

1 **Effect of gas-transfer velocity parameterization choice on CO₂ air-sea fluxes in the North**
2 **Atlantic and the European Arctic**

3
4 Iwona Wróbel¹ and Jacek Piskozub¹
5

6 ¹ Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
7

8 *Correspondence to: I. Wróbel (iwrobel@iopan.gda.pl)*
9

10 **Abstract**

11 The oceanic sink of carbon dioxide (CO₂) is an important part of the global carbon budget.
12 Understanding uncertainties in the calculation of this net flux into the ocean is crucial for climate
13 research. One of the sources of the uncertainty within this calculation is the parameterization chosen
14 for the CO₂ gas transfer velocity. We used a recently developed software toolbox, called the
15 FluxEngine, to estimate the monthly net carbon air-sea flux for the extratropical North Atlantic, the
16 European Arctic, and globally using several published quadratic and cubic wind speed
17 parameterizations of the gas transfer velocity. The aim of the study is to constrain the uncertainty
18 caused by the choice of parameterization in the North Atlantic. This region is considered a large
19 oceanic sink of CO₂, and it is also a region often characterised by strong winds but with good in situ
20 measurement coverage. We show that this uncertainty is smaller in the North Atlantic and the Arctic
21 than globally. It is as little as 5% in the North Atlantic and 4% in the European Arctic, in
22 comparison to 9% for the global ocean when restricted to functions with quadratic wind
23 dependence. Whereas this uncertainty becomes 46%, 44% and 65% respectively if you consider all
24 of the parameterizations studied. We propose that this smaller uncertainty is caused by a
25 combination of higher than global average wind speeds in the North Atlantic and lack of any
26 seasonal changes in the direction of the flux direction within most of the region. We also compare
27 the impact of using two different in situ pCO₂ datasets (Takahashi and SOCAT) within the flux
28 calculation. Differences in these pCO₂ data in turn cause differences in the annual net flux values of
29 8% in the North Atlantic and 19% in the European Arctic. The seasonal flux in the Arctic computed
30 from two climatology data sets are opposite to one another, possibly due to insufficient spatial and
31 temporal data coverage, especially in winter.
32

33
34 **1. Introduction**

35
36 The region of extratropical North Atlantic, including the European Arctic, is a region responsible for
37 the formation of deep ocean waters (see Talley (2013) for a recent review). This process, part of the
38 global overturning circulation, makes the area a large sink of CO₂ (Takahashi et al., 2002; Takahashi
39 et al., 2009; Landschützer et al., 2014; Le Quéré et al., 2015). Therefore, there is a widespread
40 interest in tracking the changes in the North Atlantic net carbon fluxes, especially as models appear
41 to predict a decrease in the sink volume later this century (Halloran et al., 2015).
42

43 The trend and variations in the North Atlantic CO₂ sink has been intensively studied since
44 observations have shown it appears to be decreasing (Lefèvre et al., 2004). This decrease on inter-
45 annual time scales has been confirmed by further studies (Schuster and Watson, 2007) and this trend
46 has continued in recent years North of 40° N (Landschützer et al., 2013). It is not certain how many
47 of these changes are the result of long-term changes, decadal changes in atmospheric forcing,
48 namely the North Atlantic Oscillation (Gonzalez-Davila et al., 2007; Thomas et al., 2008; Gruber
49 2009; Watson et al., 2009) or changes in meridional overturning circulations (Perez et al., 2013).
50

52 Recent assessments of the Atlantic and Arctic net sea-air CO₂ fluxes (Schuster et al., 2013) and the
53 global ocean net carbon uptake (Wanninkhof et al., 2013) show that the cause is still unknown.

54
55 To study the rate of the ocean CO₂ sink and especially its long-term trend, one needs to first
56 constrain the total uncertainty in the flux calculation. Sources of uncertainty include sampling
57 coverage, the method of data interpolation, in-water fugacity data quality, the method used for
58 normalization of fugacity data to a reference year in a world of ever increasing atmospheric CO₂
59 partial pressure and the choice of gas transfer velocity k parameterization (Landschützer et al.,
60 2014; Woolf et al., 2015a, 2015b). It has also been identified that the choice of the wind data
61 product provides an additional source of uncertainty (Gregg et al., 2015). In this work we have
62 chosen to analyze various empirical wind driven gas transfer parameterizations. Although the North
63 Atlantic is one of the regions of the world ocean best covered by CO₂ fugacity measurements
64 (Watson et al., 2011), the Arctic seas coverage is much poorer, especially in winter (Schuster et al.,
65 2013).

66
67 One of the factors influencing the value of the calculated net air-sea gas flux is the choice of the
68 formula for the gas transfer velocity. Within the literature there are many different parameterizations
69 to choose from, but most depend on a cubic or quadratic wind speed relationship. The choice of
70 parameterization is not trivial as indicated by the name of an international meeting that focussed on
71 the topic implies (“ k conundrum” workshop, COST-735 Action organized meeting in Norwich,
72 February 2008). The conclusions from this meeting have been incorporated into a recent review
73 book chapter (Garbe et al., 2014). This paper concentrates on quantifying the uncertainty caused by
74 the choice of the gas transfer velocity parameterization in the North Atlantic and the European
75 Arctic. These regions were chosen as they are the areas for which many of the parameterization was
76 originally derived. They are also regions with wind distributions skewed towards higher winds (in
77 comparison to the global average) enabling the effect of stronger winds on the net flux calculations
78 to be investigated through using published gas transfer velocity formulas.

79
80 2. Methods

81
82 2.1 Datasets

83
84 We calculated net air-sea CO₂ fluxes using a set of software processing tools called the
85 ‘FluxEngine’ (Shutler et al., 2016), which were created within European Space Agency funded
86 OceanFlux Greenhouse Gases project (<http://www.oceanflux-ghg.org>). All gas flux calculations
87 were performed using the FluxEngine software. The tools were developed to provide the
88 community with a verified and consistent toolbox and to encourage the use of satellite Earth
89 Observation (EO) data for studying air-sea fluxes. The toolbox source code can be downloaded or
90 alternatively there is a version that can be run through a web interface. Within the online web
91 interface, a suite of reanalysis data products, *in situ* and model data are available as input to the
92 toolbox. These data are freely available for the scientific community to use. The FluxEngine allows
93 you to select several different air-sea flux parameterizations, as well as input data, allowing the
94 generation of the monthly global gridded net air-sea flux products with 1° x 1° spatial resolution.
95 The output consists of twelve NetCDF files (one file per month). Some Monthly composite file
96 includes the mean (first order moment), median, standard deviation and the second, third and fourth
97 order moments. There is also information (meta data) about origin of data inputs. Users can choose
98 from all of the data available on the web portal (example monthly EO input data include: rain
99 intensity, wind speed and direction, % of sea ice cover from monthly model data, ECMWF air
100 pressure, whitecapping (Goddijn-Murphy et al., 2011), two options for monthly climatology of
101 $p\text{CO}_2$, SST, salinity). The user then needs to choose the different components and structure of the
102 net air-sea gas flux calculation and choose the transfer velocity parameterization.

103 For the calculations, we used $p\text{CO}_2$ and salinity values from Takahashi et al. (2009) climatology
104 which is based on more than 3 million measurements of surface water $p\text{CO}_2$ in open-ocean
105 environments during non El Nino conditions. For some calculations we used, as an alternative,
106 Surface Ocean CO_2 Atlas (SOCAT) ver. 1.5 and 2.0 (Sabine et al., 2013; Pfeil et al., 2013; Bakker et
107 al., 2014) $p\text{CO}_2$ and associated SST data. SOCAT is a community driven dataset containing
108 respectively 6.3 and 10.1 million surface water CO_2 fugacity values with a global coverage. The
109 SOCAT databases have been re-analysed and then converted to climatologies using the
110 methodology described in Goddijn-Murphy et al. (2015). All the climatologies were calculated for
111 year 2010 within the FluxEngine toolset. The SSTfnd values were taken from Operational Sea
112 Surface Temperature and Sea Ice Analysis (OSTIA) (Donlon et al., 2011), and in the case of
113 SOCAT database, while SST skin data that we use come from ARC/(A)ATSR Global Monthly Sea
114 Surface dataset (Merchant et al., 2012). Both data sets have been preprocessed in the same way for
115 use with the FluxEngine (Shutler et al., 2016).

116
117 We used Earth Observation (EO) wind speed and sea roughness (σ_0 in Ku band from GlobWave
118 L2P products) data obtained from the European Space Agency (ESA). The GlobWave satellite
119 products give a “uniform” set of along track satellite wave data from all available Altimeters
120 (spanning multiple space agencies) and from ESA Synthetic Aperture Radar (SAR) data. GlobWave
121 Project is an initiative funded by ESA and subsidised by CNES. The aim of the project is to
122 improve the uptake of satellite-derived wind-wave and swell data by the scientific, operational and
123 commercial user communities. This has been achieved by providing a uniform, harmonized, quality
124 controlled, multi-sensor set of satellite wave data. Wave data is collected from both altimeters
125 (ERS-1, ERS-2, ENVISAT, Topex/POSEIDON, Jason-1, Jason-2, CryoSAT, GEOSAT and
126 GEOSAT Follow On) and from ESA Synthetic Aperture Radar (SAR) missions, namely ERS-1,
127 ERS-2 and ENVISAT. All data come in netCDF-3 format.

128
129 All analyses were performed using global data within the FluxEngine software. From the gridded
130 product ($1^\circ \times 1^\circ$) we extracted the extratropical North Atlantic (north of 30° N), and its subset, the
131 European Arctic (north of 64° N). For comparison, we also calculated fluxes in the Southern Ocean
132 (south of 40° S). Hereafter we follow the convention of that sources of CO_2 (upward ocean-to-
133 atmosphere gas fluxes) are positive and sinks (downward atmosphere-to-ocean gas fluxes) are
134 negative. We give all results of net CO_2 fluxes in the SI unit of Pg (which is numerically identical to
135 Gt).

136
137 2.2. k parameterizations
138

139 The flux of CO_2 at the interface of air and the sea is controlled by wind speed, sea state, sea
140 surface temperature (SST) and other factors. We estimate the net air-sea flux of CO_2 (F , mg C m^{-2}
141 day^{-1}) as the product of gas transfer velocity (k , ms^{-1}) and also the difference in CO_2 concentration
142 (gm^{-3}) within the sea water and its interface with the air (Land et al., 2013). The concentration of
143 CO_2 in sea water is the product of its solubility (α , $\text{gm}^{-3} \mu\text{atm}^{-1}$) and its fugacity ($f\text{CO}_2$, μatm).
144 Solubility is in turn, a function of salinity and temperature. Hence F is defined as:

145
146
$$F = k (\alpha_w f\text{CO}_{2w} - \alpha_s f\text{CO}_{2A}) \quad (1)$$

147

148 where the subscripts denote values in water (W) and the air-sea interface (S) and in the air (A). We
149 can exchange fugacity to the partial pressure (their values differ by $<0.5\%$ over the temperature
150 range considered) (McGillis et al., 2001). So equation (1) now becomes:

151
152
$$F = k (\alpha_w p\text{CO}_{2w} - \alpha_s p\text{CO}_{2A}) \quad (2)$$

153

154 One can also ignore the differences between the two solubilities, and just use the waterside solubility
155 α_w . Equation (2) will be represented then as:
156

$$F = k \alpha_w (pCO_{2W} - pCO_{2A}) \quad (3)$$

157 This formulation is often referred to as the ‘bulk parametrization’.
158

159 In this work we chose to analyze the air-sea gas fluxes using five different gas transfer
160 parameterizations (k). All of them are wind speed parameterizations, but differ in the formula used:
161

$$k = \sqrt{(660.0 / Sc_{skin}) * (0.212 U_{10}^2 + 0.318 U_{10})} \quad (4)$$

(Nightingale et al., 2000),

$$k = \sqrt{(660.0 / Sc_{skin}) * 0.254 U_{10}^2} \quad (5)$$

(Ho et al., 2006),

$$k = \sqrt{(660.0 / Sc_{skin}) * 0.0283 U_{10}^3} \quad (6)$$

(Wanninkhof and McGillis, 1999),

$$k = \sqrt{(660.0 / Sc_{skin}) * 0.251 U_{10}^2} \quad (7)$$

(Wanninkhof, 2014),

$$k = \sqrt{(660.0 / Sc_{skin}) * (3.3 + 0.026 U_{10}^3)} \quad (8)$$

(McGillis et al., 2001),

178 where the subscripts are Schmidt numbers at the skin surface (Sc_{skin}), a function of SST ($=[$
179 (kinematic viscosity of water)/(diffusion coefficient of CO_2 in water)]), 660.0 is the Schmidt
180 number for carbon dioxide at 20 °C temperature in seawater, U_{10} is the wind speed 10 m above the
181 sea surface.
182

183 In addition to the purely wind driven parameterizations, we have used the combined Goddijn-
184 Murphy et al. (2012) and Fangohr and Woolf (2007) parametrization, which was developed as a test
185 algorithm within of OceanFlux GHG Evolution project and it is provided as an option in the
186 FluxEngine toolbox. This parameterization separates contributions from direct- and bubble-
187 mediated gas transfer as suggested by Woolf (2005). Its purpose is to enable a separate evaluation of
188 the effect of the two processes on air-sea gas fluxes and it is an algorithm that has yet to be
189 calibrated (one of the aims of the ongoing OceanFlux Evolution project is to develop a calibration
190 for this algorithm). We used two versions of this parameterization: wind driven direct transfer
191 (using the U_{10} wind fields) and radar backscatter driven direct transfer (using mean wave square
192 slope) as described in Goddijn-Murphy et al. (2012).
193

194 3. Results 195

196 Using the FluxEngine software, we have produced net CO_2 global monthly gridded air-sea fluxes
197 and from these we have extracted the values for the two study regions, the extratropical North
198 Atlantic and separately for its subset, the European Arctic seas. Figure 1 shows maps of the monthly
199 mean CO_2 air-sea fluxes for the North Atlantic, calculated with Nightingale et al. (2000) (hereafter
200 called N2000) k parameterization and the Takahashi et al. (2009) climatology for the whole year
201 and for each season. The area, as a whole, is a sink of CO_2 but even the seasonal maps show that
202 some regions close to North Atlantic Drift and East Greenland Current are net sources. The seasonal
203 maps show even more variability. For example, the areas close to the North Atlantic Drift And East
204

205 Greenland current are sinks of CO₂ in the summer (likely due to the growth of phytoplankton) while
206 the southern most areas of the region become CO₂ sources in summer and autumn (which is likely
207 to be due to the effect of sea-water temperature changes). Much of this variability is caused by
208 changes of the surface water $p\text{CO}_2$ average values, shown in Figure 2 for the whole year and for
209 each season (and variability in atmospheric CO₂ partial pressure, not shown). However, the flux is
210 proportional to the product of $\Delta p\text{CO}_2$ and k . In most parameterizations k is a function of wind speed
211 (eqs. 4-8). The mean wind speed U_{10} for the whole year and each season are shown in Figure 3. The
212 wind speeds in the North Atlantic are higher than the mean value in the world ocean, with mean
213 values higher than 10 m s⁻¹ in many regions of the study area in all seasons except for the summer
214 (with highest values in winter). This is important because the air-sea flux depends not only on
215 average wind speed but also on its distribution (see also the Discussion). This effect is especially
216 visible between formulas with different powers of U_{10} . Figure 4 shows the difference in the air-sea
217 fluxes calculated using two example parameterizations: one proportional to U_{10}^3 (eq. 6) and one to
218 U_{10}^2 (eq. 7), namely Wanninkhof and McGillis (1999) and Wanninkhof (2014). It can be seen that
219 the “cubic” function results in higher absolute air-sea flux values when compared to the “quadratic”
220 function in the regions of high winds, and lower absolute air-sea flux values in weaker winds.
221

