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An example of tidal wave propagation in an open channel

An additional reply is useful to address the issues raised by the reviewers (and in
particular Referee #2), which we warmly appreciated because they urged us to clar-
ify several elements of our analysis that were not sufficiently clear. Indeed, we are
not currently able to formally demonstrate the validity of the Open Boundary Equation
(OBE). However, examining in more detail the tidal wave propagation in a specific case
is useful to understand the process leading to the establishment of OBE.

Here we report a more detailed example considering an estuary characterized by
length L = 500 km (with a transmissive boundary condition landward mimicking an
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ideal open boundary), tidal amplitude at the mouth η = 2 m (purely sinusoidal M2 forc-
ing), Strickler coefficient K = 45 m1/3s−1, width convergence length b = 100 km (for
exponential variation), horizontal bottom with average depth h0 = 10 m, numerical grid
step ∆x = 500 m. Figure 1 shows the geometry of the channel.

The tendency towards the OBE validity is illustrated in Figure 2 for the three equations
considered in the manuscript (eqs. 22, 26 and 27). The correlation coefficient tends to
unity in a relatively rapid way, while the ratios between the right and left hand sides of
the equations follow later, but eventually reach unity as well. The asymptotic tendency
suggests that an ‘adaptation length’ is required to adapt the information imposed by the
boundary condition to the OBE (see also the previous reply to Referee #2). Estimating
such a length is an open problem, and a work in progress, whose solution might shed
a new light on a classical problem. It is clear, however, that there is a process acting
towards the establishment of the OBE (see also the hundreds of other numerical runs
attached to previous replies by Dirk Diederen), so it is worth examining the features of
the tidal wave in different steps of its propagation.

OBE as a tendency towards a progressive wave

Figures 3–8 report the temporal cycle of the tidal wave (water level ζ = h − h0 and
velocity u), of their spatial and temporal derivatives, and of the OBE terms (left and
right hand sides of equation 22 in the manuscript), in 6 positions along the estuary
(see dots in figure 1). Figure 3 shows what happens at the estuary mouth (where the
boundary condition is imposed): the OBE is already approximately valid. The temporal
variation of the two sides of the equation (ht ux or ζt ux and ut hx or ut ζx, see fourth
sub-plot, note that derivatives of h are identical to derivatives of ζ for this case with
horizontal bed) is very similar.

In the evaluation of the results, it is also important to consider that numerically eval-
uated derivatives are affected by errors that are larger than those of the variables,
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and that the comparison of products between temporal and spatial derivatives is
not straightforward for a two-step method (predictor-corrector) as the MacCormack
scheme utilized in this work.

The tendency towards the validity of the OBE becomes even more evident at larger
distances (figures 4-8). A small bias (likely due to the numerical evaluation of deriva-
tives mentioned above) remains between the two sides of OBE (fourth sub-plots), but it
becomes less important as far as a steep front tends to form, whereby local derivatives
become larger. The formation of the steep front, which can eventually evolve in a tidal
bore, and the occurrence of another (smaller) peak in the derivatives in the tail of the
wave, tend to synchronize the signals for ζ and u and drive the tidal wave propagation
towards that of a progressive wave.

Fourier analysis and linearized solution

Referee #2 proposes the linearized wave as a counter-example from which it is implied
that OBE is valid only for the case of a phase lag φ = 0. As already discussed in a
previous reply, we respectfully disagree with such a counter-example.

Having shown that the OBE tends to be satisfied (at least approximately, if not in a strict
formal sense) in the previous figures, we analyze the behaviour of the Fourier series
truncated at the first harmonic in figure 9. The first (dominant) harmonic is the one that
is usually reproduced by linearized solutions and is typically a good approximation if
the amplitude-to-depth ratio is not too large (see, e.g., Toffolon and Savenije, 2011).
Figure 9 is interesting because it shows that the ‘synchronization’ discussed above
does not change the phase lag of the first tidal component (see the temporal distance
between the two circles), which remains approximately the same in all the six examined
locations.

