
 
We thank the reviewer for the many useful comments. They have been incorporated into the revised 

draft, and we detail here how we have done so. 

 

1- In section 2.1, the authors states that entropy is due to Harmancioglu (1981). This is 

incorrect. Concept of entropy evolves with Carnot and Boltzman. The entropy in 

information sense (which is used by the authors) is due to Shannon. This entire section 

should be carefully re-written and placed in the proper context of authors who have 

actually developed the fundamental notion. This is corrected as follows: 

 

 

Shannon (1948) exploited the information theory to quantify the information loss in the 

transmission of a given message. The study was carried out in a communication channel and 

Shannon focused in physical and statistical constraints that limit the message transmission. 

Moreover, the measure does not addresses, in this way, the meaning of the message. In general, 

information entropy due to Shannon (1948) is a quota of uncertainty combined with a random 

variable. In the theory of communication and transmission of information Shannon (1948) had 

introduced a statistical concept of entropy. Therefore, entropy is the amount of information 

which are measured in bits and contained per average instance of a character in a stream of 

characters. Following Shannon (1948), Harmancioglu (1981) stated that entropy is a 

quantitative compute of the information content of a series of data since reduction of 

uncertainty, by making observations, equals the same amount of  gain  in information.  

 

2- 

This corrected as follows: 

 

The implementation of Entropy in dynamical model of tidal has been addressed in the study of  

Sannasiraj et al., (2004).  In this study  Entropy and  chaotic signals are used to enhance  tidal 

prediction accuracy beside to the genetic algorithm which was used for  the optimization of the 

local tidal model parameters.  

  

 

Therefore, Marghany (2001) and Marghany and van Genderen, (2014) implemented entropy to 

determine the degree of uncertainty of random oil spill footprint discrimination in SAR satellite 

data. In a definition adopted from information theory, Cloude and Pottier, (1996), entropy is 

the numerical expression of random objects footprint boundaries in SAR images. In using 

this concept, oil spill footprint can be measured indirectly based on the degree of 

the reduction of multiplicative speckle noises and uncertainty of look-alike effects. 

The main hypothesis is the oil spill footprint boundaries have larger entropy 

compared to surrounding environment. Hence, in order to quantitatively assess the 

cumulative effect of uncertainty in oil spill footprint,  entropy can be used as a metric for 

population diversity of oil spill footprint boundaries which are stored at each intersection of 

the column j and  row i of the various  slick areas. At the rear of Amorocho and Espildora, 

(1973) and Harmancioglu  (1981); Magrghany and van Genderen (2014), the uncertainty (C) 

associated with the oil spill pixel value of  xi for a random variable X  is then written as 



 

 

 

3- 

 
 

This is corrected by adding the suggested references in text as follows: 

 

Comprehending  Hwang and Masud (1979); Miettinen (1999);Deb (2001); Coello et al., (2002), the 

multi-objective optimization (MOP) has already been successfully adopted to solve uncertainty of 

object detection in SAR images  as shown in Marghany (2014a) and (2014b) studies. In general, MOP 

consists of n decision variable parameters, k objective functions and m constraints (Deb 2001). Multi-

objective Optimization (Deb 2001) aims at conducting optimization for a range of functions as follows: 

 

 

Following Deb (2001), Marghany (2014b), used entropy based MOEA E-MOEA for the optimization of  

oil spill  detection from SAR data.  In this regard, the entropy of oil spill footprint boundaries must be 

coded into a Genetic Algorithm syntax form i.e. the chromosome form. In this problem, the 

chromosome consists of a number of genes where every gene corresponds to a coefficient in the nth-

order surface fitting polynomial 

 

 

 

 

 

 

 



 

 

 

 

 

 

4- 
 

 
 
This is corrected by adding new section as follows: 

 

 

 

 

2.2.3. Non-dominated Sorting Genetic Algorithm NSGA-II 

 

 

This section presents a brief description of NSGA-II relevant to this study.  NSGA-II is the 

second version of the famous “Non-dominated Sorting Genetic Algorithm” based on the work 

of Prof. Kalyanmoy Deb for solving non-convex and non-smooth single and multi-objective 

optimization problems.  Its main features are: (i)  A sorting non-dominated procedure where all 

the individual are sorted according to the level of non-domination;  (ii) It implements elitism 

which stores all non-dominated solutions, and hence enhancing convergence properties; (iii) It 

adapts a suitable automatic mechanics based on the crowding distance in order to guarantee 

diversity and spread of solutions; and (iv) Constraints are implemented using a modified 

definition of dominance without the use of penalty functions. 

 

 

Perhaps, there is not exist one best solution in the case of multiple objectives. Therefore, there 

exists a set of solutions which are superior to rest of solutions in the search space when all 



objectives are considered but are inferior to other solutions in the space in one or more 

objectives. These solutions are known as Pareto-optimal solutions or nondominated solutions.  