222 Figure 5 shows the monthly values of CO₂ air-sea fluxes for the five parameterizations (eq. 4-8) for
223 the North Atlantic and the European Arctic. The regions are sinks of CO₂ in every month, although
224 August is close to neutral for the North Atlantic. The results using cubic parameterizations (eqs. 6
225 and 8) are higher in absolute values, respectively by up to 30% for Wanninkhof and McGillis (1999)
226 and 55% for McGillis (2001), in comparison to the “quadratic” of N2000 (eq. 4). The other two
227 “quadratic” parameterizations (eqs. 5 and 7) resulted in fluxes within 5% of N2000. Annual net
228 fluxes for the North Atlantic and the European Arctic and global (included for comparison) are
229 shown in Table 1. In addition to the five parameterizations, the figure presents results for both of the
230 OceanFlux GHG Evolution formulas (using wind and radar backscatter data). The mean and
231 standard deviations of the parameterization ensemble are shown as grey vertical lines. The standard
232 deviation in global fluxes is similar to previous estimates (Sweeney et al., 2007, Landschützer et al.,
233 2014) but they cannot be directly compared due to different parameterization choices and
234 methodologies. The results show that the annual North Atlantic net air-sea CO₂ sink, depending on
235 the formula used, varies from -0.38 Pg C for N2000 to -0.56 Pg C for McGillis et al. (2001). In the
236 case of global net air-sea CO₂ sink the values are, respectively, -1.30 Pg C and -2.15 Pg C. Table 1
237 as well as Figure 6 show the same data “normalized” to the N2000 data (divided by value), this
238 allows us to visualize the relative differences. In the case of the North Atlantic using the “quadratic”
239 Wanninkhof (2014) and Ho et al. (2006) parameterizations results in a net air-sea flux that is 4%
240 and 5% higher in absolute value than the equivalent N2000 result, while the “cubic” Wanninkhof
241 and McGillis (1999) and McGillis et al. (2001) results in values that are up to 28% and 44%. The
242 respective values for the Arctic are 3%, 4% for quadratic as well as 28% and 44% for cubic
243 functions. In the case of global net air-sea CO₂ flux the equivalent values are 8% and 9% higher
244 than the N2000 result for the quadratic functions as well as 33% and 65% for cubic ones. The
245 OceanFlux GHG parameterization results in net air-sea CO₂ fluxes that are 38% and 47% higher for
246 North Atlantic than the N2000 result (for the backscatter and wind driven versions respectively).
247 The spread of the Arctic values was lower than the Atlantic ones (see Table 1). On the other hand,
248 the values for the South Ocean were slightly higher than for North Atlantic but lower than the
249 global ones, with the exception of the OceanFlux GHG parameterizations. In the case of global
250 values the values were, 44% and 52% respectively.
251

252 All the above results used the Takahashi (2009) $p\text{CO}_2$ climatology. For comparison we have also
253 calculated the air-sea fluxes using the re-analysed SOCAT version 1.5 and 2.0 data (Goddijn-
254 Murphy et al., 2015). Figure 7 shows the results using the N2000 k parameterization for all three of
255 the climatologies. In the case of the North Atlantic study area, although the monthly values show

256 large differences (using both SOCAT datasets results in a larger sink in summer and smaller in
 257 winter compare to Takahashi), the annual values are similar: -0.38 Pg C for both Takahashi and
 258 SOCAT v.1.5 and -0.41 Pg C for SOCAT v. 2.0. In the case of the European Arctic the situation is
 259 very different, with Takahashi and SOCAT dataset derived climatologies resulting in inverse
 260 seasonal variability but with annual net air-sea CO₂ flux results that are similar: -0.102 Pg C for
 261 Takahashi, -0.085 Pg C for SOCAT v. 1.5 and -0.088 Pg C for SOCAT v. 2.0.

262 4. Discussion

263 Our results show that using the three “quadratic” parameterizations (Nightingale et al., 2000; Ho et
 264 al., 2006 and Wanninkhof 2014) results in air-sea flux values that are within 5% of each other in the
 265 case of the North Atlantic. This discrepancy is smaller than the 9% difference identified for the
 266 global case (Fig. 6). This result confirms that at present, these different parameterizations are
 267 interchangeable for the North Atlantic as this variation is within the experimental uncertainty
 268 (Nightingale, 2015). The three parameterizations were derived using different methods and data
 269 from different regions, namely passive tracers and dual-trace experiments in the North Sea in the
 270 case of Nightingale et al. (2000), dual tracers in the Southern Ocean in the case of Ho et al. (2006)
 271 and global ocean ¹⁴C inventories in the case of Wanninkhof (2014). The differences between these
 272 and the quadratic parameterization are large and although the quadratic functions are supported by
 273 several lines of evidence (see Garbe et. al., 2014 for discussion). Therefore, it is important to notice
 274 that a choice of one of the available cubic functions may lead to net air-sea CO₂ fluxes that are
 275 considerably larger in absolute values, by up to 33% in the North Atlantic and more than 50%
 276 globally.

277 The above results imply smaller relative differences between the parameterizations in the North
 278 Atlantic than globally. This is interesting because the North Atlantic is the region of strong winds
 279 and over most of its area there are no seasonal change in the air-sea flux direction (Fig. 1). For
 280 example in the South Atlantic annual mean of wind speed is within 8.48 m s⁻¹ (Takahashi et al.,
 281 2009) and sink of CO₂ (south of 45°) decrease significantly after 1990 with increasing wind speeds
 282 what can influence higher concentration of pCO₂ in surface water due to enhance vertical mixing of
 283 deep waters and biological activity. (Le Quère et al., 2007). Takahashi et al. (2009) also indicate
 284 that the flux difference in the Southern Ocean are very strong dependence to the choice of the gas
 285 parameterizations and wind speed. This is more surprising, for North Atlantic, given that at least
 286 some of the older parameterizations were developed using a smaller range of winds than can exist in
 287 the North Atlantic. After analysis of this unexpected fact, using the formula multiplied by the
 288 different wind distribution, we have found two reasons for this. First, when comparing quadratic
 289 and cubic parameterizations (Fig. 8), cubic parameterization imply higher air-sea fluxes for high
 290 winds, while quadratic one for weaker winds. This difference can be presented in arithmetic terms.
 291 Let us assume two functions of wind speed U , $F_1(U)$ quadratic and $F_2(U)$ cubic:

$$295 \quad F_1(U) = a U^2, \quad (9)$$

$$296 \quad F_2(U) = b U^3. \quad (10)$$

300 The difference between the two functions ΔF is equal to:

$$302 \quad \Delta F = F_2 - F_1 = b U^3 - a U^2 = b U^2 (U - a b^{-1}) = b U^2 (U - U_x) \quad (11)$$

303 where $U_x = a b^{-1}$. The difference is positive for wind speeds greater than U_x and negative for winds
 304 less U_x . U_x is the value of wind speed for which the two functions intersect. In the case of equations
 305 (6) and (7), where $a = 0.251$ and $b = 0.0283$, they imply that $U_x = 8.87$ m s⁻¹. In fact all of the

307 functions presented in Fig. 8 produce very similar values for U_x , all of which are close to 9 m s^{-1} .
308 This value is very close to average wind speed in the North Atlantic (Fig. 3). This is one of the
309 reasons of the small relative difference in net air-sea flux. The spread of flux values for the Southern
310 Ocean seems to support this conclusion, being larger than the North Atlantic one. Southern Ocean
311 has on average stronger winds than North Atlantic (including also the Arctic Seas) which seem to
312 have the smallest spread of flux values for different parameterizations. The other reason is the lack
313 of seasonal variation in the sign of the air-sea flux. In the case of seasonal changes in the air-sea
314 flux direction (caused by seasonal changes in water temperature or primary productivity), with
315 winds stronger than U_x in some seasons and weaker in others (usually strong winds in winter and
316 weak in summer), the air-sea fluxes partly cancel each other while the difference between cubic and
317 quadratic parameterizations add to each other due to simultaneous changes in the sign of both fluxes
318 itself and the $U - U_x$ term. This effect of seasonal variation has been suggested to us based on
319 available observations (A. Watson – personal communication) but we are unaware of any paper
320 investigating it or even describing it explicitly.
321

322 In addition to the five parameterizations described above, we calculated the air-sea fluxes using the
323 OceanFlux GHG Evolution combined formula, which parameterises the contributions from direct
324 and bubble-mediated gas transfer into separate components. The resulting air-sea fluxes are higher
325 in absolute terms, than all of the quadratic functions considered in this study, and are closer in value
326 to cubic parameterization. This may mean that the bubble mediated term of Fangohr and Woolf
327 (2007) is overestimating the bubble component, implying the need for a dedicated calibration effort.
328 This question will be the subject of further studies in the OceanFlux Evolution project.
329

330 Although, using both Takahashi climatology and SOCAT $p\text{CO}_2$ climatology (Fig. 7) result in similar
331 annual net air-sea fluxes in the North Atlantic, it should be noted that they show different seasonal
332 variations. This may have been caused by slightly different time periods of the datasets (i.e. the
333 SOCAT based climatology contains more recent data). The difference is much larger in the
334 European Arctic due to the underlying sparse data coverage and possible interpolation artifacts
335 (Goddijn-Murphy et al., 2015). This discrepancy makes us treat the net air-sea CO_2 flux results
336 from the Arctic with much less confidence than the values for the whole North Atlantic. It is
337 impossible to declare within this study which dataset is more accurate as only new data can settle
338 this. However, such data have been recently published (Yasunaka et al., 2016). The observed in-
339 water $p\text{CO}_2$ data (Fig. 3 in Yasunaka et al., 2016), especially since 2005, show clearly an annual
340 cycle compatible with the SOCAT seasonal flux variability.
341

342 5. Conclusions 343

344 In this paper we have studied the effect of the choice of gas transfer velocity parameterization on
345 the net CO_2 air-sea gas fluxes in the North Atlantic and European Arctic using the recently
346 developed FluxEngine software. The results show that the uncertainty caused by the choice of the k
347 formula is smaller in the North Atlantic and in the Arctic than it is globally. The difference in the
348 annual net air-sea CO_2 flux caused by the choice of the parameterization is within 5% in the North
349 Atlantic and 4% in the European Arctic, comparing to 9% globally for the studied functions with
350 quadratic wind dependence. It is up to 46% different for North Atlantic, 36% for Arctic and 65%
351 globally when comparing cubic and quadratic functions. In both cases the uncertainty in the North
352 Atlantic and Arctic regions are smaller than the global case. We explain that the smaller North
353 Atlantic variability is the combination of firstly higher than global average wind speeds in the North
354 Atlantic, close to 9 m s^{-1} , which is the wind speed at which most k parameterization have similar
355 values, and secondly the all-season CO_2 sink conditions in most North Atlantic areas. We repeat the
356 analysis using Takahashi and a SOCAT $p\text{CO}_2$ derived climatology and find that although the
357 seasonal variability in the North Atlantic is different, the annual net air-sea CO_2 fluxes are within

358 8% in the North Atlantic and 19% in the European Arctic. The seasonal flux calculated from the two
359 $p\text{CO}_2$ datasets in the Arctic have inverse seasonal variations, indicating possible under sampling
360 (aliasing) of the $p\text{CO}_2$ in this polar region and therefore highlighting the need to collect more polar
361 $p\text{CO}_2$ observations in all months and seasons.

362

363

364

365 Acknowledgements

366

367 The publication has been financed from the funds of the Leading National Research Centre
368 (KNOW) received by the Centre for Polar Studies for the period 2014-2018; OceanFlux
369 Greenhouse Gases Evolution, a project funded by the European Space Agency, ESRIN Contract No.
370 4000112091/14/I-LG; and GAME "Growing of Marine Arctic Ecosystem", funded by Narodowe
371 Centrum Nauki grant DEC-2012/04/A/NZ8/00661. We would also like to thank Jamie Shutler for
372 important advice on the FluxEngine and for correcting the native-speaker verification of our
373 English.

374

375

376 References

377

378 Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S.,
379 Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl,
380 J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen,
381 L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z.,
382 Hales, B., Hardman-Mountford, N. J., Hoppema, M., Huang, W.-J., Hunt, C. W., Huss, B.,
383 Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger,
384 A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl,
385 N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos,
386 A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan,
387 I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T.,
388 Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W.
389 R., Wanninkhof, R., and Watson, A. J.: An update to the Surface Ocean CO_2 Atlas (SOCAT
390 version 2), *Earth Syst. Sci. Data*, 6, 69-90, doi:10.5194/essd-6-69-2014, 2014.

391

392 Donlon, C. J., Martin, M., Stark, J. D., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The
393 Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), *Remote Sens. Environ.*,
394 Special Issue 116, 140-158, doi: 10.1016/j.rse.2010.10.017, 2011.

395

396 Fangohr, S. and Woolf, D. K.: Application of new parameterizations of gas transfer velocity and
397 their impact on regional and global CO_2 budgets, *J. Marine Syst.*, 66, 195-203, 2007.

398

399 Garbe, C. S., Rutgersson, A., Boutin, J., de Leeuw, G., Delille, B., Fairall, C. W., Gruber, N., Hare,
400 J., Ho, D. T., Johnson, M. T., Nightingale, P. D., Pettersson, H., Piskozub, J., Sahlee, E., Tsai, W.,
401 Ward, B., Woolf, D. K., and Zappa, C. J.: Transfer Across the Air-Sea Interface, in: *Ocean-Atmosphere
402 Interactions of Gases and Particles*, edited by: Liss, P. S. and Johnson, M. T., Springer, Earth System
403 Science, Springer, Berlin, Heidelberg, 55-111, 2014.

404

405 Goddijn-Murphy L., Woolf D. K., Callaghan A. H.: Parameterizations and Algorithms for Oceanic
406 Whitecap Coverage, *J. Phys. Oceanogr.*, 41, 742-756, 2011.

407

408 Goddijn-Murphy, L. M., Woolf, D. K., and Marandino, C.: Space-based retrievals of air-sea gas

409 transfer velocities using altimeters: Calibration for dimethyl sulfide, *J. Geophys. Res.*, 117,
410 C08028, doi: 10.1029/2011JC007535, 2012.

411

412 Goddijn-Murphy, L. M., Woolf, D. K., Land, P. E., Shutler J. D., Donlon, C.: The OceanFlux
413 Greenhouse Gases methodology for deriving a sea surface climatology of CO₂ fugacity in
414 support of air-sea gas flux studies, *Ocean Sci.*, 11, 519-541, 2015, doi: 10.5194/os-11-519-2015,
415 2015.

416

417 Gonzalez-Davila, M., Santana-Casiano, J. M., and Gonzalez-Davila, E. F.: Interannual variability of
418 the upper ocean carbon cycle in the northeast Atlantic Ocean, *Geophys. Res. Lett.*, 34, L07608,
419 doi: 10.1029/2006GL028145, 2007.

420

421 Gregg, W. W., Casey N. W., Rosseaux C. S.: Sensitivity of simulated global ocean carbon flux
422 estimates to forcing by reanalysis products, *Ocean Modelling*, 80, 24-35, doi:
423 10.1016/j.ocemod.2014.05.002, 2015.

424

425 Gruber, N.: Fickle trends in the ocean, *Nature*, 458, 155-156, doi: 10.1038/458155a, 2009.

426

427 Halloran, P. R., Booth, B. B. B., Jones, C. D., Lambert, F. H., McNeall, D. J., Totterdell, I. J., and
428 Völke, C.: The mechanisms of North Atlantic CO₂ uptake in a large Earth System Model
429 ensemble, *Biogeosciences*, 12, 4497-4508, doi: 10.5194/bg-12-4497-2015, 2015.

430

431 Ho, D., Law C., Smith M., Schlosser P., Harvey M., Hill P.: Measurements of air-sea gas exchange
432 at high wind speeds in the Southern Ocean: Implications for global parametrizations, *Geophys.*
433 *Res. Lett.*, 33, L16611, doi: 10.1029/2006/GL026817, 2006.

434

435 Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., Sasse, T. P.,
436 and Zeng, J.: A neural network-based estimate of the seasonal to inter-annual variability of the
437 Atlantic Ocean carbon sink, *Biogeosciences*, 10, 7793-7815, doi: 10.5194/bg-10-7793-2013,
438 2013.

439

440 Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U.: Recent variability of the global ocean
441 carbon sink, *Global Biogeochem. Cy*, 28, 927-949, doi: 10.1002/2014GB004853, 2014.

