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1 Introduction

Below I will reply to the various contributions that the authors have posted following my
first report. The response below is effectively split in two parts. The first part refers to
contributions AC C455, SC C532 and also - to some extend - AC C412 and SC C526
that followed the comments of Referee #1. The second part is devoted to SC C558
and SC C588.
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2 Summary

I have great problems with the replies I got with respect to Part 1, and based on this I
am still not convinced of the validity of Eq. (22).
In Part 2 I will explain that the approximate validity of Eq. (22) - if it is found - actually
seems to refer to the situation where the tidal wave propagates in a nearly undamped
way. In that case, Eq. (22) is approximately satisfied as this is close to the first case
from the Appendix of the manuscript. Actually, it is this near-undamped propagation
(which is due to a balance between friction and convergence) that is remarkable, and
Eq. (22) is merely a property of is. Hence Eq. (22) - if anything - is not so much of an
"Open Boundary Equation" as an "Equilibrium Condition". Indeed, Eq. (22) itself is in
general rarely satisfied near the boundary.

3 Part I: reply to AC C455 and SC C532

I have read these replies to my comments. Unfortunately these answers are not satis-
factory to me. Of course I will explain this below. Briefly summarised I think the authors
have not taken my points seriously, sometimes in a way that really bothered me.

3.1 Validity of Eq. (22)

3.1.1 Numerical(?) issues

I cite the authors’ answer in their summary (pg C456)

In the article we indicate that the numerical analysis of convergent and frictional estuar-
ies by definition has (numerical) errors, so that it cannot be used as conclusive evidence (page
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934, line 10). The only solution that can be used as a full reference test is an exact, analytical
solution of the ‘Saint-Venant’ equations, which does not (yet) exist and may not exist for some
time to come or may never exist.

I fact, in terms of method I am far more optimistic. I think that Eqs. (1) and (2)
of the manuscript can be accurately solved by numerical mean and can very well be
used to check Eq. (22). Indeed, one expects that the authors use a code that will
give convergence to the full solution as the discretization is improved (smaller grid
size, smalle time step). Apart from boundary conditions (see below) I really don’t
know where numerical problems should come from. Besides I don’t think using a code
that has significant numerical errors should be accepted, so if this is the case then
the authors should simply redo their work with an improved code that is sufficiently
accurate for their purpose.
As to the up-estuary boundary condition it has been pointed out (SC C526) that the
adopted method is adequate in that it is believed to be non-reflective so I assume that
this will not give numerical problems. If it does, then I would urge the authors to really
solve the equations on a semi-infinite domain (i.e. infinite L). There are methods
for this (e.g. rational Chebyhev polynomials, see ()Boyd 2001) so that "numerical
reflection" is not an issue anymore.
As to the down-estuary (i.e. seaward) boundary condition the authors argue (SC
C532) that the solution is initially affected by the boundary condition at x = 0 and then
- as it propagates - becomes influenced by the internal dynamics of the basin. This is
true and this is referred to as external (i.e. externally driven) and internal tides (which
emerge from non-linearities). But these are simply two components of the tide and I
have never seen this being associated with an "adaptation length". This would indicate
that water level and velocity could exhibit a strong gradient near the boundary due to
a mismatch between boundary condition and internal solution. This may happen for
an elliptic set of equations but not for the hyperbolic system considered here. Likewise
I have never seen solutions of these equations that shown such strong boundary
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layer behaviour when a water level Dirichlet boundary condition is adopted. Moreover,
unlike the authors’ argument the external tide usually does not disappear over a
short distance as it propagates. So I see no boundary condition effect here, and no
numerical issues either.

The analogy in SC (C532) is not relevant. It considers a parabolic initial value
problem rather than the hyperbolic boundary value problem which is of interest here. The
assymptotic result (two solutions that become the same) says that when a blob is
spread over a domain that is large compared to its initial extend, the solution becomes
independent of the details of the initial conditions. This is simply something that is
typical of diffusive systems.

