulation, that includes the application of
our correction of the atmospheric forcing parameters. Starting from the perfect initial
condition as indicated in Sect. 3.2, we observe in the first assimilation cycles that the
initial error trend is strongly reduced by the parameter correction (compare with the10

black curve starting from the same condition). This already shows the ability of the
scheme to control a significant part of the model error that is due to the original forcing
parameters. The large error reduction observed at the end of the initialization period
then stabilizes over time over the one year diagnostic period. Much of the SST and SSS
error in the free simulation is cancelled and the error variances (over the full domain)15

becomes about 3 times smaller than the corresponding values in the free simulation.
Both curves stabilizes in time at around 0.5◦C RMS for SST and around 0.15 psu RMS
for SSS with a drift that is now almost fully under control.

However, this error remains very inhomogenous horizontally. Figure 6 shows maps
of the spatial distribution of the SST and SSS misfit in terms of systematic error (top20

panels) and error standard deviation (bottom panels). As in Fig. 2, both statistics are
computed for the one-year diagnostic period. Globally, by comparison to Fig. 2, we
observe an important reduction of the SST and SSS systematic error and standard
deviation everywhere in the global ocean. The only regions where a significant residual
error remains are the Gulf stream and Kuroshio regions, the Confluence region and the25

ACC and, to a lesser degree the Eastern Pacific equator (for SST) and the Western
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Pacific equator (for SSS). These errors are the consequence of the presence of other
sources of error in the system which it is impossible to correct by just optimizing the
forcing function. In particular, in the Western boundary currents and the ACC, an
important part of the original error is due to the bad representation and localization of
the ocean currents in our low resolution ocean model. This is why, in this case the5

parameter correction corresponding to an important bias is, for a large part, unrealistic
as will be explained in the Sect. 4.3.

In order to have a better view of what occurs in the other regions (covering most of
the ocean), the results in Fig. 1 are also presented (in the right panel) by excluding
from the average the 10% of the ocean with the largest free run RMS misfit (for SST10

and SSS respectively). As compared to the full ocean results (left panel), the error
reduction is here even more significant, with RMS misfits stabilizing at about 0.25◦C for
SST ans 0.01 psu for SSS (without any residual drift). It thus appears that without con-
sidering the problematic areas listed above, the optimization of the atmospheric forcing
parameters has a significant positive impact on the simulation, leading to surface ocean15

properties that are in very good agreement with the Mercator-Ocean reanalysis, and
this result concerns up to 90% of the ocean surface.

4.2 Diagnostic of the mixed layer properties

In order to provide an idea of the vertical structure of the RMS error, on temperature
and salinity, Fig. 7 shows the misfit with respect to the reanalysis for the simulation ob-20

tained with (dotted lines) and without (solid lines) parameters optimization. The figure
is organized according to zonal bands: the Northern zone (between 55◦ N and 19◦ N,
top panels), the Tropical zone (between 19◦ N and 22◦ S, middle panels) and the South-
ern zone (between 22◦ S and 56◦ S, bottom panels). Each panel shows the results for
the Atlantic ocean (black), the Pacific ocean (red) and the Indian ocean (green). In25

general, dotted lines show smaller RMS misfit than solid lines, indicating the positive
impact of the parameters optimization over the whole depth of the mixed layer. How-
ever, this impact is more significant in the mid–latitudes than in the tropics because the

1152

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1129/2009/osd-6-1129-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1129/2009/osd-6-1129-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
6, 1129–1171, 2009

Controlling
atmospheric forcing
parameters of global

ocean models

C. Skandrani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

large subsurface difference observed at the equator, are associated to the thermocline
(and thus well below the mixed layer), and are not connected to errors in the heat and
fresh water flux. They correspond to errors in the depth of thermocline that result from
wind forcing differences (likely connected to errors in the wind stress, especially at the
equator) or from the effect of data assimilation in the reanalysis. On the contrary, in5

the mid–latitudes, the error becomes much more constant along the vertical if the at-
mospheric parameters are optimized. The large error close to the surface in the free
simulation (without parameter optimization) corresponds indeed to errors in the mixed
layer that are clearly due to forcing errors, and that can be very substantially reduced
by the optimization of the forcing parameters.10

