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Some qualitative considerations on the effect of the boundary condition and on
the tendency towards the proposed equation

This reply aims at integrating the previous response to Referees by providing an anal-
ogy to a simpler problem (advection-diffusion of a tracer) in which the forcing imposed
by the boundary condition is progressively altered by the governing differential equation
and eventually tends to a well-known solution.

Nothing is novel in the following considerations, but they might support the interpreta-
tion of the proposed ‘open boundary equation’ in the correct conceptual framework.

On the effect of the seaward boundary condition
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In general, the boundary conditions determine the actual solution of a differential prob-
lem. In the case of the Saint Venant equations, the forcing imposed at the seaward
boundary of the computational domain transfers information from that boundary to the
interior. In particular, the tidal wave originated by the water level oscillations at the sea
propagates along the channel and modifies its shape according to the governing differ-
ential equations. Hence, the wave functions of flow depth & (or water level) and velocity
u are the result of the interaction between the information coming from the boundary
condition and the modifications actually produced by the mass and momentum bal-
ances.

If the water level is imposed at = = 0, the wave function h(x,t) will be initially affected
by the boundary condition, but after some time (and space) h will be modified and the
wave distorted, e.g. with the generation of overtides due to the non-linear terms in the
governing equations, the damping of high-frequency variations, or the steepening of
the front. The velocity is obtained using the information coming from #, so the shape
of wave function u(z, t) is initially affected by the boundary condition as well.

After some time and space (which we could term ‘adaptation’ time and length, as usu-
ally done in other contexts), the direct influence of the boundary condition on the wave’s
shape disappears and the wave will attain a sort of ‘dynamic equilibrium’ shape that is
primarily determined by the governing equations. This is the point, in our view, where
the ‘open boundary condition’ becomes valid.

Analogy with the advection-diffusion process

An analogy with the advection-diffusion equation (ADE) can help in understanding the
process. Let us consider a simple one-dimensional, constant coefficient ADE:
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where f is the concentration of a passive tracer, u is the flow velocity, and D the
diffusion coefficient.

The one-dimensional solution for a instantaneous point source of a mass M is
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If the same mass is initially injected in a reach of the channel having length L, then
the solution is
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where fy = M/Ly is the initial concentration of the tracer, which is distributed as a
square wave (f = fp is constant along Lg, and null elsewhere).

Figure 1 in this reply shows the spatial distribution of the concentration f(z) at different
times, as originated by the two initial conditions (the Dirac function for the point source,
and the square wave), for M = 1,uw =1, D = 0.1, and Ly = 2 (in dimensionless terms).
It is clear that the initial difference between the two solutions (2) and (3) vanishes after
some time, eventually leading to the same Gaussian shape.

A similar result can be obtained using a square wave of duration Ty = Ly/u as bound-
ary condition at z = 0 (instead of as an initial condition as in the previous case), for
which the solution is only slightly different from equation (3). Figure 2 shows the tem-
poral behaviour f(t) in different positions.

Conclusions

Extending the qualitative behaviour of the examined case to the hydrodynamic equa-
tions, we argue that the tidal wave similarly tends to an asymptotic condition, in which
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the propagation of the h and u signals will adapt to a more general equation,
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that we termed ‘open boundary equation’, in an analogous way as the distribution of a
tracer tends to become normally (Gaussian) distributed. For the tidal wave the shape
is not always the same (there is not a ‘normal’ tidal wave), of course, but the celerities
of the propagation of 4 and « become intrinsically correlated if there is no reflection
from a landward boundary, as in the case of an infinite channel.
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Fig. 1. Spatial distribution at different times.
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Fig. 2. Temporal variation in different positions.
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