3.1.2 “Origin of errors”

In the reply to Reviewer #1 (AC C412) the line of reasoning on pg. C413 (“In our view
... travel with the wave celerity.”) bothered me. First of all, I don’t think a water level
boundary condition will give such significant numerical errors (see above) and the land-
ward condition is believed to be effectively non-reflective.
Furthermore I find statements like “From these images it can be concluded that er-
rors/deviations from Eq.(22) enter the domain from the boundaries and travel with the
wave celerity.” non-balanced as they implictly suggest the validity of Eq. (22) and hence
that deviations from it have a numerical origin. Please show this by elaborating on the
adopted numerical scheme! As far as I can see, Eq. (22) may simply not hold and this
"inequality" may equally be travelling into the domain.
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3.1.3 Counterexample

In reply to the counterexample I pointed out (Sect. 4.2.3 in my comments) the authors
state

However, we will further discuss the counterexample presented and we will show that it
does not agree with the numerical solution of Eqs. (1) and (2), including scenarios with small
amplitude-to-depth ratios.

So? This is then a reason to further ignore this counterexample? This really
bothered me!
First of all, one does expect this difference since the counterexample uses a linear
bottom friction law while the authors use a non-linear formulation. The latter case will
generate a significant contributions to the M6 constituent that modifies the M2 solution
that I put forward, and this will render E = ζtux − ζxut time dependent. Likewise using
a higher order analytical approximation in the linear friction case will also give a time
varying E.
Second, while the authors regret the lack of exact solution for Eqs. (1) and (2) there
is a very fruitful approach that can yield well-defined approximate solutions provided
that the bottom friction is linear in velocity. This has been adopted widely. In fact
the authors cite this type of work in the Introduction, and have used it themselves
(()Savenije 2006; ()Toffolon & Savenije 2011). Typically, assuming that α is small one
can obtain approximate solutions as a series expansion, e.g.

ζ = ζ0 + αζ1 + α2ζ2 ,

and likewise for u. For the counterexample this series is truncated after the first term.
Expressions for ζ0 etc. can either be found analytically or accurately solved for by
numerical means.
My point is that this allows a study of Eq. (22) within the context of semi-analytical
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solutions. The problem is that this approach indicates that Eq. (22) does not hold.
The authors should appreciate this as a problem for their claim and study it rather than
ignore it.

3.1.4 Presented evidence

I now appreciate the origin of Eq. (26) in the manuscript. However whether one looks
at this equation, correlation (which I still don’t find relevant) or things like TRC the cen-
tral question is: does Eq. (22) hold? An equation is something like A = B hence
A − B = 0. The most direct way to study this is to consider the ErrorImages that the
authors included in their answer to Reviewer #1. This shows spatio-temporal behaviour
of f2 which measures the deviation from the average of E in units of the standard de-
viation of E.
These ErrorImages show values of f2 that seem to vary greatly, e.g. the "most linear"
cases 21, 24, 65, 74 and 98 show that E varies between roughly -10 and +10 while
it should be “small”. But what do the authors mean by “small”? When is this varia-
tion “small enough” and for which purpose(s)? And why? An in-depth well-motivated
discussion on this issue is totally absent. To summarize: the authors claim an (approx-
imate) validity of Eq. (22) that I simply do not see in the ErrorImages.

3.2 Reply to the "cubature method"

Here I reply point-by-point, citing the authors’ answers first.

By only using the mass balance, the ’cubature method’ will show larger errors farther
away from the location where the discharge is measured, since it will use numerical approxi-
mation of the ’exact’ mass balance.
With all due respect, but this is nonsense. The discharge follows simply from integrat-
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ing the (essentially tabulated) function Bζt, which can done by any desired method
(e.g. trapezoidal rule). Such procedures do not show large errors. There is of course
an error related to the discretisation of Bζt but this error is present in the authors’
approach as well.

The measurement of the discharge will contain measurement error
True, but for the tidally dominated part of an estuary this error in river discharge is not
really important

Many estuaries in the world are ungauged
If “ungauged” means that water levels are not measured, I think this is a problem for
the authors’ method as well.

Finally, the applications in Sect. 6 also include the mass balance Eq. (1). Ad- dition-
ally, they include the momentum balance Eq. (2) and the additional open boundary Eq. (22).
Yes, and the authors are forced to point out three problems that arise because (1) is
used - no such issues for cubature. Besides, the general validity of Eq. (22) is not
substantiated which is also a problem.