4.3 Diagnostic of the parameter estimates

In the previous sections, we have analyzed the impact of the parameter optimization
on the temperature and salinity fields, and demonstrated globally that it produces ther-
mohaline properties of the mixed layer that are in much better agreement with the
Mercator-Ocean reanalysis. However, these positive results concerning temperature15

and salinity do not mean necessarily that the parameters themselves have been im-
proved. This is much more difficult to demonstrate because our experiments are not
twin experiments, so that we do not know the true values of the parameters. This is
very different from the previous study by Skachko et al. (2009) who used twin exper-
iments to demonstrate the accuracy of the parameter estimates. In our experiments,20

only indirect arguments can be proposed to study the relevance of the corrected atmo-
spheric parameters. This can be done by trying to detect the two situations in which
the T/S fields can be improved by irrelevant parameter corrections:

– the optimization scheme produces irrelevant parameter corrections that compen-
sate for other sources of error,25

– the optimization scheme produces irrelevant parameter corrections that compen-
sate each other.
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The first situation means that perhaps too much confidence has been given to the
observations, and also that part of the innovation is unduly attributed to atmospheric
parameter errors. And the second situation means that the parameters may not be
simultaneously controllable by the observations, i.e. the problem may be underdeter-
mined.5

The evaluation of the relevance of our parameter corrections will be based on two
diagnostics: the time average of the parameter increment over the diagnostic period
(Fig. 8) and the time standard deviation of the parameter increment (Fig. 9). The
average increment can be compared to the mean parameter map in the original dataset
(in Fig. 3) to get an idea of the average relative correction. And the standard deviation10

of the increment can be compared to the standard deviation of the time variability in the
original data (in Fig. 4) to get an idea of the importance of the corrections with respect
to the natural variability of the parameters. (On these maps, it is also interesting to
see that very similar corrections are computed everywhere for CE and CH consistently
with there physical meaning). The first important thing to notice is that the amplitude15

of the correction is never larger than a few times the standard deviation of the natural
variability of the parameters. This is the direct consequence of the limitation γ=3 that
we have imposed on the correction in the reduced space.

Moreover, approaching this maximal correction in average (i.e. a factor larger than 1
and even approaching 3 between Figs. 8 and 4) means that the correction is saturating20

on the γ=3 limit, which already indicates that the scheme is attempting to correct large
temperature and salinity misfits that cannot be fully explained by the postulated level
of parameter inaccuracy. This occurs first in regions of strong TS fronts resulting from
important currents, where the scheme compensates the misplacement of the currents
in the model simulation by irrelevant corrections of the parameters. In the Gulf Stream25

region, for instance, saturated corrections of the cloud fraction and relative humidity are
produced North of the real position of the front (as represented by the reanalysis) to
compensate for the overshooting of the current in the model solution. The same phe-
nomenon happens in the ACC, but over a much larger area and with an even stronger
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impact on the parameters (see the mean and standard deviation of the cloud fraction
and relative humidity around 60◦ S). A similar problem also occurs in the Equatorial
regions where surface temperature differences (certainly induced by wind errors) are
here compensated by heat flux corrections. (The negative average precipitation incre-
ment in the Western Pacific is applied by the scheme to compensate for the negative5

salinity bias in this region; compare Figs. 2 and 6). In all these problematic regions,
the saturation of the parameter increment (with the γ mechanism) also explains why
it is also in these regions that SST and SSS differences with respect to the reanaly-
sis (shown in Fig. 6) remain the largest. There, the scheme refused to authorize the
largest parameter corrections that would have been necessary to fully compensate the10

SST/SSS differences. The consequence is that the large SST/SSS misfits remain,
while the parameters stay inside a reasonable range.