442

443 Le Quéré C., Rodembeck C., Buitenhuis E., Conway T., Langenfelds R., Gomez A., Labuschagne
444 C., Ramonet M., Nakazawa T., Metzler N., Gillett N., heimann M.: Saturation of the Southern
445 Ocean CO₂ sink due to recent climate change. *Science* 316, 1735-1738,
446 doi:10.1126/science.1136188, 2007.

447

448 Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D.,
449 Sitch, S., Tans, P., Arneth, A., Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chini, L. P.,
450 Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton, R. A., House, J. I., Jain, A. K.,
451 Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C.
452 S., Landschützer, P., Lenton, A., Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Nojiri, Y.,
453 Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P.,
454 Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J., Séférian, R., Segschneider,
455 J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R.,
456 Viovy, N., Wang, Y.-P., Wanninkhof, R., Wiltshire, A., and Zeng, N.: Global carbon budget 2014,
457 *Earth Syst. Sci. Data*, 7, 47-85, doi: 10.5194/essd-7-47-2015, 2015.

458

459 Lefèvre, N., Watson, A. J., Olsen, A., Rios, A. F., Perez, F. F., Johannessen, T.: A decrease in the

460 sink for atmospheric CO₂ in the North Atlantic, *Geophys. Res. Lett.*, 31, L07306, doi:
461 10.1029/2003GL018957, 2004.

462

463 McGillis, W. R., and Edson, J. B., Hare, J. E., Fairall, C. W.: Direct covariance air-sea CO₂ fluxes,
464 *J. Geophys. Res.*, 106, 729-16, 2001.

465

466 Merchant, C. J., Embury, O., Rayner, N. A., Berry, D. I., Corlett, G. K., K., L., Veal, K. L., Kent, E.
467 C., T., L.-J. D., Remedios, J. J., and Saunders, R.: A 20 year independent record of sea surface
468 temperature for climate from Along-Track Scanning Radiometers, *J. Geophys. Res.*, 117, 2012.

469

470 Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and
471 Upstill-Goddard, R. C.: In situ evaluation of air-sea gas exchange parametrizations using novel
472 conservative and volatile tracers, *Global Biogeochem. Cy.*, 14, 373-387, 2000.

473

474 Nightingale, P. D., Relationship between wind speed and gas exchange over the ocean: which
475 parameterization should I use?, Raport from Discussion Session at SOLAS Open Science
476 conference in Kiel, <http://goo.gl/TrMQkg>, 2015.

477

478 Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L., Toggweiler, J. R.,
479 Taylor, N. K., Palmer, J., Gruber, N., Sabine, C. L., Quéré, C. Le., Key, R. M., Boutin, J.:
480 Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models,
481 *Global Biogeochem. Cy.*, 15(1), 43-60, doi: 10.1029/2000GB001273, 2001.

482

483 Pérez, F. F., Herlé Mercier, Marcos Vázquez-Rodríguez, Pascale Lherminier, Anton Velo,
484 Paula C. Pardo, Gabriel Rosón and Aida F. Ríos: Atlantic Ocean CO₂ uptake reduced by
485 weakening of the meridional overturning circulation, *Nat. Geosci.*, 6, 146-152, doi:
486 10.1038/NGEO1680, 2013.

487

488 Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A.,
489 Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J.,
490 Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A.,
491 González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M.,
492 Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M.,
493 Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A.,
494 Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y.,
495 Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot,
496 D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer,
497 R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T.,
498 Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T.,
499 Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: A uniform,
500 quality controlled Surface Ocean CO₂ Atlas (SOCAT), *Earth Syst. Sci. Data*, 5, 125-143, doi:
501 10.5194/essd-5-125-2013, 2013.

502

503 Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A.,
504 Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A.,
505 Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., González-
506 Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes,
507 D., Ishii, M., Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K.,
508 Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C.,
509 Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park,
510 G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Salisbury, J., Santana-

511 Casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan,
512 I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B.,
513 Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.:
514 Surface Ocean CO₂ Atlas (SOCAT) gridded data products, *Earth Syst. Sci. Data*, 5, 145–153, doi:
515 10.5194/essd-5-145-2013, 2013.

516

517 Schuster, U., and Watson, A. J.: A variable and decreasing sink for atmospheric CO₂ in the North
518 Atlantic, *J. Geophys. Res.*, 112, C11006, doi: 10.1029/2006JC003941, 2007.

519

520 Schuster, U., McKinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R., Gonzalez-Davila,
521 M., Gruber, N., Jones, S., Krijnen, J., Landschutze, P., Lefèvre, N., Manizza, M., Mathis, J.,
522 Metzl, N., Olsen, A., Rios, A. F., Rodenbeck, C., Santana-Casiano, J. M., Takahashi, T.,
523 Wanninkhof, R., and Watson, A. J.: An assessment of the Atlantic and Arctic sea-air CO₂ fluxes,
524 1990–2009, *Biogeosciences*, 10, 607–627, doi: 10.5194/bg-10-607-2013, 2013.

525

526 Shutler, J. D., Piolle, J-F., Land, P. E., Woolf, D. K., Goddijn-Murphy, L., Paul, F., Girard-Ardhuin,
527 F., Chapron, B., and Donlon, C. J.: FluxEngine: a flexible processing system for calculating air-
528 sea carbon dioxide gas fluxes and climatologies, *J. Atmos. Ocean. Tech.*,
529 <http://dx.doi.org/10.1175/JTECH-D-14-00204.1>, 2016.

530

531 Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L. and
532 Wanninkhof, R.: Constraining global air-sea gas exchange for CO₂ with recent bomb 14C
533 measurements, *Global Biogeochem. Cycles*, 21, GB2015,
534 <http://dx.doi.org/10.1029/2006GB002784>, 2007.

535

536 Takahashi, T., Sutherland, S. G., Sweeney, C., Poisson, A. P., Metzl, N., Tilbrook, B., Bates, N. R.,
537 Wanninkhof, R., Feely, R. A., Sabine, C. L., Olafsson, J., and Nojiri, Y.: Global sea-air CO₂ flux
538 based on climatological surface ocean *p*CO₂, and seasonal biological and temperature effects,
539 *Deep Sea Res., Pt. II*, 49, 1601–1622, 2002.

540

541 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales,
542 B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N.,
543 Inoue, H. Y., Ishii, M., Midorikawa, T., Nojiri, Y., Koertzinger, A., Steinhoff, T., Hoppema, M.,
544 Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S.,
545 Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological mean and decadal change in
546 surface ocean *p*CO₂ and net sea-air CO₂ flux over the global oceans, *Deep-Sea Res. Pt. II*, 56,
547 554–577, doi: 10.1016/j.dsr2.2008.12.009, 2009.

548

549 Talley, L. D.: Closure of the Global Overturning Circulation Through the Indian, Pacific, and
550 Southern Oceans: Schematics and Transports, *Oceanography* 26(1), 80–97,
551 doi:10.5670/oceanog.2013.07, 2013.

552

553 Thomas, H., Friederike Prowe, A. E., Lima, I. D., Doney, S. C., Wanninkhof, R., Greatbatch, R. J.,
554 Schuster, U., and Corbiere, A.: Changes in the North Atlantic Oscillation influence CO₂ uptake
555 in the North Atlantic over the past 2 decades, *Global Biogeochem. Cy.*, 22, GB4027,
556 doi:10.1029/2007GB003167, 2008.

557

558 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited,
559 *Limnol. Oceanogr.- Meth.*, 12, 351–362, 2014.

560

561 Wanninkhof, R., and McGillis, W. R.: A cubic relationship between air-sea CO₂ exchange and wind

562 speed, *Geophys. Res. Lett.*, 26, 1889-1892, 1999.

563

564 Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney,
565 S. C., McKinley, G. A., Lenton, A., Quéré C. Le, Heinze, C., Schwinger, J., Graven, H.,
566 Khatiwala, S.: Global ocean carbon uptake: magnitude, variability and trends, *Biogeosciences*,
567 10, 1987-2013, doi: 10.5194/bg-10-1987-2013, 2013.

568

569 Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbière, A., González-Dávila, M.,
570 Friedrich, T., Hauck, J., Heinze, C., Johannessen, T., Körtzinger, A., Metzl, N., Olafsson, J.,
571 Olsen, A., Oschlies, A., Padin, X.A., Pfeil, B., Santana-Casiano, J.M., Steinhoff, T., Telszewski,
572 M., Rios, A.F., Wallace, D.W., Wanninkhof, R.: Tracking the variable North Atlantic sink for
573 atmospheric CO₂, *Science*, 326(5958), 1391-1393, doi: 10.1126/science.1177394, 2009.

574

575 Watson, A. J., Metzl, N., Schuster, U.: Monitoring and interpreting the ocean uptake of atmospheric
576 CO₂, *Philos. T. R. Soc. A*, 369, 1997–2008, doi: 10.1098/rsta.2011.0060, 2011.

577

578 Woolf, D. K.: Parameterization of gas transfer velocities and sea-state dependent wave breaking.
579 *Tellus B*, 57, 87–94, 2005.

580

581 Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Donlon, C. J., Nightingale, P. D., Land, P. E.,
582 Torres, R., Chapron, B., Piolle, J-F., Herledan, S., Hanafin, J., Girard-Ardhuin, F., Ardhuin, F.,
583 Prytherch, J., Moat, B., and Yelland, M.: Key uncertainties in the contemporary air-sea flux of
584 carbon dioxide: an OceanFlux study, submitted 2015a.

585

586 Woolf, D. K., Goddijn-Murphy, L. M., Shutler, J. D., Land, P. E., Donlon, C. J., Prytherch, J.,
587 Yelland, M. J., Nightingale, P. D., Torres, R., Chapron, B., Piolle, J-F., Herledan, S., Hanafin, J.,
588 Girard-Ardhuin, F., Ardhuin F., and Moat, B.: Sources and types of uncertainty in the
589 contemporary air-sea flux of carbon dioxide: an OceanFlux study, submitted 2015b.

590

591 Yasunaka, S, A. Murata, E. Watanabe, M. Chierici, A. Fransson, S. van Heuven, M. Hoppema, M.
592 Ishii, T. Johannessen, N. Kosugi, S. K. Lauvset, J. T. Mathis, S. Nishino, A. M. Omar, A. Olsen,
593 D. Sasano, T. Takahashi, R. Wanninkhof,: Mapping of the air-sea CO₂ flux in the Arctic Ocean
594 and its adjacent seas: Basin-wide distribution and seasonal to interannual variability,
595 doi:10.1016/j.polar.2016.03.006, 2016

596 Figure 1. Seasonal and annual mean air-sea fluxes of CO₂ (mg C m⁻² day⁻¹) in the North Atlantic,
597 using Nightingale et al. (2000) k parameterization and Takahashi (2009) climatology in a) annual,
598 b) DJF (Winter), c) MAM (Spring), d) JJA (Summer), e) SON (Autumn). The gaps (white areas)
599 are due to missing data, land and ice masks.
600

601 Figure 2. Seasonal and annual *p*CO₂ values (μatm) in surface waters of the North Atlantic,
602 estimated using the Takahashi (2009) climatology in a) annual, b) DJF (Winter), c) MAM (Spring),
603 d) JJA (Summer), e) SON (Autumn). The gaps (white areas) are due to missing data, land and ice
604 masks.
605

606 Figure 3. Wind speed distribution U_{10} (ms⁻¹) in the North Atlantic used to determine the
607 relationship between gas transfer velocity and air-sea CO₂ fluxes in a) annual, b) DJF (Winter), c)
608 MAM (Spring), d) JJA (Summer), e) SON (Autumn). The gaps (white areas) are due to missing
609 data, land and ice masks.
610

611 Figure 4. Differences maps for the air-sea CO₂ fluxes (mg C m⁻² day⁻¹) in the North Atlantic,
612 between a wind cubed and squared parameterizations (Wanninkhof and McGillis 1999 and
613 Wanninkhof 2014) in a) annual, b) DJF (Winter), c) MAM (Spring), d) JJA (Summer) e) SON
614 (Autumn). The gaps (white areas) are due to missing data, land and ice masks.
615

616 Figure 5. Monthly values air-sea fluxes of CO₂ (Pg month⁻¹) for the five parameterizations (eq. 4-8)
617 in a) North Atlantic, b) European Arctic.
618

619 Figure 6. Annual air-sea fluxes of CO₂ for the five (eq. 4-8) parameterizations as well as for
620 backscatter (default) and wind driven OceanFluxGHG parameterization normalized to flux values
621 of Nightingale et al. (2000) *k* parameterization (see text) in a) global, b) North Atlantic c) European
622 Arctic, d) Southern Ocean. Average values for all parameterization and standard deviations are
623 marked as vertical gray lines. .
624

625 Figure 7. Comparison of monthly values fluxes of air-sea CO₂ fluxes calculated with different *p*CO₂
626 datasets (Takahashi et al., 2009, SOCAT v. 1.5 and 2.0) using the same *k* parameterization
627 (Nightingale et al., 2000) in a) North Atlantic, b) European Arctic.
628