The analysis of figure 9 suggests that it is not the phase lag of the linearized solution
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that is important and, consequently, we do not expect that φ→ 0 as implied by Referee
#2. Conversely, it is the ‘shape’ of the wave that allows for the OBE to be satisfied. This
remark obviously implies that the OBE is not a ‘linear’ feature of tidal wave propagation
and that any attempt to study it by means of a linearized solution cannot be successful.

The Fourier analysis of the test case was developed for the whole estuary, as well.
Figure 10 shows the amplitudes and phases of the first three modes. We note that,
after an adjustment length, the amplitudes tend to become constant, reaching a sort
of equilibrium state until the effect of the (not exactly transmissive) landward boundary
condition is felt. Figure 11 shows the celerities of the first three modes of the tidal
waves of ζ (or depth h) and u: also in this case, after a suitable distance all the modes
tend to transfer the signal of ζ and u with the same celerity, and this wave speed tends
to the well-known

√
g h that is characteristic of frictionless prismatic channels. Figure

11c shows that the phase lag u-ζ of the first harmonic remains approximately constant
(around 38o), confirming the qualitative observation of figure 9.

The progressive character explained by the Lagreangean interpretation

With the aim of explaining where the progressive character arises, in the following
analysis we refer to the description of tidal wave propagation in the Lagrangean frame-
work proposed by Savenije (2012, freely available at www.salinityandtides.com). This
analysis also reinforces the relevance of section 5.2 (Lagrangean analysis) within the
manuscript.

Some new variables have to be introduced with respect to the manuscript: the La-
grangean velocity V , the actual tidal wave celerity c̃, the amplification of the tidal ve-
locity amplitude δu = (1/u) ∂u/∂x. It is further assumed that the Lagrangean function
describing the wave can be approached by a sinus; note that the resulting Eulerian
wave is not sinusoidal.
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By using the relationship (Savenije, 2012)

∂u

∂x
= −1

c̃

dV

dt
+ δuV , (1)

the Eulerian water balance

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
− hu

b
= 0 (2)

can be written in Lagrangean terms as

dh

dt
=
h

c̃

dV

dt
+ hV β′ (3)

where
β′ =

1
b
− δu (4)

is related to β in the manuscript, but accounts also for the Lagrangean damping of
velocity.

Recalling that dx = V dt in the Lagrangean framework, it is possible to rewrite (3) as

dh

h
=

1
c̃
dV + β′dx , (5)

and integrate it from low water slack (LWS) to a generic state (with velocity V and
distance S from the starting point). This leads to

h

hLWS
= exp(β′S) exp

(
V

c̃

)
, (6)

or
h′p

hLWS
= exp

(
V

c̃

)
' 1 +

V

c̃
, (7)
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where
h′p = h exp(−β′ S) . (8)

Note that h′p is the transformed water depth that reflects the Lagrangean deformation
due to convergence and tidal damping, and is not exactly the same quantity as hp in
the manuscript. Moreover, the latter approximate equality of equation (7) relies on the
fact that the Froude number V/c̃ is typically small in tidal flows. Therefore, it directly
follows from equation (7) that

zp = h′p − hLWS '
hLWS

c̃
V , (9)

where zp is the variation of the transformed Lagrangean water level referred to the
water level at LWS.

If we consider the ellipses for water level and velocity against the distance S travelled
by an actual water particle (Lagrangean approach, as in Figure 7 of the manuscript),
equation (9) implies that the tidal ellipse of the transformed Lagrangean water level (zp)
is completely in phase with (and proportional to) the ellipse of the Lagrangean velocity
V .

We can also explicitly analyze an example using the test case discussed above. Figure
12 shows the Eulerian variables and their Lagrangean counterparts (water level Z and
velocity V ) reconstructed starting from ζLWS = hLWS − h0 in x = 100 km. Figure 13
shows the ellipses: focusing on the third plot, we see that the actual water level Z is
inclined (hence not in phase with velocity V ), while the transformed variable zp is put
in phase with V by accounting for the Lagrangean rise (hLWS exp(β′ S) − h0). Finally,
figure 14 directly shows that the transformed variable zp is highly linearly correlated with
the velocity, and the proportionality constant is indeed given by hLWS/c̃ as predicted
by equation (9). This further corroborates that, in the Lagrangean framework, the wave
travels as a progressive wave.
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Interestingly, the fact that the transformed Lagrangean wave travels as a progressive
wave is caused essentially by the water balance equation, which explains why it also
works for estuaries with friction. The only influence from the momentum equation is
through the wave celerity and the assumed sinusoidal shape, which might explain the
small deviations noted in Figure 14.

