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We'd like to thank Anonymous Referee 2 for the review. First we give a summary of the
reply, than we answer point-by-point.
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Summary

We have tried to formulate our ‘claim’ for the existence of an additional equation (22) as
careful as possible. In the article we indicate that the numerical analysis of convergent
and frictional estuaries by definition has (numerical) errors, so that it cannot be used
as conclusive evidence (page 934, line 10). The only solution that can be used as
a full reference test is an exact, analytical solution of the ‘Saint-Venant’ equations,
which does not (yet) exist and may not exist for some time to come or may never exist.
However, we will further discuss the counterexample presented and we will show that it
does not agree with the numerical solution of Egs. (1) and (2), including scenarios with
small amplitude-to-depth ratios. We will further argue that the Lagrangean phase lag
analysis is an addition to existing methods. Finally, we will argue that the application
by Gosh can not be compared to the applications in Sect. 6.
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4 Major objections
4.1 The analysis regarding Egs. (26) and (27)

‘I am completely at a loss as to why to use/present/discuss Eqgs. (26) and (27). The
authors want to check the validity of Eq. (22) and this can be done easily (at least in
principle) directly (as they attempt with Fig. 4). Why they instead want to consider two
very nonlinear equations completely escapes me’

In order to understand why checking the validity of Egs. (26) is equally direct as check-
ing Eq. (22), we rewrite the (forced) governing equations (1) and (2) as:

hytty + uhgug + hu? — Buhug, = 0,

o + utieCe 4+ 9¢2 + W = 0.

These two equations can be combined as:

(Gruz) + (huf — Buhug) = (uile) + (uugZy + gG3 + W),
since hy = ¢ and (; = hy + Z.

Now it can be observed that, with the forcing of Egs. (1) and (2), if Eq. (22) applies so
does Eq. (26) or vice versa, if Eq. (26) applies so does Eq. (22). The reason to show a
validity check of Eqg. (26) in Fig. 2 is that it holds the (relatively small) terms containing
friction and convergence of width and depth. From Fig. 2 it can be observed that none
of these terms can be neglected (see also the reply to Referee 1), so that it appears
that Eq. (26) equates exactly (at this location in this scenario), and therefore also Eq.
(22) equates exactly.

The same principle applies to Eq. (27). Time series of the ‘Tidal Rating Curve’ (TRC),
which follows from Eq. (27) (as it is an ordinary differential equation in time), are
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available in the supplementary material in the reply to Referee 1.

‘The agreement shown in Fig. 2 does not impress me in view of the large scatter in
Fig. 4 (see below), that is: Fig. 2 may simply refer to a case for which (22) happens to
hold to some extend.

To remove the impression that Fig. 2 only shows good agreement for a single case,
in the supplementary material we show time series of evaluations of Eqg. (26) for 100
scenarios, within the parameter range indicated in the article.

‘The discussion of the Pearson correlation coefficient is not relevant either: one wants
to check an exact equality, say "A = B", not whether A and B correlate. Obviously A =
sin(t) and B = 0.001 sin(t) correlate perfectly but they are clearly unequal.

It is a fair point that the linear correlation may correlate a left hand side and a right hand
side which differ by a constant factor as y = axz. However, this problem is avoided by
using the correlation analysis (Fig. 3) in combination with the parity analysis (Fig. 4),
where the left hand side is directly plotted against the right and where both sides are
scaled by the same scaling factor Fi.. From Fig. 4 it can be observed that the points
(closely) lineup on y = z, so that a = 1.
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4.2 The validity of Eq. (22)
4.2.1 Problems with the presented evidence for Eq. (22)

‘Suggesting that the huge scatter is due to numerical errors does not mean that Eq.
(22) holds for those cases and does not release the authors from the responsibility to
demonstrate the validity of Eq. (22) explicitly.