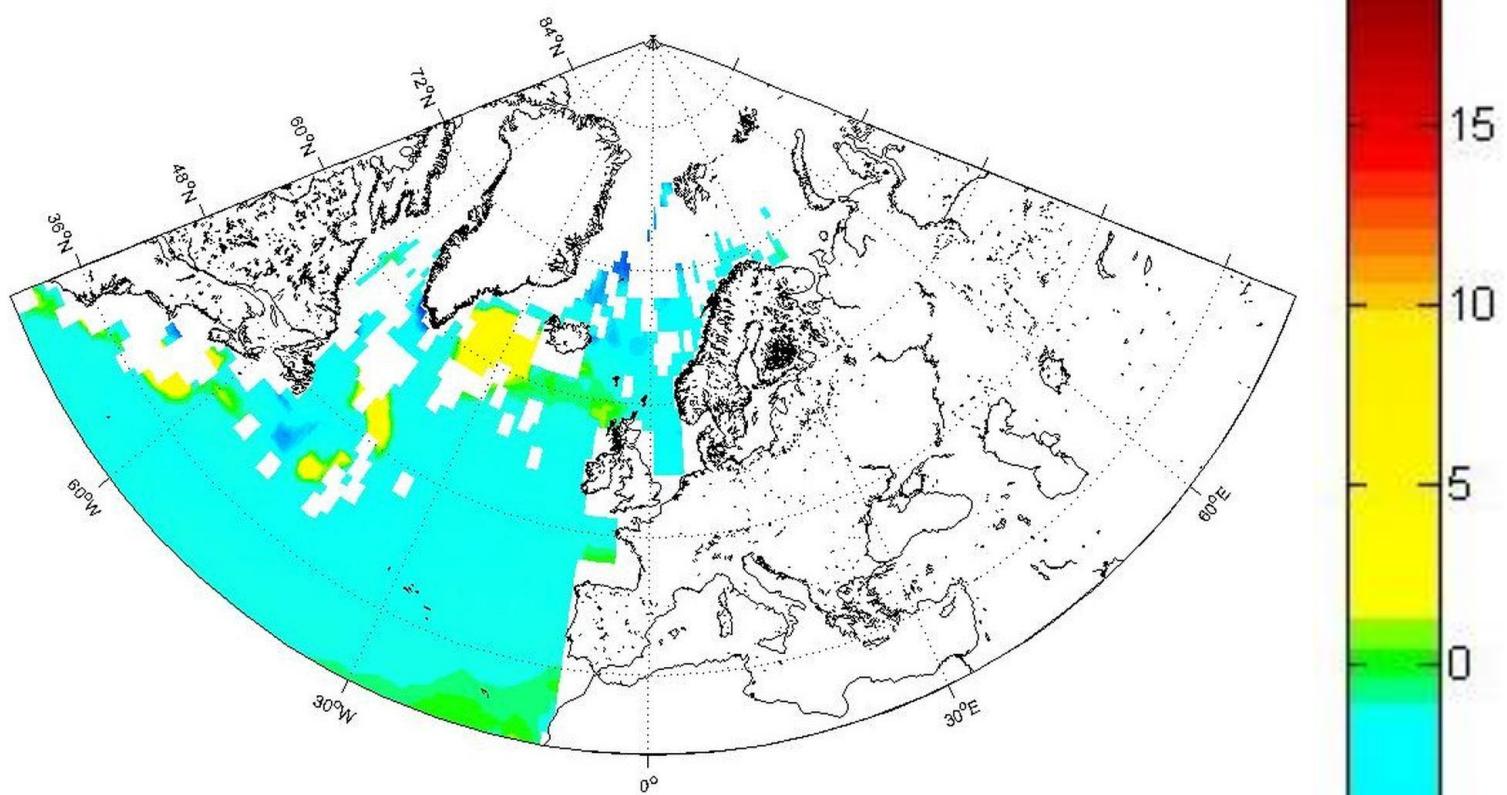
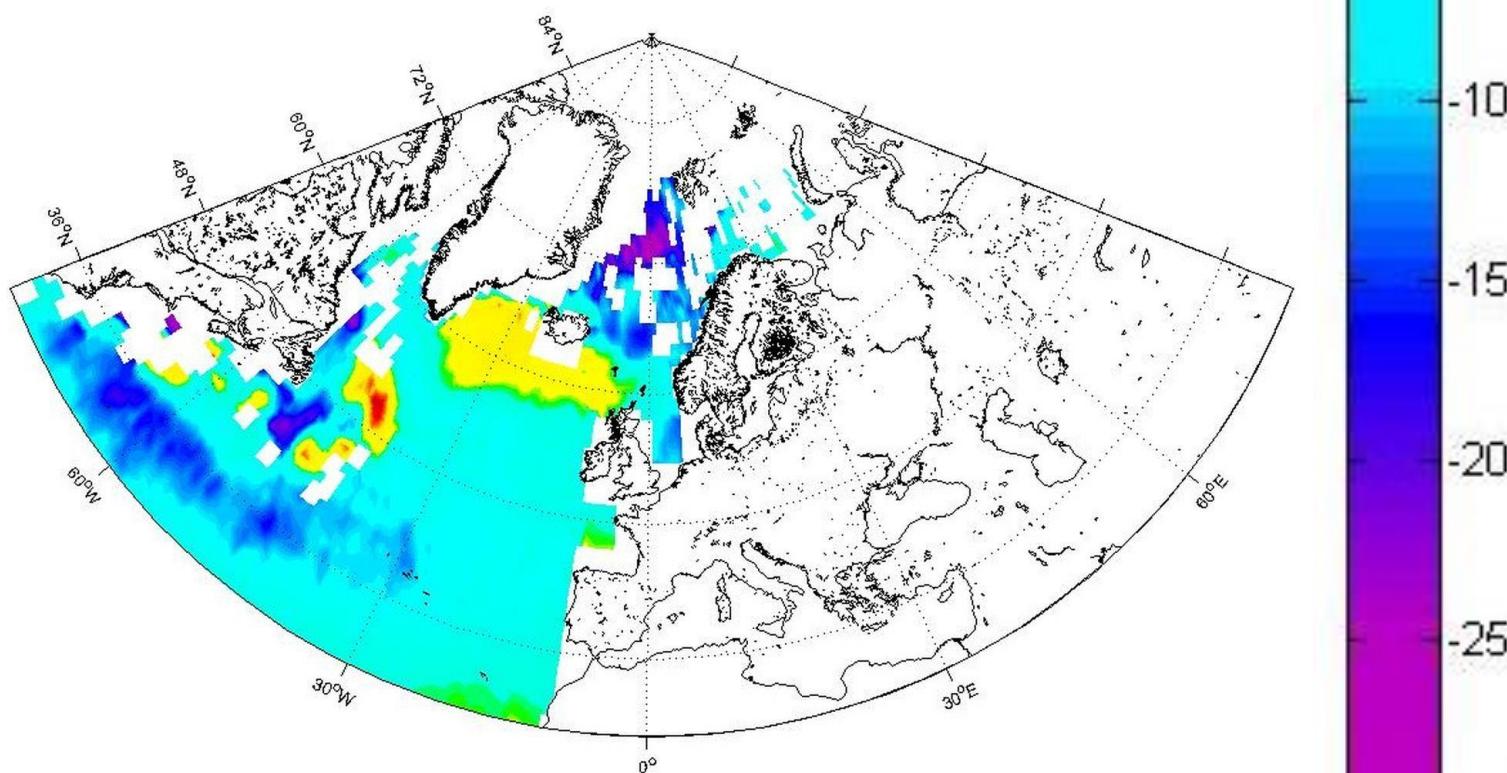

629 Figure 8. Different k660 parameterizations as a function of wind speed.
630

Table 1. Annual air-sea CO₂ fluxes (in Pg) using different *k* parameterizations. The values in parentheses are fluxes normalized to Nightingale *et al.*, 2000 (as in Fig. 6)

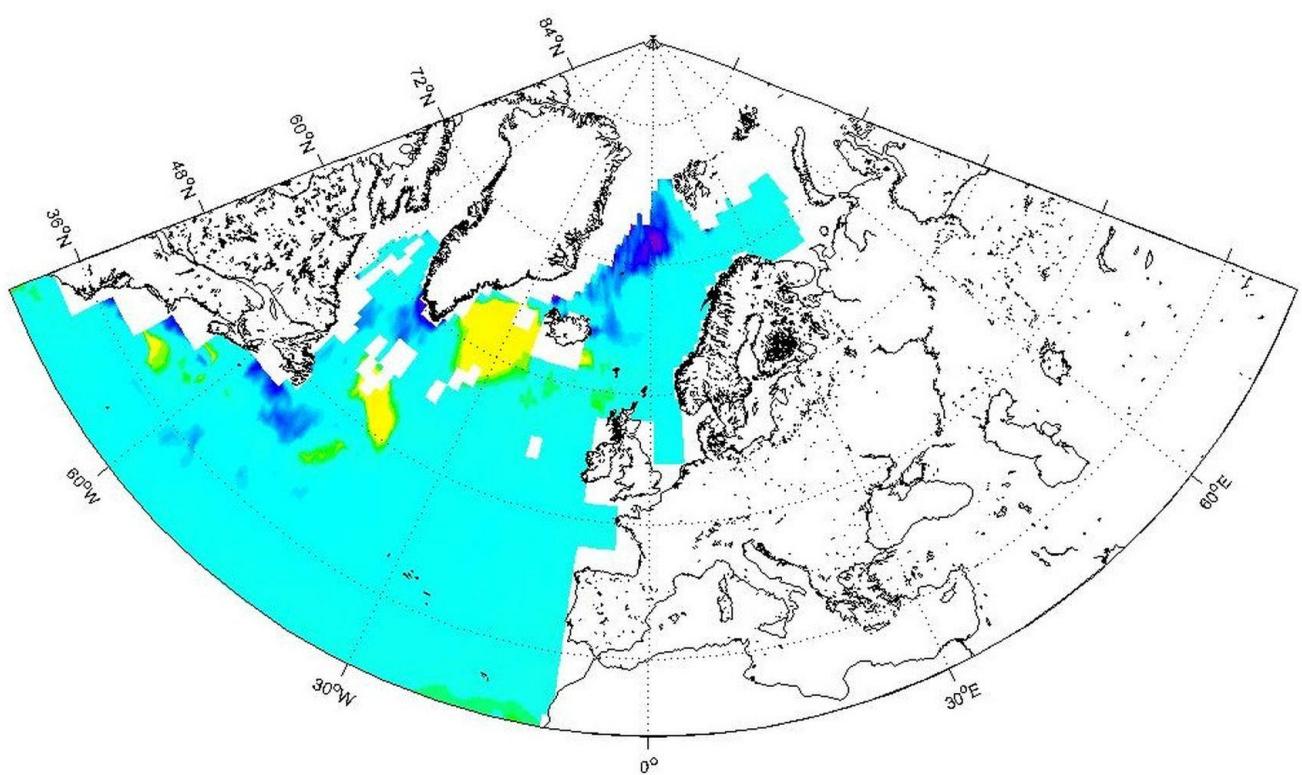
	Global	Arctic	North Atlantic	Southern Ocean
Nightingale <i>et al.</i> , 2000	-1.30 (1.00)	-0.102 (1.00)	-0.382 (1.00)	-0.72 (1.00)
Ho <i>et al.</i> , 2006	-1.42 (1.09)	-0.106 (1.04)	-0.402 (1.05)	-0.76 (1.06)
Wanninkhof and McGillis, 1999	-1.73 (1.33)	-1.130 (1.28)	-0.490 (1.29)	-0.93 (1.30)
Wanninkhof, 2014	-1.40 (1.08)	-0.105 (1.03)	-0.398 (1.04)	-0.76 (1.05)
McGillis <i>et al.</i> , 2001	-2.15 (1.65)	-0.147 (1.44)	-0.557 (1.46)	-1.08 (1.49)
OceanFlux GHG wind driven	-1.98 (1.52)	-0.138 (1.36)	-0.560 (1.47)	-1.14 (1.58)
OceanFluxGHG backscatter	-1.88 (1.44)	-0.130 (1.27)	-0.526 (1.38)	-1.09 (1.51)


634
635

a)

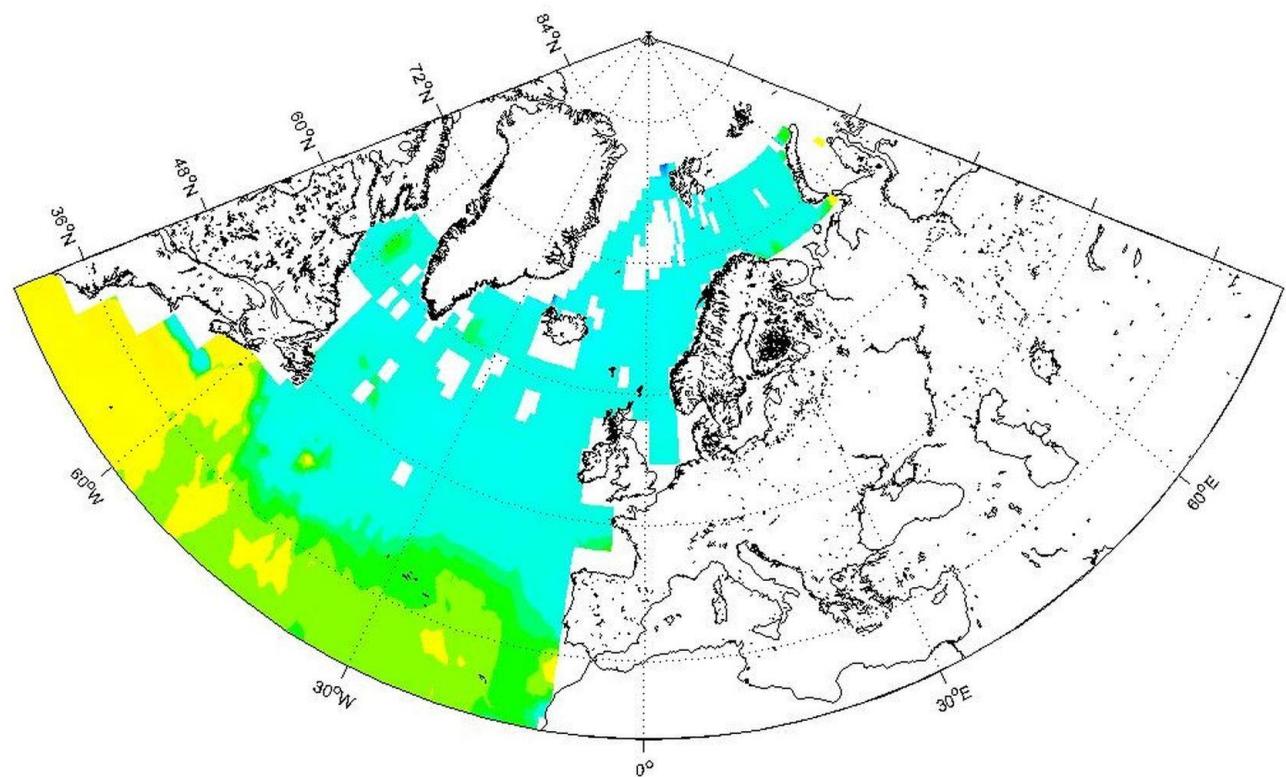
636
637

b)



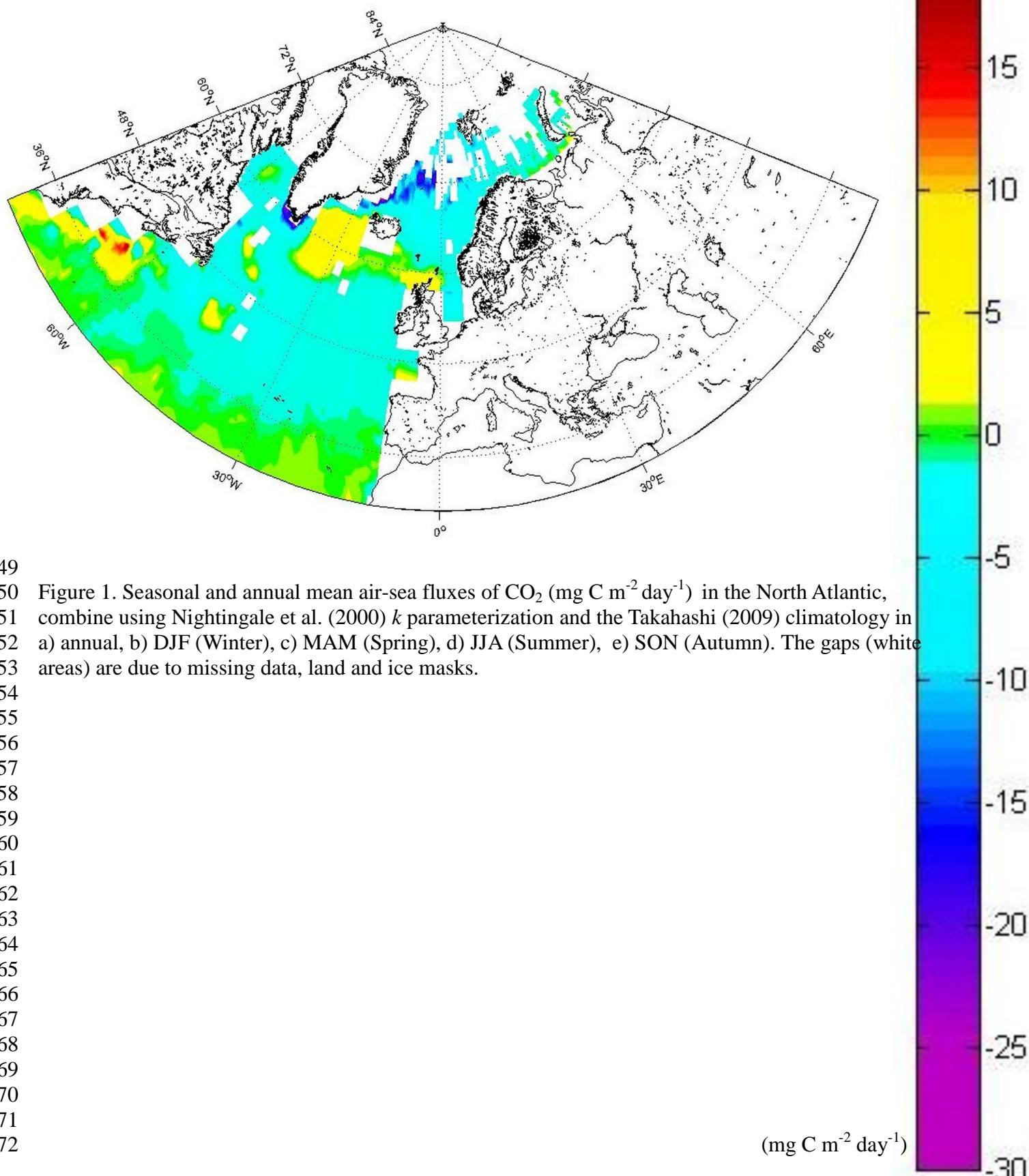
638
639

$(\text{mg C m}^{-2} \text{ day}^{-1})$


640
641

c)