 

 

 

 

The efficiency of NSGA lies in the way multiple objectives are reduced to dummy fitness 

function using nondominated sorting procedures. Consequently, NSGA can solve practically 

any number of objectives. In this regard, this algorithm can handle both minimization and 

maximization problems. 

 

 

In order to sort a population of size  N for  1( ),................, ( )NE Eβ β according to the level of 

non-domination, each solution m must be compared with every other solution in the population 

to find if it is dominated. This requires comparisons ( ( ))m NO E β for each solution, where is m 

is the number of  different pixels belong to oil spill, look-alikes, and sea roughness, and low 

wind zones.  

 

The initialized population N  of 1( ),................, ( )NE Eβ β  is sorted based on the level of non-

domination. Let S is each solution which must be compared to other every solution to determine 

the level of domination. In this regard, the fast sort algorithm was given by Deb et al., (2000) 

can be explored in oil spill automatic detection as follows: 

 

for each individual 1( )E β  in main population P do the following 

 

Initialize 
1( )ES β = Φ . This set Φ  would include all the individuals of ( )n NE β  which is being 

dominated by 1( )E β . 

 

Initialize 
1( ) 0En β = . This would be the number of individuals that dominate 1( )E β i.e. no 

individuals dominate 1( )E β  then 1( )E β  belongs to the first front; set rank for individual 1( )E β

to one i.e. 1( ) 1rankE β = . 

 

for each individual m in P 

 

if  1( )E β dominated m then 

. add m to the set Φ  i.e.  { }mΦ = Φ∪  

 

  *else if m dominates   1( )E β then 

. increment for domination counter for 1( )E β  i.e.  
1 1( ) ( ) 1E En nβ β= +  

Let the first front set 1F  and then update by adding  1( )E β to front  1 i.e. 1 1 1  { ( )}F F E β= ∪  

 

Initialize the front counter to one. i=1 

Then  iF ≠ Φ  

Let  Q ≠ Φ . The set for sorting the individuals for ( 1)thi + front 

for each individual 1( )E β  in front iF  



 

For every individuals m in 
1( )ES β (

1( )ES β is the set of individuals dominated by 1( )E β  ) 

.  
1 1( ) ( ) 1E En nβ β= − , decrement the domination count for individual m. 

.   if  
1( )En β =0    then none of the individuals in the subsequent fronts would dominate 

m. Hence set 1( ) 1rankE iβ = + . Update the set Q with individual m i.e. Q Q m= ∪ . 

-increment the front by one. 

-Now the set Q is the next front and hence iF Q= . 

 

 

2.2.3.1. Crowding Distance 

 

Following   Deb et al., (2000), the moment the non-dominated sort is achieved the crowding 

distance is designated. All the individuals in the population are assigned as crowding distance 

value since the individuals are selected based on rank and crowding distance. Crowding 

distance is assigned front wise and comparing the crowding distance between two individuals 

in different front is meaning less. The crowing distance is estimated as follows: 

 

 

• For each front iF , the number of individuals is represented by N. 

- Reset the distance jd to be zero for all the individuals of 1( )E β i.e. ( ) 0i jF d = ,where 

j corresponds to thj individual of  ( )jE β in front iF . 

- For every objective function f  

*Sort the ( )jE β in front iF based on objective f i.e. ( )jE β =sort ( , )iF f . 

                      *Assign infinite  distance to boundary values for each individual ( )jE β in iF i.e. 

 

                     
1

( )   and  ( )
nd dE Eβ β= ∞ = ∞  

 

*for K= 2 to (n-1)  

. 
max min

( )( 1). ( )( 1).
( ) ( )

K Kd d

q q

E K q E K q
E E

f f

β β
β β

+ − −
= +

−
 

. ( )
Kd

E β . q  is the value of thq objective function of the thK individual in ( )
Kd

E β  

 

The main concept behind the crowing distance is estimating the Euclidian distance between 

each individual  ( )
j

E β in a front  
i

F which is based on their q  objectives in the q  dimensional 

hyper space. The individuals ( )
j

E β  in the boundary are always selected since they have infinite 

distance assignment. 

 

 

Selection. Once the individuals ( )
j

E β are sorted based on non-domination and 

with crowding distance ( )
Kd

E β  assigned, the selection is carried out using a crowded 

comparison operator 
n
≺  which is based on 



(1) non-domination rank 1( )
rank

E β i.e. individuals  ( )
j

E β in front 
i

F will have their rank as 

1( )
rank

E β =i. 

(2) crowding distance ( )
Kd

E β  

• 1( )
n

E mβ ≺  

- 1( )
rank rank

E mβ <  

              - or if 1( )E β and m belong to the same front 
i

F then ( ( ) ( )
Ki d i m

F E F dβ > i.e. the 

crowing distance should be more. 