For detailed analysis, we have investigated time series (like in Fig. 2, see supplemen-
tary material), since this gives a better view on the behavior of the equations. Fig. 4 is
intended as a summary, since the results of 100 scenarios can be plotted in one figure.
However, to show where the scatter in Fig. 4 comes from, we have added parity plots
of Eq. (22) for 100 scenarios, at different locations in the estuaries. Spatial correlation
overviews (like Fig. 3) can be found in the “TRC-figures’ in the supplementary material
of the reply to Referee 1, where the same scenarios were analyzed.
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4.2.2 Examples discussed in Appendix A

‘Regarding the examples discussed in the Appendix A | point out that (A1,2) actually
refer to solutions which are constant on characteristics ¢(x,t) = const. In that case
Eqg. (22) always holds and in fact, | think this is the only case in which it is true. | think
that Eq. (22) is merely a mathematical reformulation of the existence of invariants for a
specific case rather than a physics based law with general validity. | don‘t think it holds
for propagating tidal waves that have a spatial variation of amplitude. If the authors
think otherwise, they should come up with a clear example for which Eq. (22) holds
and discuss it in detail. | don‘t think that Eq. (22) holds for the case presented in A2 as
Egs. (A5) and (A6) actually constitute a counterexample (see below).

As correctly rephrased by Referee 1, ‘the Appendix shows that some approximate an-
alytical progressive wave solutions also satisfy eq(22)’. What the examples have in
common is that the dynamics of the argument ¢(z, t) are the same for the water level ¢
and the velocity . This has nothing to do with characteristics. In fact, example A2 in-
cludes varying amplitudes, which implies that the characteristics are not constant. The
assumption of proportionality is used here, which has limitations since it is a (rough)
approximation, especially if the phase lag is large. Therefore this analytical approxima-
tion is in the appendix.
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4.2.3 Counterexample

The counterexample derived by Referee 2 yields an additional term to Eq. (22) in the
right hand side:

2 2 .
Gty — wely = *MTMEZT‘Z exp(—2pz)sin(¢).

The additional term contains y, k,, ho, T, ¢, of which none varies in time. Therefore we
have added time series of (,u, — u.(, in the numerical approximations to the supple-
mentary material. It can be observed that the additional term in the numerical approxi-
mations (which may be the numerical error) shows a time varying behavior. Therefore
the numerical approximations do not agree with the analytical approximation which is
used as a counterexample. Overview images of the wavelike behavior of the ‘additional
term’ (yu, — u, in the numerical approximations can be found in the ‘Errorimages’ in
the supplementary material of the reply to Referee 1.

Finally, it is claimed that the counterexample applies for small amplitude-to-depth ratios.
Scenarios (21, 24, 65, 74 and 98) have an amplitude-to-depth ratio that is smaller than
2.5 percent.
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4.3 Phase difference between horizontal and vertical tide (Sects. 1 and 5)

‘| don't think that Lagriangian phase lags translate into Eulerian ones in a straightfor-
ward way, certainly not for non-linear tides. .. Here | would point out the fact that there
is a clear example where Eq. (22) will certainly not hold for an infinitely long channel
either, namely the case of a linear tidal wave in an exponentially converging channel
without friction.

The Eulerian and the Lagrangian perspective are fundamentally different. They com-
plement each other and cannot be seen as competitors. Therefore, the Lagrangean
phase lags do not necessarily have to be translated to Eulerian phase lags, or vice
versa.

However, when we consider tidal waves (which all are non-linear), the tidal excursion,
which is the distance water particles travel up and down the estuary in a tidal period, is
in the order of 5-20 km, whereas the tidal wave length is in the order of 100-1000 km.
Therefore, although the shape of Eulerian and the Lagrangean tidal curves will show
some (important) differences, the timing between water level and velocity will show
similar behavior. Analysis of the Lagrangean phase lag can be seen as an addition to
the analysis of the Eulerian phase lag, and may be compared.