As a distinct kind of problem, it is interesting to remark the very large correction ap-
plied in the Southern ocean (along the Antarctic coast) to the CE and CH coefficients on
the one hand, and on the air temperature Ta on the other hand. These very large incre-15

ments are not there to compensate very large SST and SSS errors (compare Figs. 2
and 6), so that they mainly compensate each other to produce the required SST and
SSS corrections. This behaviour denotes the difficulty to control simultaneously several
parameters using only SST and SSS observations. In this particular case, the large
corrections are authorized by the very large standard deviation of these parameters in20

the natural variability of this region, and the scheme exploits this possibility as much as
it is authorized to do to fit the observations. There, the problem comes from the fact
that the covariance of the parameter variability is inadequate to parameterize correctly
the parameter errors.

The previous discussion summarizes the list of regions where limitations of the pro-25

posed correction method are most obvious. But everywhere else, the corrections are
much smaller than the error bars that have been imposed and nevertheless sufficient to
obtain temperature and salinity improvements that were observed by comparing Fig. 6
to Fig. 2. Such result demonstrates that for the largest part of the ocean (in absence
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of other sources of errors strongly influencing SST and SSS), it is possible to produce
moderate atmospheric parameter corrections that can drive the mixed layer properties
of long-term ocean simulations very close to reanalysis data.

4.4 Influence of initial condition errors

Our first concern was to investigate ways of correcting the errors due to the atmo-5

spheric forcing and to dissociate them from other sources of error, like intrinsic model
error or initial conditions errors. Up to here, we focused on that by starting the simu-
lations from a perfect initial condition. As an additional experiment it is however useful
to study the influence of initial condition error. For that purpose, we started a new free
model simulation with parameters optimization from the initial date (30 December 1992)10

of the original reference simulation (without the relaxation that was performed to reach
the perfect initial condition). This simulation (without state correction) is illustrated by
the green line in Fig. 1. What we observe first is the rapid error decrease during the
first assimilation cycles of the experiment, showing the ability of the scheme to reduce
the SST and SSS error that is present in the initial condition and to control the model15

error due to original parameters forcing. The comparison of the corresponding SST
and SSS misfits with those obtained with perfect initial conditions (red lines), shows
that the two experiments have the same kind of asymptotic behaviour on the long term,
which means that the initial condition is progressively forgotten with time. Even if there
is an impact of the initial error on the long term behaviour, particularly obvious for SSS,20

both simulations are characterized by error with similar magnitude over the diagnos-
tic period, which mean that the method can be applied with a similar success even in
presence of initial condition errors.
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5 Conclusions

In this study, data assimilation experiments have been performed with the aim of con-
trolling the parameters governing the atmospheric forcing, using idealized sea surface
temperature and salinity observations, that are extracted from the Mercator-Ocean
PSY2G2 reanalysis data set. The results show that it is possible to compute piecewise5

constant parameter corrections, with predefined amplitude limitations, so that long-
term free model simulations become much closer to the reanalysis data, with misfit
variances typically divided by a factor 3 (for the global ocean) or by a factor 5 (if we
exclude the frontal zones). However, the model that is used to perform these experi-
ments is a low resolution model that does not represent correctly the Western boundary10

currents and other important circulation features which depend on resolution. The con-
sequence is that part of this model error is incorrectly ascribed by the scheme to the
parameters so that the prescribed amplitude limitations saturate in these regions, thus
indicating that the parameter corrections are irrealistic (since they are estimated out-
side a valid range of variation). Such problems can only be circumvented either by15

improving the model (for instance by increasing the resolution) or by controlling this er-
ror by data assimilation (for instance using altimetric observations). On the other hand,
our experiments also suggest that a large part of the error (i.e. the misfit with respect to
the reanalysis) can be explained by a bias on the reference parameters, with the con-
sequence that our estimation scheme cannot be considered optimal (since centered20

prior probability distributions are assumed). All these results point towards the need
for accurately specifying the prior parameter probability distribution and, despite of the
deficiencies just mentioned, the experiments performed in this study already represent
a signifcant step in this direction: by constructing the prior distributions locally in time,
and by imposing strict limitations to the amplitude of the correction, we can be sure at25

least (by construction) that the parameter estimates always remain in a realistic range
of values (i.e. inside their local range of variation in the input atmospheric data).