The open boundary approximation

As a final consideration, it is important to remind that the open boundary is an ide-
alization for the infinite channel case, which does not exist in reality. However, such
a conceptual scheme can be satisfactorily used in many cases of long estuaries, in
particular if there are no elements that can produce strong reflections of the wave, or if
there is convergence that dampens out the reflected wave.
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Fig. 1. Longitudinal profiles of width and bottom. Dots indicates the locations where the tem-
poral behaviour is shown in figures 3-8.
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Fig. 2. Longitudinal variation of the correlation coefficient (first row) and of the ratio between
right hand side and left hand side of equations 22, 26 and 27 in the manuscript.
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Fig. 3. Temporal variation of $\zeta$ and $u$ (first plot), $\zeta_t$ and $u_t$ (second plot),
$\zeta_x$ and $u_x$ (third plot), and $\zeta_t \, u_x$ and $u_t \, \zeta_x$ (fourth plot) in
$x=0$ km.
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Fig. 4. Temporal variation of $\zeta$ and $u$ (first plot), $\zeta_t$ and $u_t$ (second plot),
$\zeta_x$ and $u_x$ (third plot), and $\zeta_t \, u_x$ and $u_t \, \zeta_x$ (fourth plot) in
$x=41.5$ km.
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Fig. 5. Temporal variation of $\zeta$ and $u$ (first plot), $\zeta_t$ and $u_t$ (second plot),
$\zeta_x$ and $u_x$ (third plot), and $\zeta_t \, u_x$ and $u_t \, \zeta_x$ (fourth plot) in
$x=83$ km.

C569



Fig. 6. Temporal variation of $\zeta$ and $u$ (first plot), $\zeta_t$ and $u_t$ (second plot),
$\zeta_x$ and $u_x$ (third plot), and $\zeta_t \, u_x$ and $u_t \, \zeta_x$ (fourth plot) in
$x=125$ km.

C570

Fig. 7. Temporal variation of $\zeta$ and $u$ (first plot), $\zeta_t$ and $u_t$ (second plot),
$\zeta_x$ and $u_x$ (third plot), and $\zeta_t \, u_x$ and $u_t \, \zeta_x$ (fourth plot) in
$x=166.5$ km.
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Fig. 8. Temporal variation of $\zeta$ and $u$ (first plot), $\zeta_t$ and $u_t$ (second plot),
$\zeta_x$ and $u_x$ (third plot), and $\zeta_t \, u_x$ and $u_t \, \zeta_x$ (fourth plot) in
$x=208$ km.
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Fig. 9. Tidal waves and Fourier series truncated at the first harmonic. Circles indicate the
maxima of the dominant tidal component, from which it is possible to detect the phase lag
$u$-$\zeta$.
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Fig. 10. Fourier analysis of tidal wave. From top to bottom: constant term, amplitudes, phases
of first three modes. Left column: water level $\zeta$; right column: velocity $u$.
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Fig. 11. Wave celerity for water level $\zeta$, for velocity $u$, phase lag $u$-$\zeta$. Colors
refer to the first three modes; black dashed line to wave celerity in a frictionless prismatic
channel.
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Fig. 12. Lagrangean water level $Z$ and velocity $V$ compared with Eulerian values $\zeta$
and $u$ in $x=100$ km.
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Fig. 13. Lagrangean displacement $S$ in time (first plot) and ellipses $V$-$S$ (second plot)
and $Z$-$S$ (third plot).
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Fig. 14. Lagrangean water level against velocity $V$: $Z$ is the actual value,
$z_p+\zeta_{LWS}$ is the transformed water level. Black dashed lines: equation (9).
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