Ocean Science Discussions, 2, S142–S143, 2005 www.ocean-science.net/osd/2/S142/European Geosciences Union © 2005 Author(s). This work is licensed under a Creative Commons License.

OSD

2, S142-S143, 2005

Interactive Comment

Interactive comment on "Influence of the Southern Annular Mode on the sea ice-ocean system: the role of the thermal and mechanical forcing" by W. Lefebvre and H. Goosse

Anonymous Referee #3

Received and published: 3 August 2005

General

The paper is OK, and interesting, and for the most part well done. The idea of separating into thermal and mechanical forcing appears valuable and the (somewhat surprising) linearity a useful result. Having to end up with only 7 years is a bit of a problem though.

Specific

Fig 2: pretty sure this is obs T vs obs SAM from NNR. Could that be explicitly stated.

Fig 3: not sure why S++S- (and ditto M and T) is shown. Why not S+ vs M++T+. Or indeed S+-S-. S++S- would tend to cancel out. Also, 15 points per year? Odd. Why?

Full Screen / Esc

Print Version

Interactive Discussion

Discussion Paper

EGU

Fig 4: a and and b are supposed to be v similar (note to the journal editor: can we please have a, b, ... captions to figures rather than the clumsy "top left" etc). But there is a major difference: in b the -ve response is almost all in the ABS; in a, entirely in the Weddell. Errr... and in fact there is a major problem with that figure: a is for 1980-7; b is for 1980-99. They aren't comparable.

Fig 5: caption trouble? It says "(S+ CTRL)" and "(CTRL S-)". Should be S+ - CTRL and CTRL - S- I think.

Sec 3 line 11 ish: "will work with the first 7 years from now on". On a textural note, most of the figs up to now have been first 7 years, but now I understand why! A solution might be to run on-off forcing rather than constant. However, the finding that constant SAM leads to larger changes is perhaps insteresting but isn't explored at all. The only-7-years bit should be mentioned higher up in the expt, where the fact that the runs are 1980-1999 is said.

Sec 4: "The effect is [the] strongest in the seasons with the biggest changes in temperature: autumn and winter. The opposite can be seen in the Weddell and Bellingshausen sectors, where an increase in air temperature results in a decrease in ice concentration." Hmmm yes, but in fact there are large T increases in the ABS sector but almost no sea ice changes there: why? The ice decreases are small and confined to very near the peninsula. They don't match the imposed (+ve) T pattern at all well. This "failure" of the model to do the obvious thing might explain why the -ve part in the ABS seen in fig 4 b (obs) isn't in fig 4 a (model).

Interactive comment on Ocean Science Discussions, 2, 299, 2005.

OSD

2, S142-S143, 2005

Interactive Comment

Full Screen / Esc

Print Version

Interactive Discussion

Discussion Paper

EGU