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1 Summary

Using the special case of a 1D frictionless, straight infinitely long channel with horizon-
tal bed the authors derive an expression between the spatial and temporal derivatives
of water level and flow velocity (Eq. (22)). It is then claimed that this expression has a
more general validity beyond this special case. This is then used to study the nature
of phase lag between horizontal and vertical tide. Also, an application is proposed by
which a combination of the shallow water equations (1) and (2) are used in conjunction
with Eq. (22) to obtain cross-sectionally averaged velocities and roughness values.
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2 Judgement of the manuscript

I don’t think this manuscript is acceptable for publication at all. The authors claim
general validity of a relation (hereafter referred to as "Eq. (22)") but are not able to
back this in any convincing way. In fact, it is easy to find counterexamples (see below).
Additionally, the proposed application of Eq. (22) in Sect. 6 is cumbersome and inferior
to already existing methods. Finally, I don’t find that the issue on phase difference
between horizontal and vertical tide is treated in an adequate way.
The critical case about the validity of Eq. (22) is presented very poorly and does not
seem to have been contemplated sufficiently by the authors. This is - to me - of pivotal
importance to the novelty and quality of the work. I think the authors have a lot of work
to do at this point, more than is required for "acceptable after major revisions". Hence
I find this contribution not acceptable for publication so that I am compelled to reject it.
In the remainder I will point out in more detail which considerations have led me to
finding the manuscript not acceptable. These comments may also give a few ideas
about what the authors are expected to do for a manuscript that can be re-submitted.
I must confess, though, that I am very sceptical about the validity of Eq. (22) beyond
very specific cases.

3 Eulerian derivation of Eqs. (16) and (22)

It is useful to note that Eqs. (16) and (22) can be derived from an Eulerian approach
as well. Multiplying Eq. (1) by ux and (2) by hx, followed by substraction yields

htux − hxut = Whx − βuhhx + gζxhx − hu2
x

= Whx − βuhhx − h
(
u2

x − gζx
hx

h

)
. (A)
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If friction is zero and the channel is straight only the term is square brackets is nonzero.
Assuming a horizontal bed then yields

htux − hxut = h(u+ 2
√
gh)x(u− 2

√
gh)x ,

which is indeed zero for constant Riemann invariants, that is Eq. 16 holds.
This is the point up to which I agree with the authors. I think Eq. (A) can be used to
identify when and why Eq. (22) is not obeyed.

4 Major objections

4.1 The analysis regarding Eqs. (26) and (27)

I am completely at a loss as to why to use/present/discuss Eqs. (26) and (27). The
authors want to check the validity of Eq. (22) and this can be done easily (at least
in principle) directly (as they attempt with Fig. 4). Why they instead want to consider
two very nonlinear equations completely escapes me. As far as I can see most of the
part between Eq. (25) up to (28) is redundant for this reason. The agreement shown
in Fig. 2 does not impress me in view of the large scatter in Fig. 4 (see below), that
is: Fig. 2 may simply refer to a case for which (22) happens to hold to some extend.
The discussion of the Pearson correlation coefficient is not relevant either: one wants
to check an exact equality, say "A = B", not whether A and B correlate. Obviously
A = sin(t) and B = 0.001 sin(t) correlate perfectly but they are clearly unequal.
For completeness: while I don’t understand why Eq. (26) and (27) are considered, it is
inconsistent that the authors only elaborate on Eq. (26).
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4.2 The validity of Eq. (22)

4.2.1 Problems with the presented evidence for Eq. (22)

In Sect. 3.2 the authors claim to present numerical support for the validity of Eq. (22).
This is essentially shown in Fig. 4. I cite the author’s main conclusion here (last part
of Sect. 3.2):

"Small values of Eq. (22) demonstrate considerable scatter, which may be explained by
numerical errors, which are relatively large in this range. Large values give an almost perfect
agreement."

This is, as far as I can see, the closest the authors get to substantiating the va-
lidity of Eq. (22). Sorry, but this is by far not acceptable to even remotely claim that
Eq. (22) has more general validity than the particular case discussed in Sect. 2.3. It is
clear that only a small minority of the cases shown in Fig. 4 match the red line. It is not
even clear which kind of cases do show good agreement with Eq. (22). Suggesting
that the huge scatter is due to numerical errors does not mean that Eq. (22) holds for
those cases and does not release the authors from the responsibility to demonstrate
the validity of Eq. (22) explicitly.
Besides, numerical solution of Eqs. (1) and (2) is standard stuff and the parameter
ranges mentioned in Tabel 1 don’t look particularly weird to me. So the authors simply
have to make sure that (1) and (2) are solved accurately for whatever case they
consider. Period.
Additionally, the authors should discuss in detail which kind of cases do agree well with
Eq. (22) and which don’t and why. These are things that readers want to know. Also
the authors should quantify the relative difference between the two terms in Eq. (22)
for various cases. That is: be more precise about how small/large deviations from Eq.
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(22) can be. Perhaps Eq. (A) above may be helpful here.

4.2.2 Examples discussed in Appendix A

Regarding the examples discussed in the Appendix A I point out that (A1,2) actually
refer to solutions which are constant on characteristics ϕ(x, t) =const. In that case Eq.
(22) always holds and in fact, I think this is the only case in which it is true. I think
that Eq. (22) is merely a mathematical reformulation of the existence of invariants for a
specific case rather than a physics based law with general validity. I don’t think it holds
for propagating tidal waves that have a spatial variation of amplitude. If the authors
think otherwise, they should come up with a clear example for which Eq. (22) holds
and discuss it in detail.
I don’t think that Eq. (22) holds for the case presented in A2 as Eqs. (A5) and (A6)
actually constitute a counterexample (see below).