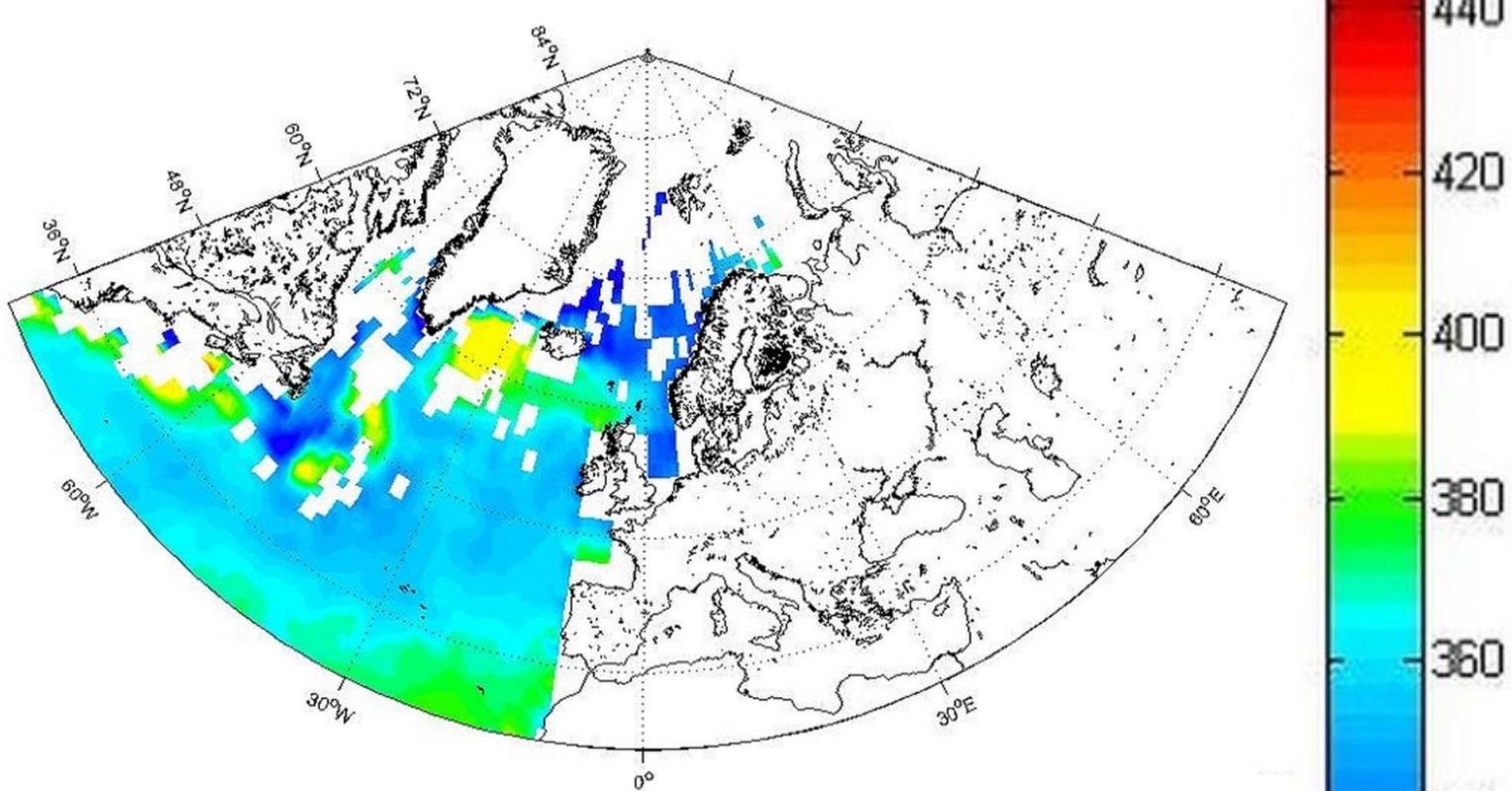
642
643


d)

644
645
646

$(\text{mg C m}^{-2} \text{ day}^{-1})$

647
648 e)

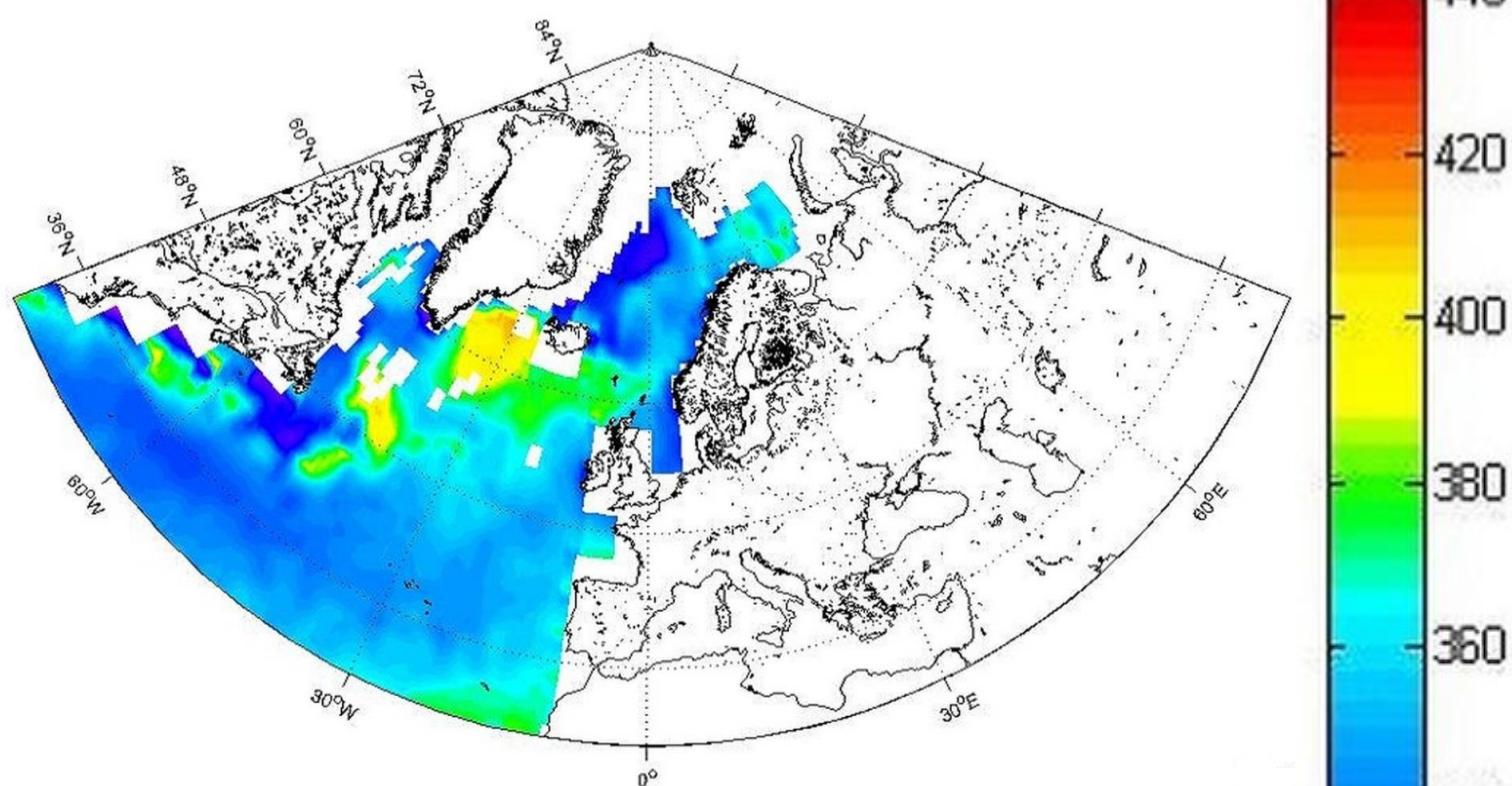


649
650 Figure 1. Seasonal and annual mean air-sea fluxes of CO_2 ($\text{mg C m}^{-2} \text{ day}^{-1}$) in the North Atlantic,
651 combine using Nightingale et al. (2000) k parameterization and the Takahashi (2009) climatology in
652 a) annual, b) DJF (Winter), c) MAM (Spring), d) JJA (Summer), e) SON (Autumn). The gaps (white
653 areas) are due to missing data, land and ice masks.

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

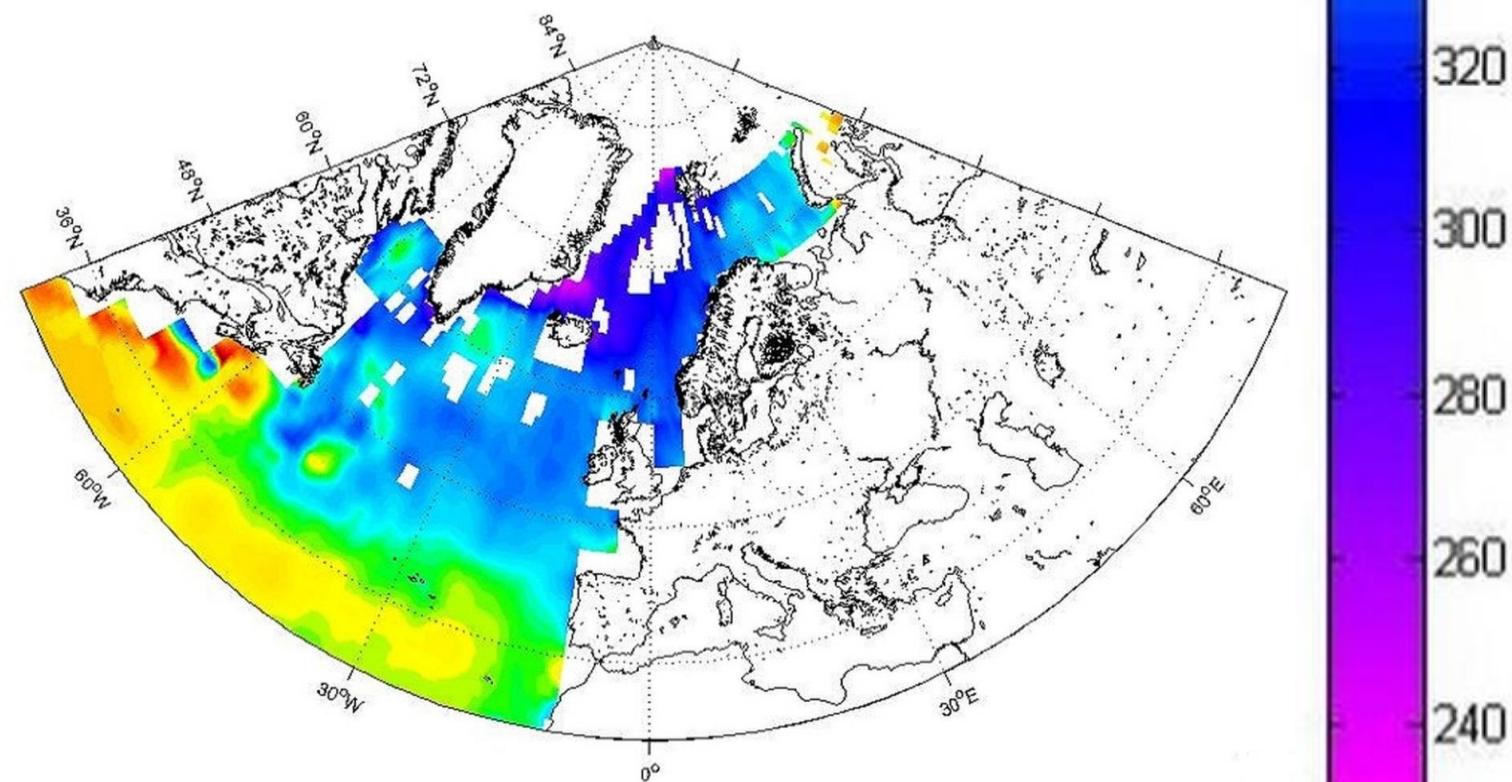
673
674

a)



677
678

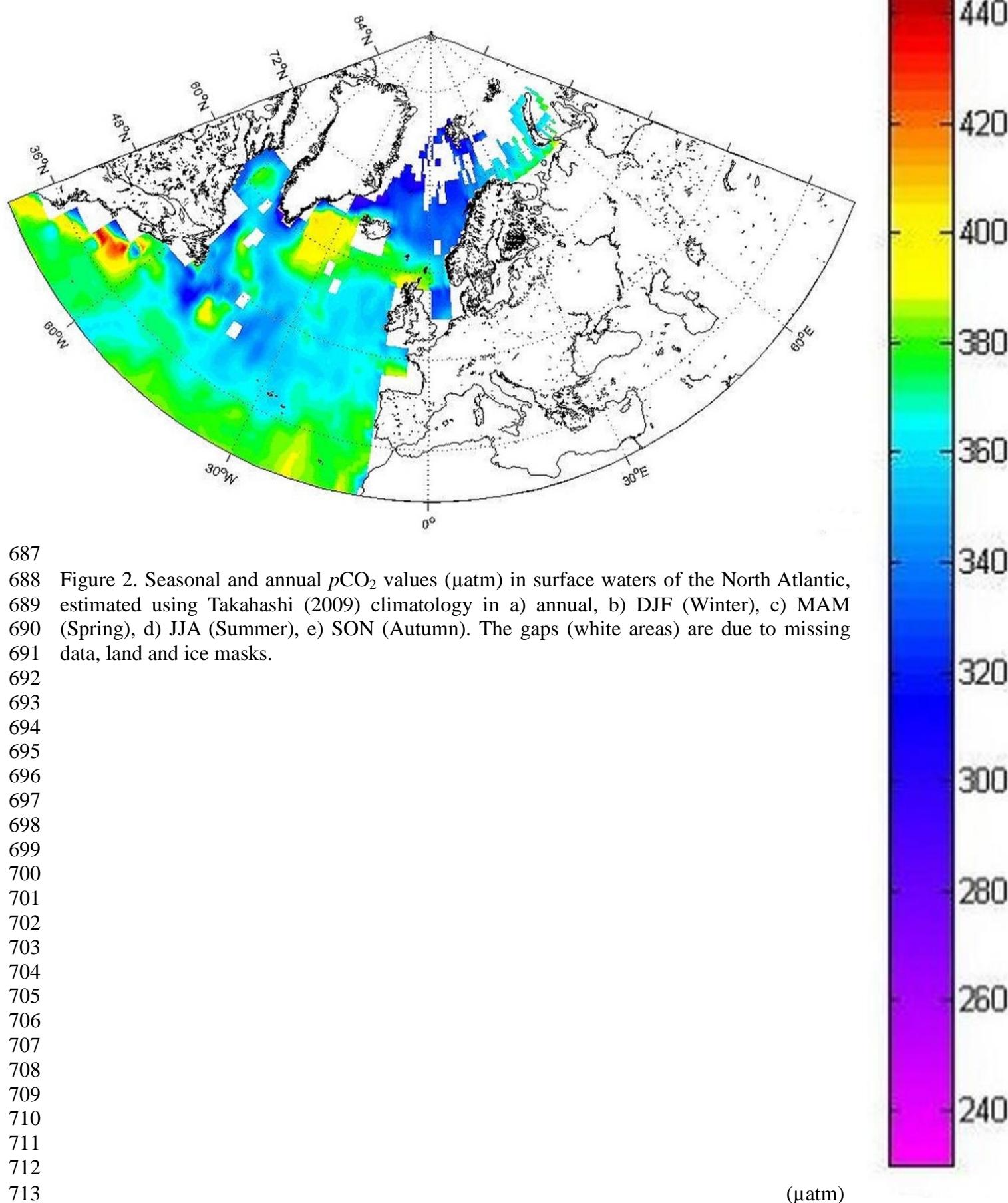
(μatm)


679
680

c)