 

 

The individuals 1( )E β  are chosen by exercising a binary contest selection with crowed 

comparison-operator 
n
≺ .  Following  Deb (2001),the point with lower rank of 1( )

rank rank
E mβ <  

is preferred between two solutions. Else the point that is included in region with less number of  

1( )E β points is selected. Therefore, the diversity with non-dominated solutions is presented by 

using the crowding comparison procedure which is used in the tournament selection and during 

the population reduction phase. Since solutions compete with their crowding distance. 

 

2.2.3.2. Recombination and Selection. 

 

The offspring population is merged with the current generation population and variety is 

completed to set the individuals of the next generation. Elitism is confirmed, subsequently all 

best individuals are included in the population. In this context, population is now sorted based 

on non-domination. Subsequently, the new generation is filled by each front till the population 

size  surpasses the existing population size. For instance, the population exceeds N when adding 

all the individuals in front 
i

F then the individuals in front 
i

F  is chosen based on their crowding 

distance in the descending order until the population size is N. 

 

 

In results section we add figure 6b and figure 7b  for NGSA-II.  

 

Fig. 6. shows the output result of E-MMGA and NSGA-II. Clearly, E-MMGA is able to produce 

four different segmentation boundaries. However, NSGA-II can produce sharper segmentation 

boundaries than E-MMGA. In NSGA-II algorithm, oil spill footprint discriminated and 

identified by sharp vector that separates it from  surrounding features i.e., sea surface, look-

alikes and land boundaries (Fig.6b). Besides, Fig. 7a shows that the thick oil spill footprint has 

highest E-MMGA value of  2 than medium and light oil spill.  Nevertheless, NSGA-II is  able 

to produce different clusters of oil spill footprint thickness as compared to E-MMGA with 

highest value of  NSGA-II  of 2.5. This indicates that NSGA-II can identify clearly the level  

oil spill footprint spreading accurately than E-MMGA.   

 

 

 

 

 

 

 

 

 



(a)                                                     (b) 

 
Figure 6. Optimization solutions for oil spill discrimination in COSMO-SkyMed using (a) E-

MMGA and (b) NSGA-II. 

(a)                                                     (b) 

                         
Figure 7. Oil spill footprint Categories  by (a) E-MMGA and (b) NSGA-II. 

 

Figure 8 illustrates the nondominated solution of different algorithms. From Figures 8 , it is 

clear that the solution of NSGA-II (Figure 8b)  is much better than, Entropy, and E-MMGA. 

Further, Entropy solution is far from real Pareto front while, the solution  of E-MMGA  is 

gathered around the center of the Pareto front. Under this circumstance, E-MMGA tends to 

concentrate in one part of the Pareto front. On the other hand, NSGA-II maintained high degrees 

of diversity of their solutions during the searching of best optimal solution for either oil spill 

footprint detection or oil spill spreading level in COSMO-SkyMed satellite data. In this regard,  

the NSGA-II is able to better distribute its population along the obtained front than Entropy and 

E-MMGA. 

 

 

 

 

 

 

 

 

 

 

 

 



 

(a)                                                     (b) 

   
                                                                           (c ) 

 
  Figure 8. Final Nondominated solutions by using (a) E-MMGA, (b) NSGA-II and (c) 

Entropy 

 

 

This is mainly because each multi-objective function in NSGA-II tends to bias its population 

towards the extreme edges of the Pareto frontier. This is confirms the work was done by Deb 

et al., (2001).  Compared to Entropy algorithm and E-MMGA, NSGA-II is able to identify the 

look-alike footprint boundaries and discriminate accurately between, oil spill and look-alike, 

and surrounding sea surface with standard error of 0.04 and fastest computing time  of 65 sec 

(Table 2). NSGA-II can accurately identify the sharpest morphological boundary of oil spill 

and assigned by different segmentation layer in COSMO-SkyMed satellite data as compared to 

Entropy algorithm and E-MMGA. In fact, NSGA-II provides a set of compromised solutions 

called Pareto optimal solution since no single solution can optimize each of the objectives 

separately. The decision maker is provided with the set of Pareto optimal solutions in order to 

choose solution based on the decision maker’s criteria. This sort of  NSGA-II solution technique 

is called nondominanted since decision is taken after searching is finished. This confirms the 

work done by Deb (2000) and Deb et al., (2001) In this context, the Pareto-optimization 

approach does not require any a priori preference decisions between the conflicting of oil spill, 

look-alike, land, and surrounding sea footprint boundaries. Further, Pareto-optimal points have 

form Pareto-front as shown in Fig. 8 in the multi-objectives function of the COSMO-SkyMed 

data space. Finally, NGSA-II has advantages on Entropy and    E-MMGA  because (i)  NGSA-

II  explicit diversity preservation mechanism;(ii) overall complexity of NSGA-II is at most 

O(MN2) and;(iii) elitism does not allow an already found Pareto optimal solution to be deleted. 

This agreed with Deb et al., (2001). 



 

Table 2. Accuracy performance of different algorithms 

Algorithms  Iterations Time (sec) Standard 

error  

Entropy 200 240 1.2 

E-MMGA 700 140 0.89 

NSGA-II 1200 65 0.04 
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