4.2.3 Counterexample

To further illustrate my doubt regarding the validity of Eq. (22) I mention an elementary
counterexample for which Eq. (22) is not valid. Actually, this counterexample is of the
form discussed in Appendix A2 and obeys Eq. (A12). It is the case of linear tide (i.e.
η � h0) in an infinitely long straight channel with horizontal bottom, subject to linear
friction (i.e. W = ru/h0). The latter has been used to obtain many of the results that
the authors cite in the Introduction. The solutions to ζ and u read

ζ(x, t) = η exp(−µx) cos(kx− ωt) ,

u(x, t) = α

√
gh0 exp(−µx) cos(kx− ωt− ϕ) ,
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where µ, k and ϕ are all related to the dimensionless friction parameter r/(ωh0). Eval-
uating ζtux − ζxut then gives

ζtux − ζxut = −4π2µ

k

η2

h0T 2
exp(−2µx) sinϕ ,

where k = ω/
√
gh0. This quantity is in general nonzero. It is zero only if r = 0,

which coincides with both µ and ϕ vanishing as well. The solution then is of the form
discussed in Appendix A1.
This counterexample points to an error in Appendix A2. Indeed, for the above example
Eq. (A11) reduces to

tan(kx− ωt) = tan(kx− ωt− ϕ) ,

which is clearly not true unless ϕ = 0. Another counterexample to Eq. (22) is the case
of a linear tidal wave in a frictionless exponentially converging channel with a horizontal
bottom.
I think it is very problematic for the validity of Eq. (22) if such elementary analytical
cases do not obey it.

4.3 Phase difference between horizontal and vertical tide (Sects. 1 and 5)

The analysis in 5.2 raises questions. Why do the authors consider a Lagrangian anal-
ysis while the phase lag issue is posed from an Eulerian viewpoint? I don’t think that
Lagriangian phase lags translate into Eulerian ones in a straightforward way, certainly
not for non-linear tides. So the explicit link between the two escapes me. I think the
authors should clarify this relation thoroughly.
The analysis in Sect. 5.3 assumes that Eq. (22) is generally valid, which I think is not
correct. Here I would point out the fact that there is a clear example where Eq. (22)
will certainly not hold for an infinitely long channel either, namely the case of a linear
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tidal wave in an exponentially converging channel without friction. In that case standing
wave behaviour (infinite celerity) occurs if 2kb < 1.

4.4 Applications (Sect. 6)

Leaving aside that I do not think the validity of Eq. (22) is demonstrated at all, I do not
find the applications of too much practical use either. Explicitly, if water levels and the
estuary’s geometry (i.e. B(x) and Z(x)) are known there is a far more powerful method
to obtain velocities, namely the cubature method (e.g. ()Gosh 1998). This adopts mass
conservation (Eq. 1) which can be recast in the form

Bζt +Qx = 0 ,

where Q = Bhu is the instantanous discharge. From this discharge and width aver-
aged velocity are readily derived provided the discharge is known somewhere in the
estuary (e.g. upstream river discharge). This method is superior to the authors’ pro-
posal because

• it only uses mass conservation, which is an exact equation,

• Q(x, t) is thus easy to solve accurately by standard numerical methods,

• it does not suffer from the "issues" the authors list in lines 7-15 on pg 942,

• does not require Eq. (22) to be valid.

Likewise, having obtained u from cubature immediately allows for the determination of
the friction term W in (2). Only after obtaining W does on have to worry about the
precise friction law (Chezy, Strickler, linear) to obtain hydraulic roughness parameters.
Really, I don’t see any added value or practical use to what is presented in Sect. 6.
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5 Minor issues

Apart from the major objections I have pointed out above I also have some comments
that are of lesser importance:

• lines 8-29 on pg 928 (also Sect. 5). Is this phase lag between velocity and water
level really such a big issue? The literature that the authors cite should be suffi-
cient for any serious researcher to realize that phase angle not a correct indicator
of a standing wave. I think a standing wave is adequately characterized by the
simultaneous occurrence of local high and low waters throughout (a part of) an
estuary. That is: the celerity is infinite. I think horizontal and vertical tide then
have a 90 degree phase difference although I don’t think that it is formally proven.
The converse (90 degree phase difference) is inconclusive, as is demonstrated
by the cited Friedrichs & Aubrey (1994) paper.

• Sect. 2.3: what are the boundary conditions that are used here, in particular at
x = ∞? If one assumes only a landward propagating wave, doesn’t this already
imply that R2 = 0 as one does not want information to travel seaward? Please
clarify this.

• Sect. 3.2, lines 19-20 on pg 935: "The seaward boundary ... wave to adjust". This
sounds strange. Isn’t the boundary condition at the seaward side something that
can be accurately imposed numerically? The solution near x = 0 may have to
adjust in time (depending on the initial condition) but not in space. I don’t expect
any effect from the reflected wave here as I expect it to have decayed. For the
landward boundary this may indeed be different due to reflection.

• lines 11 and 13 on pg 936: "Small values", "Large values": inaccurate use of
words. I think the authors mean small or large values of ζxut/Fsc and ζtux/Fsc.
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• lines 3-7 on pg. 937, Fig. 5. I think cases B, C and D are only relevant for
transient behaviour, not for the long term (purely periodic) time behaviour. I think
the authors’ interest is with this latter case.

• Sect. 5.2, Fig. 7. How is an "ideal estuary" defined for the present case with non-
linear bottom friction? Is this in a time averaged sense? If so, this is effectively
the same as adopting Lorentz linearisation of the friction. Please clarify.

• derivation of Eq. (35) was not straightforward to me. Perhaps this could be done
in an Appendix.
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