From a methodological point of view, the application of such state dependent prior

1157

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/6/1129/2009/osd-6-1129-2009-print.pdf
http://www.ocean-sci-discuss.net/6/1129/2009/osd-6-1129-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
6, 1129–1171, 2009

Controlling
atmospheric forcing
parameters of global

ocean models

C. Skandrani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

constraints is made practically possible by the use of a Monte Carlo method to sim-
ulate the joint parameter/state probability distribution. For that purpose, a truncated
Gaussian assumption is used to parameterize these distributions, so that the posterior
parameter estimates can be computed very efficiently. However, in the present study,
the constraints have been defined according to a statistical criterion (99% confidence5

interval), which is certainly not the best way of summarizing the prior information about
the parameter range of validity. In order to improve the definition of the estimation prob-
lem, the best perspective is certainly to give a more physical basis to the specification
of the constraints. This can only be done by defining directly the range of validity in
parameter space (and no more in the reduced space as in this paper), so that the sim-10

plifications that we brought to the truncated Gaussian filter of Lauvernet et al. (2009)
would no more be applicable. Even if the algorithm can become somewhat more com-
plex, this potential solution is certainly a good candidate to continue improving the prior
parameter probability distribution, which we have just shown to be a key issue in the
computation of more realistic parameter estimates.15
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Béal, D., Brasseur, P., Brankart, J.-M., Ourmières, Y., and Verron, J.: Controllability of mixing5

errors in a coupled physical biogeochmeical model of the North Atlantic: a nonlinear study
using ensemble anamorphosis, Ocean Science, Ocean Sci. Discuss., submitted, 2009. 1149

Berliand, M. and Berliand, T.: Determining the net long-wave radiation of the earth with consid-
eration of the effect of cloudiness, Isv. Akad. Nauk. SSSR Ser. Geophys, 1952. 1136

Blanke, B. and Delecluse, P.: Variability of the Tropical Atlantic Ocean simulated by a general10

circulation model with two different mixed-layer physics, J. Phys. Oceanogr., 23, 1363–1388,
1993. 1134

Brankart, J.-M., Testut, C.-E., Brasseur, P., and Verron, J.: Implementation of a multivariate
data assimilation scheme for isopycnic coordinate ocean models: Application to a 1993–96
hindcast of the North Atlantic Ocean circulation, J. Geophys. Res., 108(19), 1–20, 2003.15

1148
Brodeau, L., Barnier, B., Penduff, T., Treguier, A., and S. G.: An ERA-40 based atmospheric

forcing for global ocean circulation models, Ocean Modelling, in revision, 2009. 1131
Castruccio, F., Verron, J., Gourdeau, L., Brankart, J., and Brasseur, P.: Joint altimetric and

in-situ data assimilation using the GRACE mean dynamic topography: a 1993-1998 hindcast20

experiment in the Tropical Pacific Ocean, Ocean Dynam., 58, 43–63, 2008. 1142
Fukumori, I.: An partitioned Kalman Filter and Smoother, Mont. Weather Rev., 130, 1370–1383,

2002. 1146
GODAE: The Procceddings of the Global Data Assimilation Experiment (GODAE), Final Sym-

posium, Nice, France, 2008. 113125

Goosse, H., Campin, J., Deleersnijder, E., Fichefet, T., Mathieu, P., Morales Maqueda, M., and
Tartinville, B.: Description of the CLIO model version 3.0., Tech. rep., Institut d’Astronomie et
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Table 1. The four steps of the parameter estimation scheme, with a short description of the
procedure and basic assumptions.

Steps Procedure Assumptions

Step a: Definition
of the augmented
control vector

Include a list of uncertain atmospheric
forcing parameters in the control vec-
tor: x̂=[T, S, U, V︸ ︷︷ ︸

x

, CE , CH , C, P, qa, Ta︸ ︷︷ ︸
α

]

The other parameters are perfectly
accurate.

Step b: Forcing pa-
rameter prior prob-
ability distribution

Postulate a Gaussian pdf for the atmo-
spheric forcing parameters, based on
their natural variability simulated by the
free model ovec 7 years, 92–98. (200
EOFs retained).