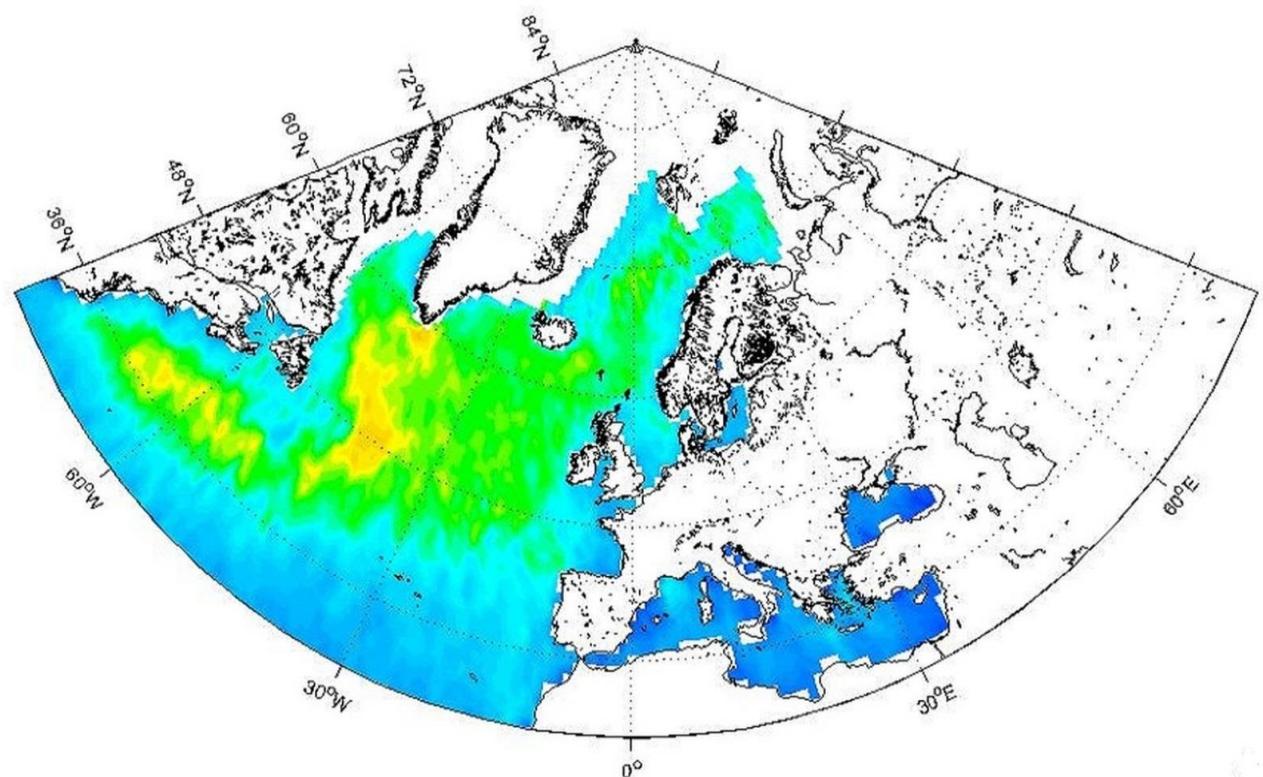
681
682

d)

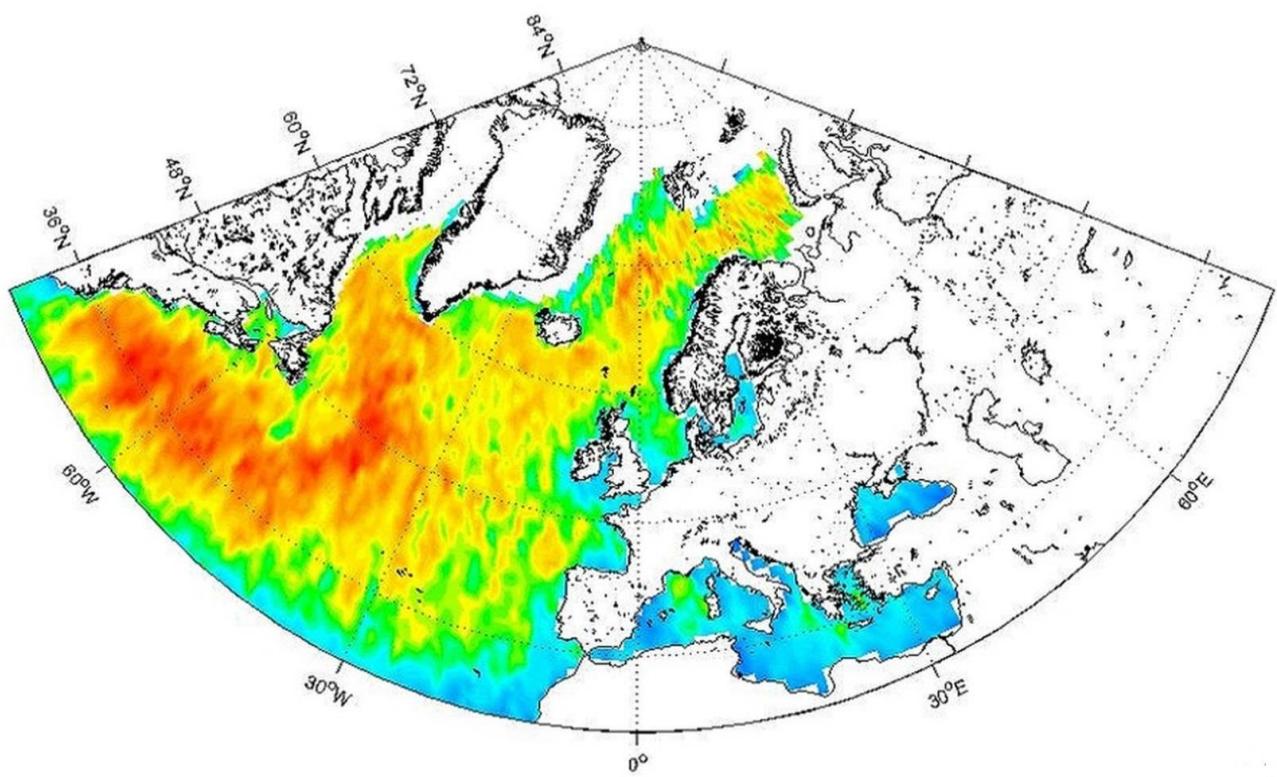


683
684

(μatm)


685
686

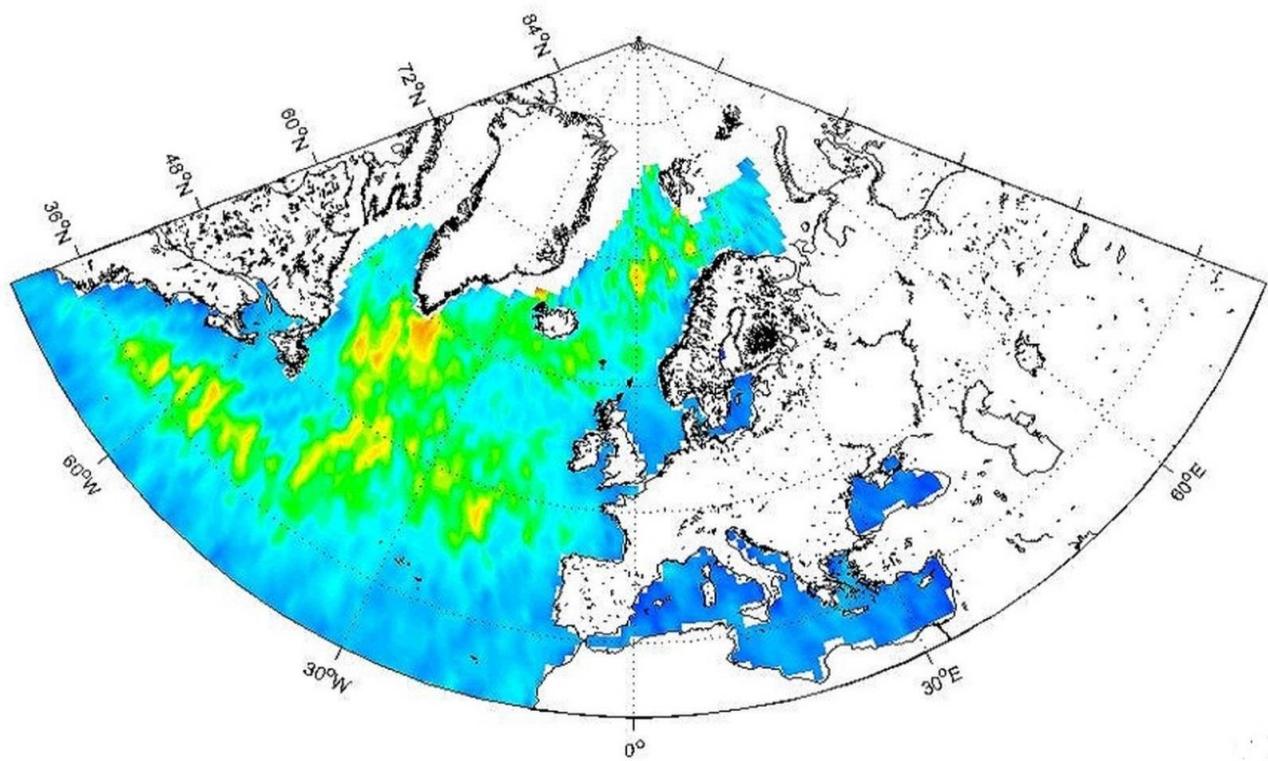
e)


714
715

a)

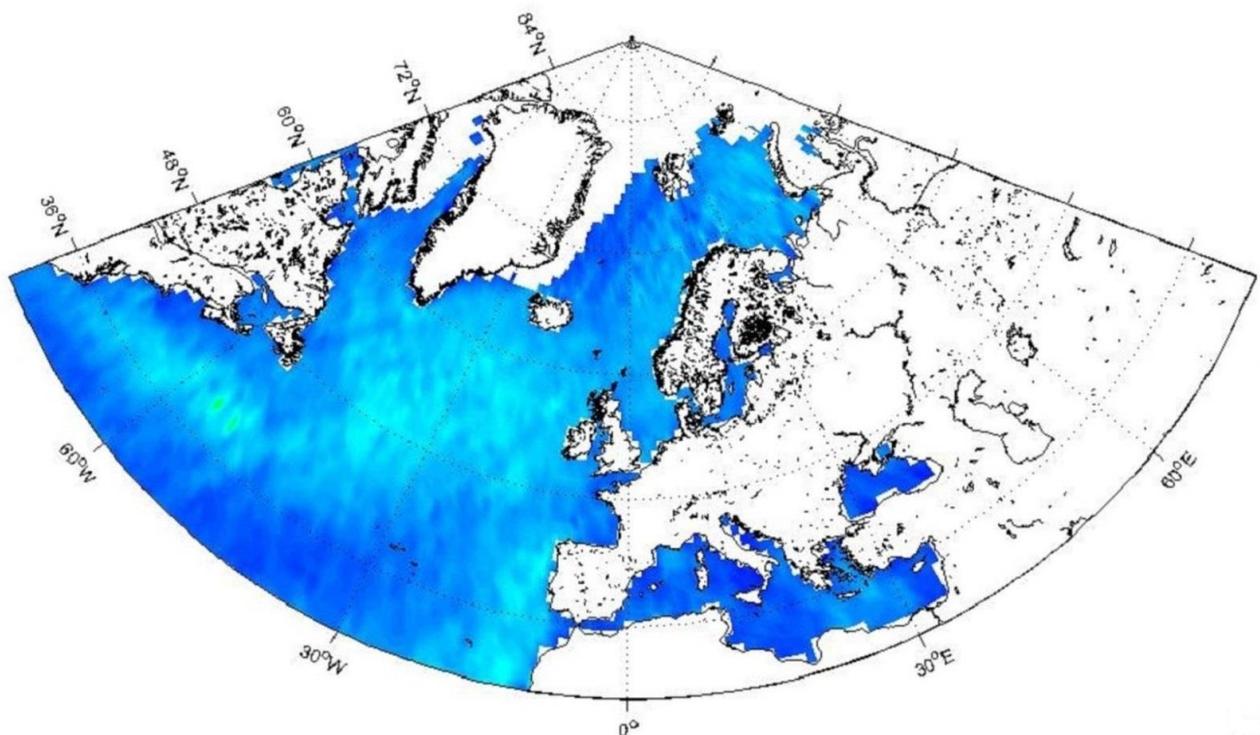
716
717

b)



718

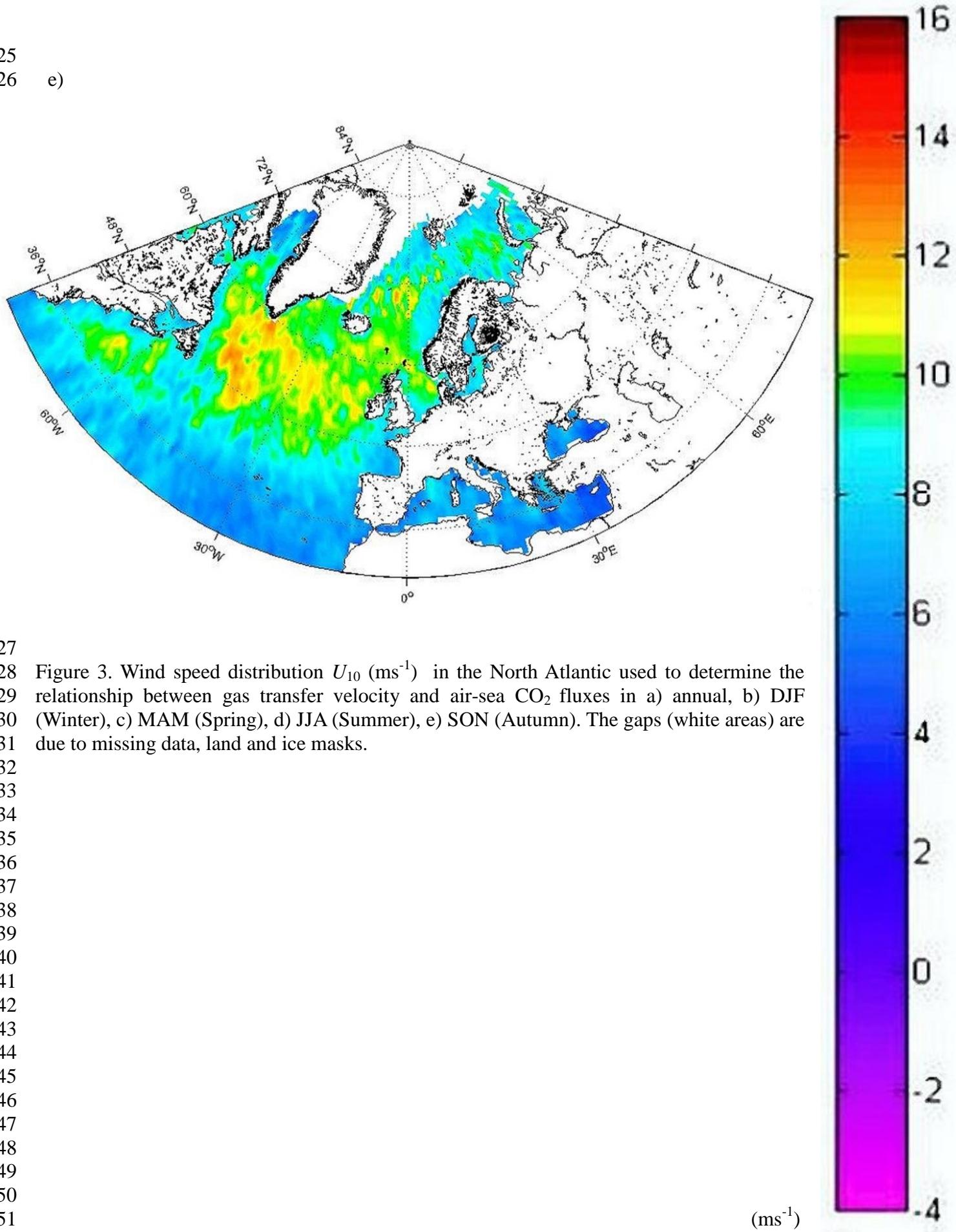
(ms^{-1})


719
720

c)