4 Part 2: SC C558 and SC C588

I thank the authors for SC C558 as this finally gives a case that is more fruitful to
analysize (horizontal bottom) than most of the numerical cases they sent earlier. This
was a wise move. I also thank the authors for SC C588 which fullfilled most of my
requests.
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4.1 Adopted measure of accuracy

The authors use time averaged values of ζxut and ζtux for their Figs. 2. This is not
a wise choice. I think a more fair (and more commonly used) measure would be I/J ,
where

I =
√

(ζxut − ζtux)2 , J = min
(√

(ζxut)2,
√

(ζtux)2
)
.

I think this will yield far higher deviations for, say, the strongly convergent cases which
really show O(1) temporal differences (e.g. variant 1, Figs. 3-5) which do not show up
in Fig. 2.

4.2 Approximate validity of Eq. (22)

From variant 0 I noticed that the degree to which Eq. (22) became more or less satis-
fied actually concided with the dominant M2 water level and velocity becoming nearly
constant. This can be understood from the linearised shallow water equation with the
standard Lorentz bottom friction, i.e.

ut + gζx +W = 0 , (1)

Bζt + [Bh0u]x = 0 . (2)

Here
W =

8
3π
cdUu ,

where U is the M2 velocity amplitude and cd = g/(K2h
1/3
0 ). Now in general U depends

on x so the solution of this system requires iteration. However if we seek propagating
constant amplitude solution, i.e.

u = U exp[i(kx− ωt− ϕ)] , ζ = A exp[i(kx− ωt)] ,
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we find

ω2 = gh0k
2 , (3)

U =
3π
8
ωh0

kb

K2h
1/3
0

g
, (4)

A = h0
U√
gh0

√
1 +

1
(kb)2

, (5)

tanϕ =
1
kb

. (6)

Here it has been used that the width variation for variant 0 is very close to exponential.
Basically what happens is that the fact that the linear friction coefficient depends on U
allows for a “tuning” between convergence and bottom friction. For a constant linear
friction coefficient this tuning is not possible and b and the friction coefficient then need
a very special relation. So in this latter case (which includes the counterexample) one
indeed cannot expect Eq. (22) to hold.
For variant 0, this balance gives U = 0.52 m/s, A = 0.64 m and ϕ = 35 degrees. The
amplitudes are only slightly lower than the numerical results while the phase difference
agrees well. The results of Eqs. (3)-(6) are shown in the Table below.

Variant # b (km) K (m1/3/s) kb xbvar (km) U (m/s) A (m) ϕ (degree)
0 100 45 1.4135 1381.6 0.51893 0.64179 35.278
1 25 45 0.35337 345.39 2.0757 6.29 70.538
2 300 45 4.2405 4144.7 0.17298 0.17943 13.269
3 100 20 1.4135 1381.6 0.1025 0.12677 35.278
4 100 80 1.4135 1381.6 1.6401 2.0284 35.278
5 100 45 1.4135 1381.6 0.51893 0.64179 35.278
6 25 45 0.35337 114.88 2.0757 6.29 70.538
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The parameter xbvar is the distance over which |dB/dx| has become smaller by a factor
two as compared to x = 0. From this we see that variants 0 and 2 − 5 are essentially
cases of exponential width variation within the domain of interest.
Variants 2− 5 seem in reasonable agreement with the Table. Note for instance variant
4 where Fig. 7 is in good agreement with U = 1.6 m/s and A = 2.0 m. A similar
agreement holds for variant 3. Hence for these cases it is observed that an approximate
balance between convergence and bottom friction occurs.
Strongly convergent cases have xbvar < 500 km so that they become straight channels
at relatively low x values; they become therefore damped well within the domain, with
velocity and water level amplitude falling far below the equilibrium values listed above.
Note that the water level amplitude (6 m, i.e. α = 0.6) actually indicates that the
linearised equations are not a good approximation anymore for strong convergence.
Due to the asymptotic constant width adopted all tidal waves will eventually become
damped (albeit beyond x = 500 km for cases 0 and 2−5). For such damped situations,
Eq. (22) will not be applicable as it only holds for the near constant-amplitude phase.
From the above it is seen that the “adaptation length” near the seaward boundary is
not really a boundary effect as such - let alone a numerical issue. It is simply the
distance over which the wave travels before the approximate balance between friction
and convergence sets in - if it sets in.
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