–Parameter errors are constant over
the current cycle assimilation cycle.
–The parameter error prior pdf is Gaus-
sian: N (0,Pα ).
–The prior pdf is kept unchanged be-
tween assimilation cycles.

Step c: Augmented
control vector prior
probability distribu-
tion

–Sample random parameter maps
(100 members) from their pdf.
–Perform a model simulation for each
member: the covariance of the ensem-
ble forecast is the error covariance in
the augmented control space.
–Apply an order reduction (50 EOFs
selected, ∼90% of total variance).

–Parameters are constrained by
bounds =⇒ the input parameter pdf is
not really Gaussian.
–Assume a truncated Gaussian aug-
mented vector distribution p(x̂) by
imposing zero prior probability to large
parameter increments.

Step d: Parame-
ter estimation us-
ing observations

Apply observational update formulas to
compute parameter corrections.

Atmospheric forcing parameters are
the only source of error.
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Fig. 1. Misfits between the simulations and the SST (top panels) or SSS (bottom panels) ob-
servations for the world ocean (south of 70◦ N) as computed, without masking any regions (left
panels) or by masking the 10% of the ocean surface that is charcterized by the largest free
run RMS misfit (right panels). The figures show the free simulation (top black solid line), the
relaxation towards a perfect initial condition (dashed black line), the modified free simulation
starting from this perfect initial condition (lower black solid line), the simulation with parameter
optimization (green line), the simulation with parameter optimization starting from perfect ini-
tial condition (red line). The vertical dashed-dotted line marks the beginning of the one year
diagnostic period.
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Fig. 2. Maps of systematic error (top panels) and error standard deviation (bottom panels) for
SST (in ◦C, left panels) and SSS (in psu, right panels) in the free model simulation (starting
from perfect initial condition).
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Fig. 3. Mean parameters in the free model simulation over the period 1992–1998. The figure
shows CE×10−3 (top left panel), CH×10−3 (top right panel), C (middle left panel), P (in mm,
middle right panel), Ta (in K, bottom left panel) and qa (bottom right panel).
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Fig. 4. Parameters standard deviation in the free model simulation over the period 1992–1998.
The figure shows CE×10−3 (top left panel), CH×10−3 (top right panel), C (middle left panel), P
(in mm, middle right panel), Ta (in K, bottom left panel) and qa (bottom right panel).
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Fig. 5. Correlation with respect to SST at 66◦ E, 1◦52 S, for Ta (top left panel), qa (top right
panel), C (bottom left panel), CE (bottom right panel).
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Fig. 6. Maps of systematic error (top panels) and error of standard deviation (bottom panels)
for SST (in ◦C, left panels) and SSS (in psu, right panels) as obtained for the model simulation
with parameter optimization (starting from perfect initial condition).
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Fig. 7. RMS misfit with respect to the reanalysis temperature (left panel) and salinity (right panel). The Figure is
organized according to zonal regions: the Northern zone (between 55◦ N and 19◦ N, top), the Tropical zone (between
19◦ N and 22◦ S, middle) and the Southern zone (between 22◦ S and 56◦ S, bottom). Each panel shows the results
for the Atlantic ocean (black), the Pacific ocean (red) and the Indian ocean (green). Solid lines correspond to the free
simulation and dashed lines correspond to the simulation with optimized atmospheric parameters. For this figure, the
10% of the ocean with the largest free run RMS misfit have also been excluded from the computation of the horizontal
averages.
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Fig. 8. Time average of the optimized parameter increment over the diagnostic period. The
figure shows this result for parameters CE×10−3 (top left panel), CH×10−3 (top right panel), C
(middle left panel), P (in mm, middle right panel), Ta (in ◦K, bottom left panel) and qa (bottom
right panel).
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Fig. 9. Standard deviation of the optimized parameter increment over the diagnostic period.
The figure shows this result for the parameters CE×10−3 (top left panel), CH×10−3 (top right
panel), C (middle left panel), P (in mm, middle right panel), Ta (in ◦K, bottom left panel) and qa
(bottom right panel).
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