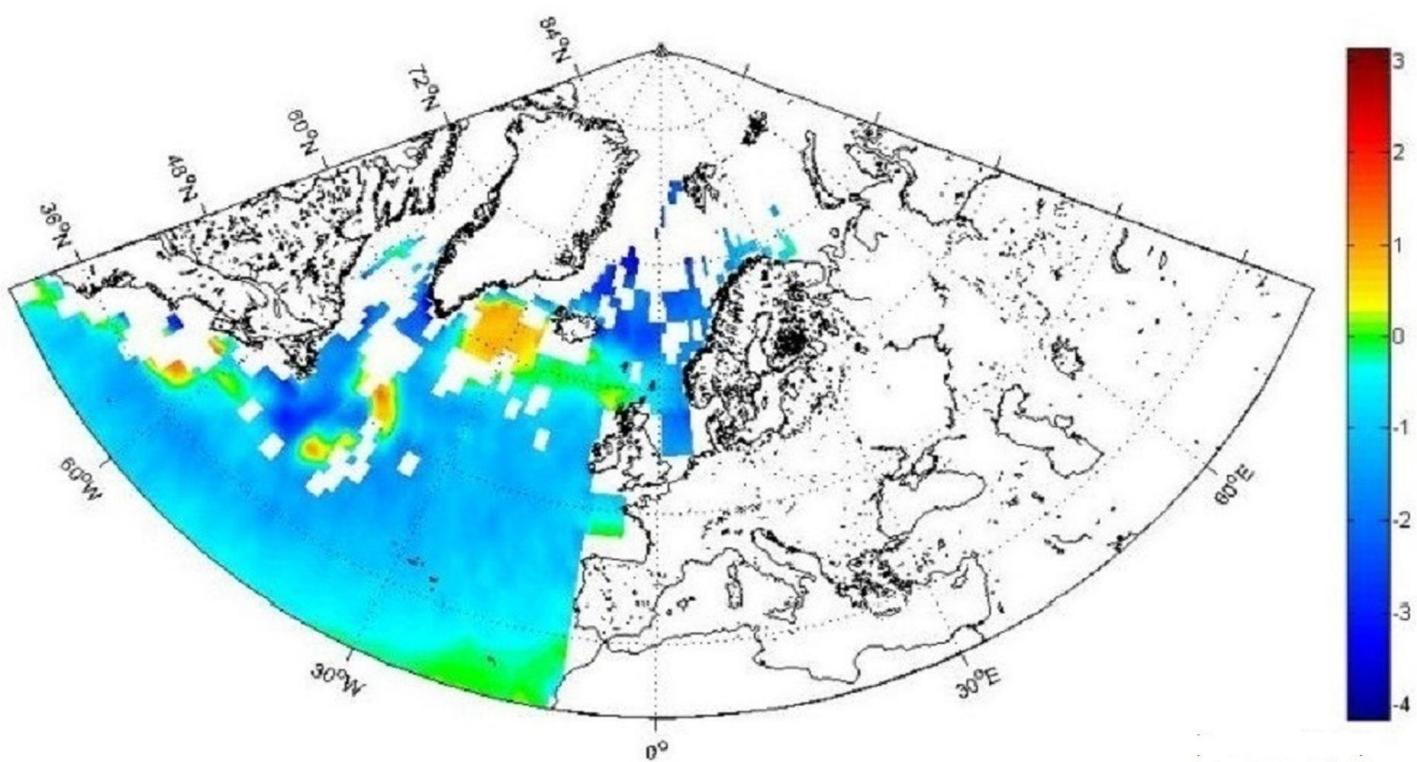
721
722
723

d)

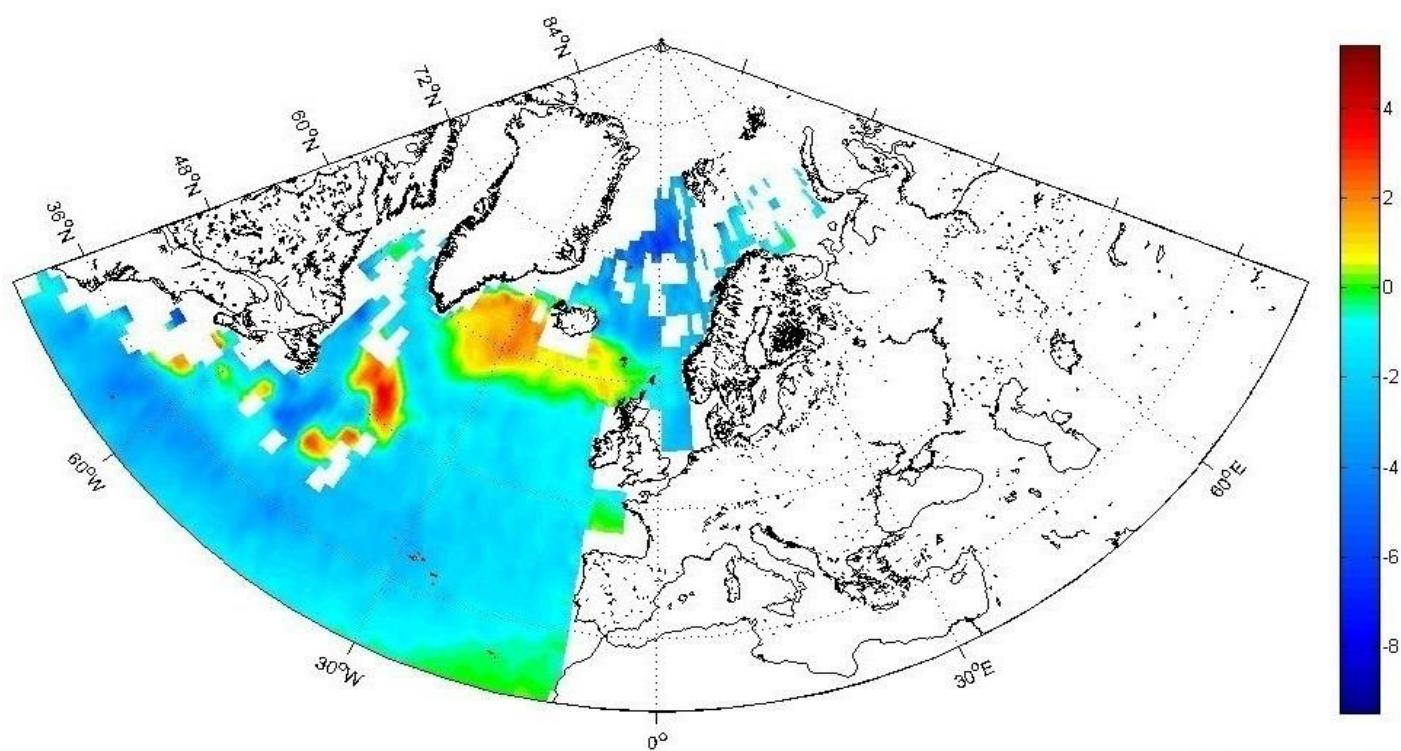


724

(ms^{-1})


725
726

e)

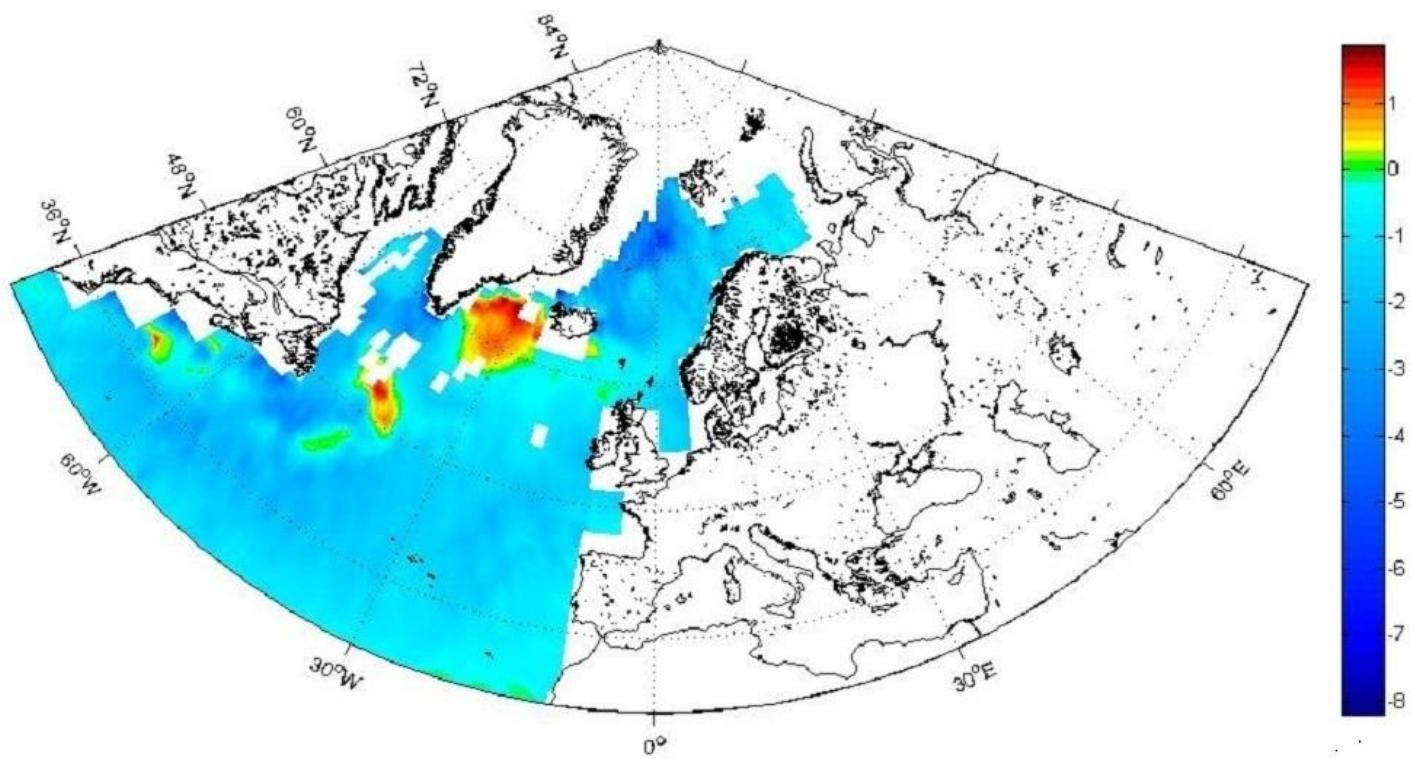

752

753 a)

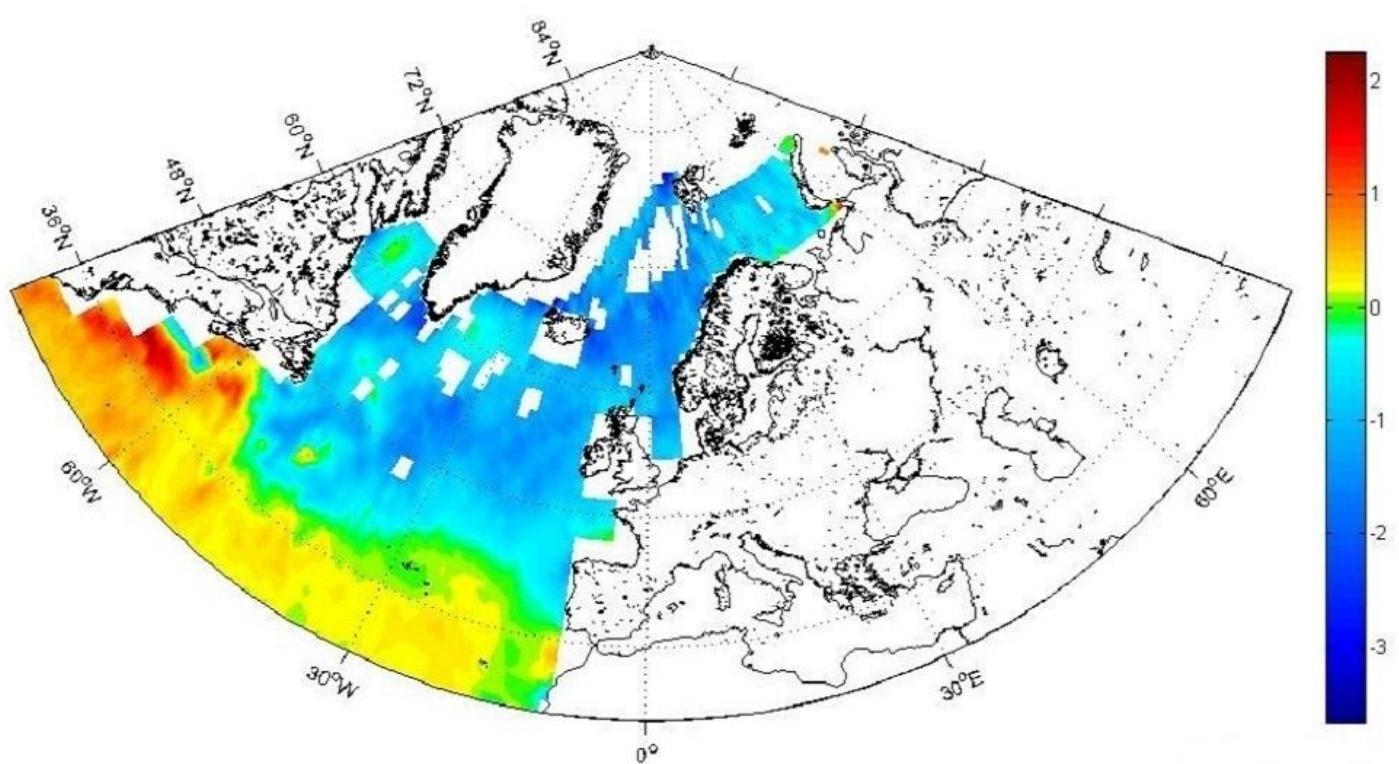
754

755 b)