Assignment of a ‘wave character’ may be seen as semantics. However, the timing be-
tween water level and velocity may be used in the discussion of the wave character,
and subsequently the wave character may be used to draw conclusions about the oc-
currence of reflection. Since Eq. (22) will not apply in the case of (classical) reflection,
it confirms the distinction between ‘apparent reflection’ and ‘classical reflection’, which
is already made in the literature.
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4.4 Applications (Sect. 6)

‘Explicitly, if water levels and the estuary‘'s geometry (i.e. B(x) and Z(x)) are known
there is a far more powerful method to obtain velocities, namely the cubature method
(e.g. ()Gosh 1998). .. From this discharge and width averaged velocity are readily
derived provided the discharge is known somewhere in the estuary (e.g. upstream
river discharge).

» The ‘cubature method’ may be used if the river discharge is known at some lo-
cation. This is not necessary for the applications in Sect. 6. Therefore it is not a
comparable application.

» By only using the mass balance, the ‘cubature method’ will show larger errors
farther away from the location where the discharge is measured, since it will use
numerical approximation of the ‘exact’ mass balance.

» The measurement of the discharge will contain measurement errors.

» Many estuaries in the world are ungauged.

Finally, the applications in Sect. 6 also include the mass balance Eqg. (1). Ad-
ditionally, they include the momentum balance Eqg. (2) and the additional open
boundary Eq. (22).
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5 Minor issues

» ‘Sect. 2.3: what are the boundary conditions that are used here, in particular at
x = oo ? If one assumes only a landward propagating wave, doesn't this already
imply that R2 = 0 as one does not want information to travel seaward? Please
clarify this.

For this analysis no landward boundary is required, since the domain is infinitely
long in landward direction, which implies that there is no landward boundary.
For a numerical simulation (which will not work because numerical simulations
require some friction) a perfect open boundary would be that Ry(L, t) is constant
of which Ry(L,t) = 0 is a single example.

+ ‘Sect. 3.2, lines 19-20 on pg 935: "The seaward boundary ... wave to adjust".
This sounds strange. Isn‘t the boundary condition at the seaward side something
that can be accurately imposed numerically? The solution near x = 0 may have
to adjust in time (depending on the initial condition) but not in space. | don‘t
expect any effect from the reflected wave here as | expect it to have decayed.
For the landward boundary this may indeed be different due to reflection.’

By imposing a boundary condition seaward, a part of the solution is imposed
at this location. As long as we do not have an exact solution, we can only
speculate about the right harmonic equation to use. We do know, however, that
a pure sinus is not a correct solution of the (non-linear) ‘Saint-Venant equations’.
Not only is the friction term determined by a quadratic velocity, there is also
the hydraulic radius in the denominator. So even if we linearize the quadratic
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velocity, then the friction term is still non-linear for a finite amplitude. A wrongly
imposed downstream boundary will therefore result in a compensation in other
variables (resulting in erroneous velocity and phase lag). It appears that the
error introduced by the (wrong) seaward boundary condition requires some
length to adjust in the upstream direction. What are precisely the mechanics of
adjustment, and the adjustment length required is not easily answered. Fact is
that a pure sinus imposed at the downstream boundary will become gradually
more deformed until a stable pattern between velocity, water level and phase
lag is achieved. We hypothesize that the new equation describes the stable
relationship between velocity and water level.

‘lines 3-7 on pg. 937, Fig. 5. | think cases B, C and D are only relevant for
transient behaviour, not for the long term (purely periodic) time behaviour. | think
the authors interest is with this latter case.

If the domain is infinitely long, there will always be cases like B, C and D in the
domain. Therefore they are relevant.

‘Sect. 5.2, Fig. 7. How is an "ideal estuary" defined for the present case
with nonlinear bottom friction? Is this in a time averaged sense? If so, this is
effectively the same as adopting Lorentz linearization of the friction. Please
clarify.

In our definition, the ‘ideal estuary’ is a theoretical case in which the phase lag
and amplitudes remain constant in space (see page 947 line 2-4). It was shown
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by Cai and Savenije (2013) that this is the asymptotic solution of tidal waves in
infinite estuaries. It has nothing to do with linearized friction.
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Please also note the supplement to this comment:
http://www.ocean-sci-discuss.net/12/C455/2015/0sd-12-C455-2015-supplement.zip

Interactive comment on Ocean Sci. Discuss., 12, 925, 2015.
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