 $(\text{mg C m}^{-2} \text{ day}^{-1})$

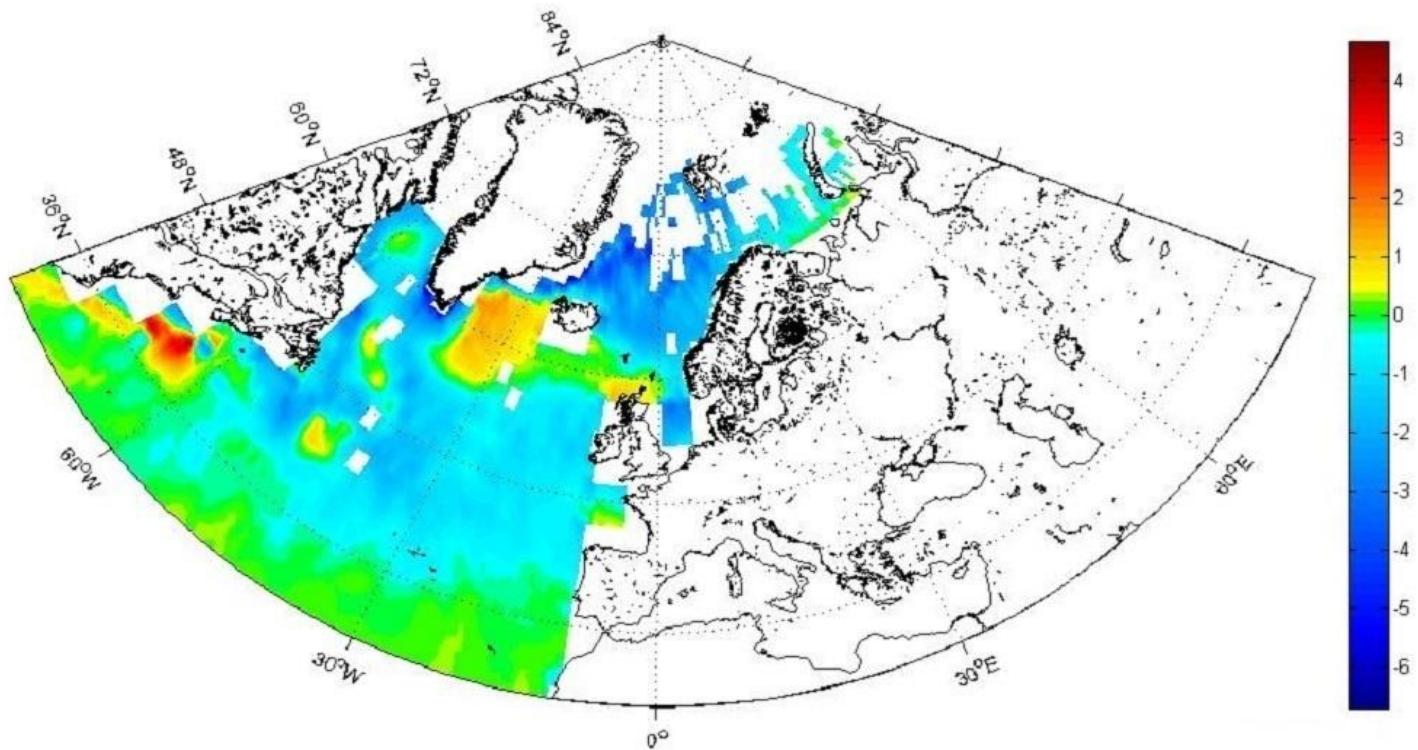

756

757


758

 $(\text{mg C m}^{-2} \text{ day}^{-1})$

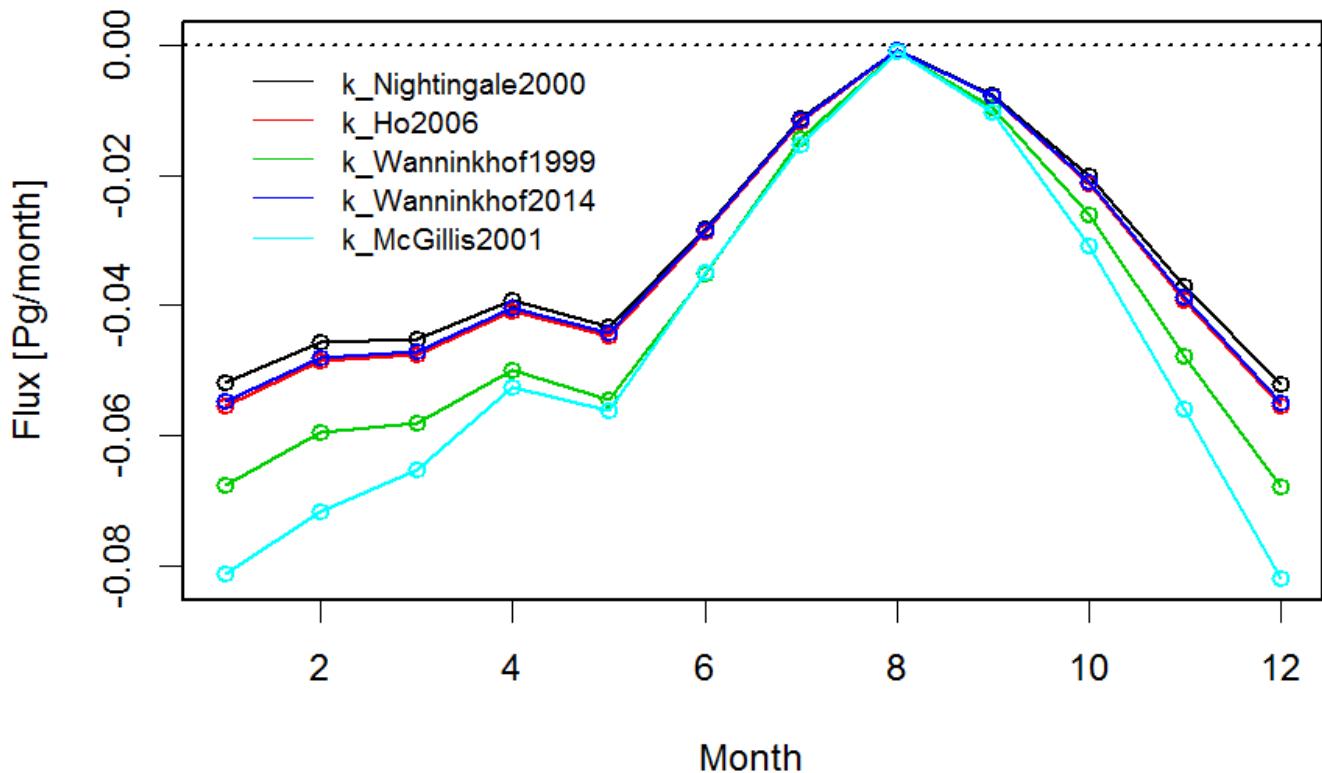
759
760 c)



$(\text{mg C m}^{-2} \text{ day}^{-1})$

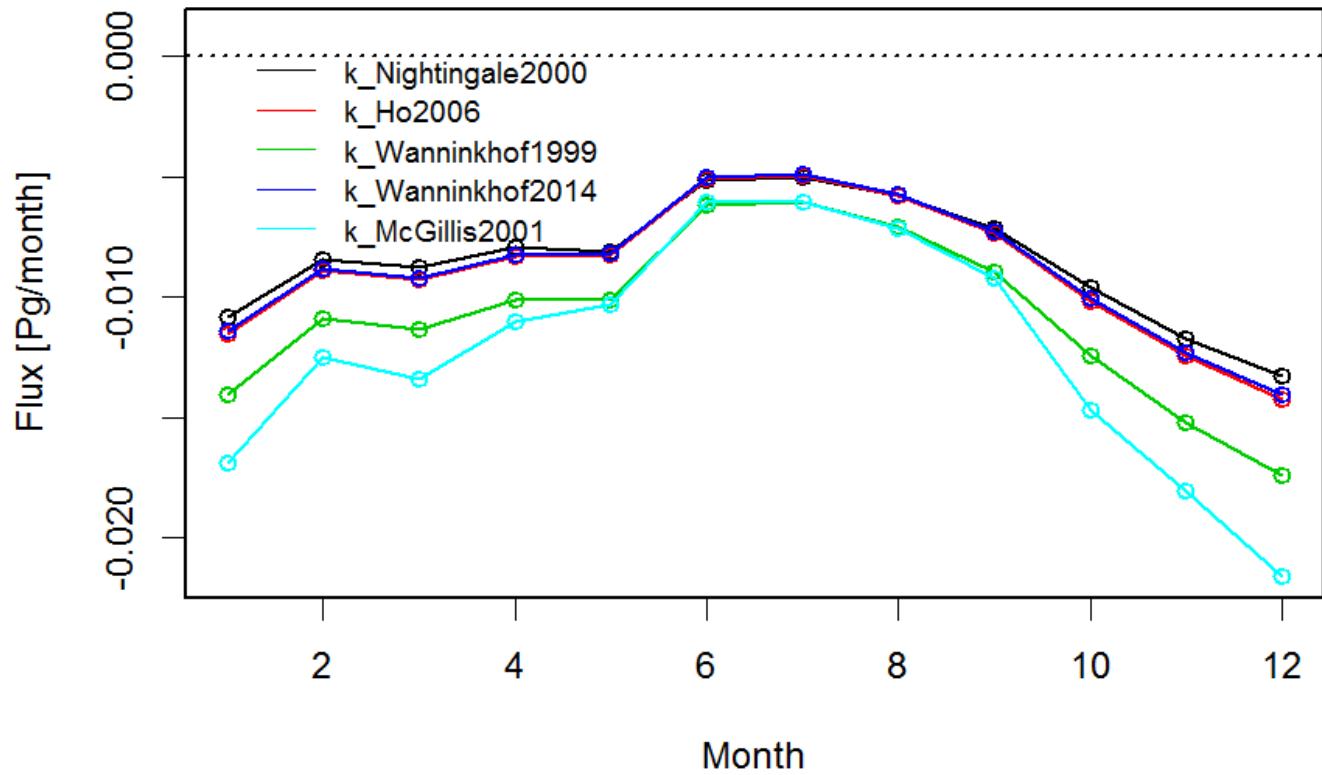
$(\text{mg C m}^{-2} \text{ day}^{-1})$

766
767 e)


768 (mg C m⁻² day⁻¹)

769

770 Figure 4. Differences maps for the air-sea CO₂ fluxes (mg C m⁻² day⁻¹) in the North Atlantic,
771 between a wind cubed and squared parameterizations (Wanninkhof and McGillis 1999 and
772 Wanninkhof 2014) in a) annual, b) DJF (Winter), c) MAM (Spring), d) JJA (Summer), e) SON
773 (Autumn). The gaps (white areas) are due to missing data, land and ice masks..


774
775

a)

776
777

b)

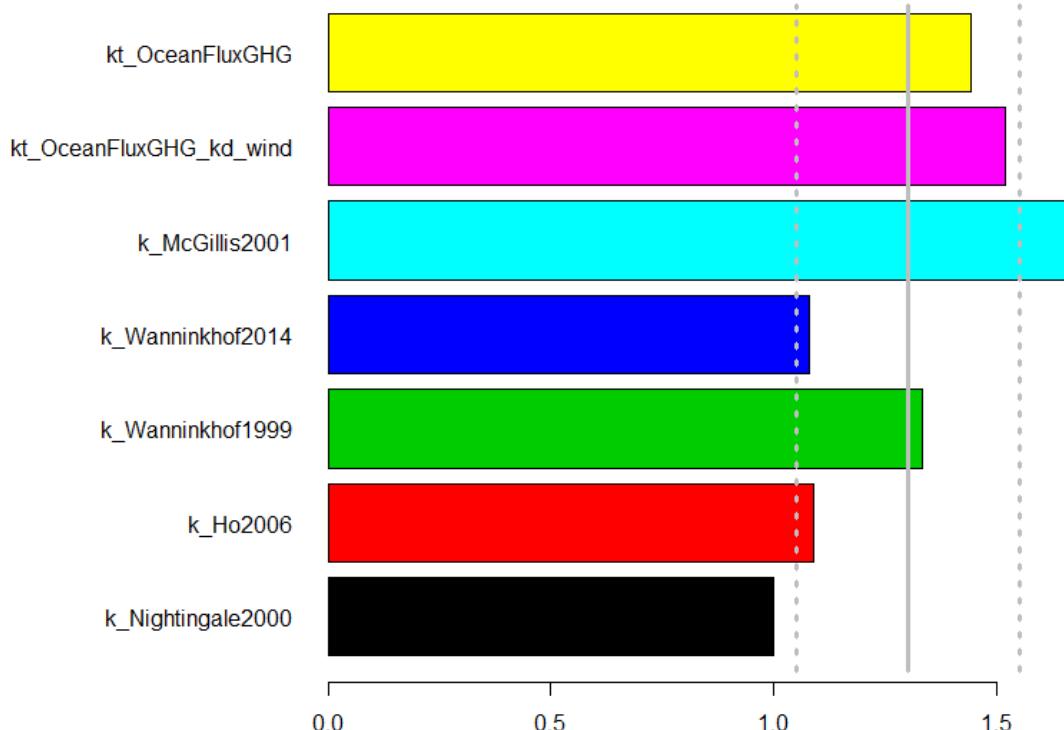
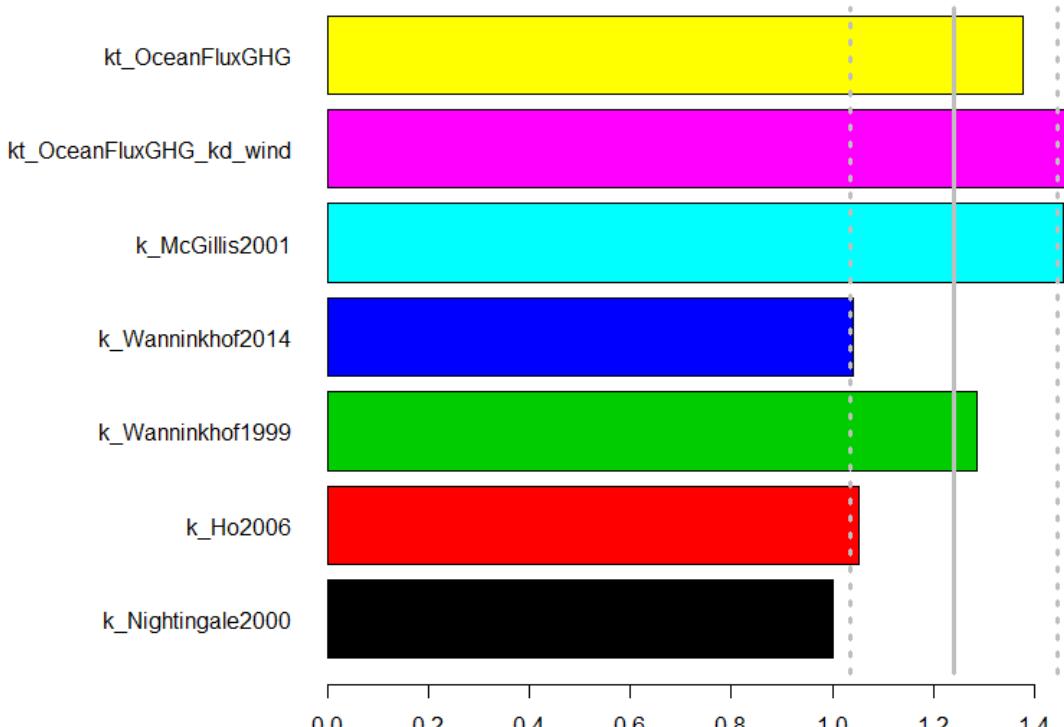

778
779
780
781

Figure 5. Monthly values air-sea fluxes of CO₂ (Pg/month) for the five parameterizations (eq. 4-8) in a) North Atlantic, b) European Arctic.

782
783

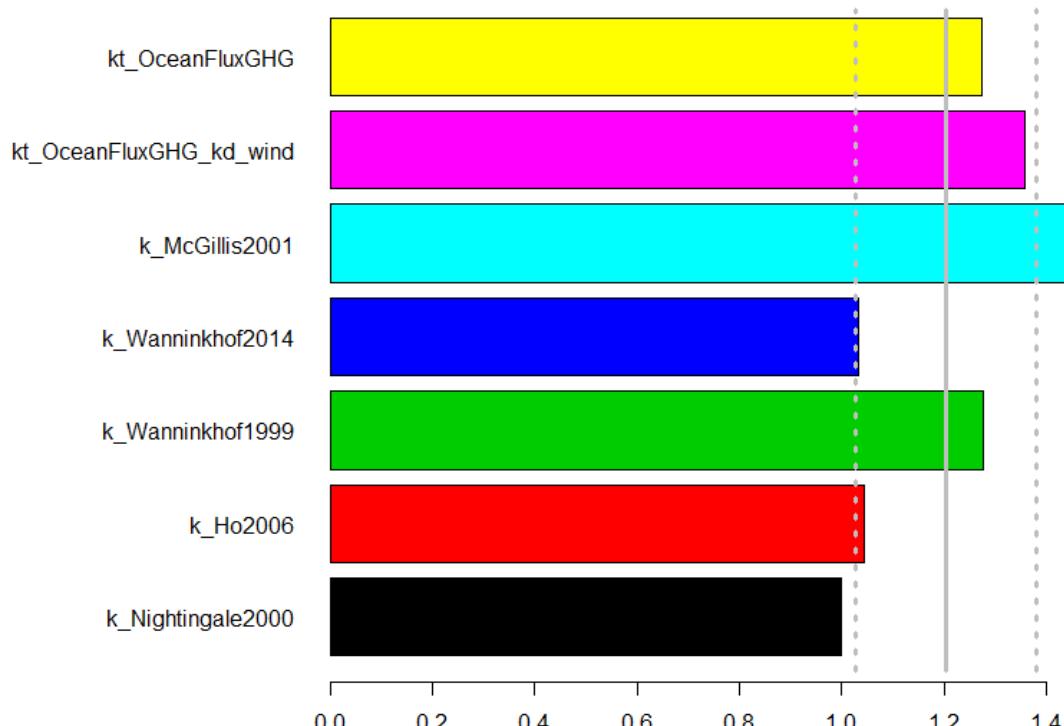
a)


Annual net global CO₂ flux normalized to N2000

784
785
786

b)

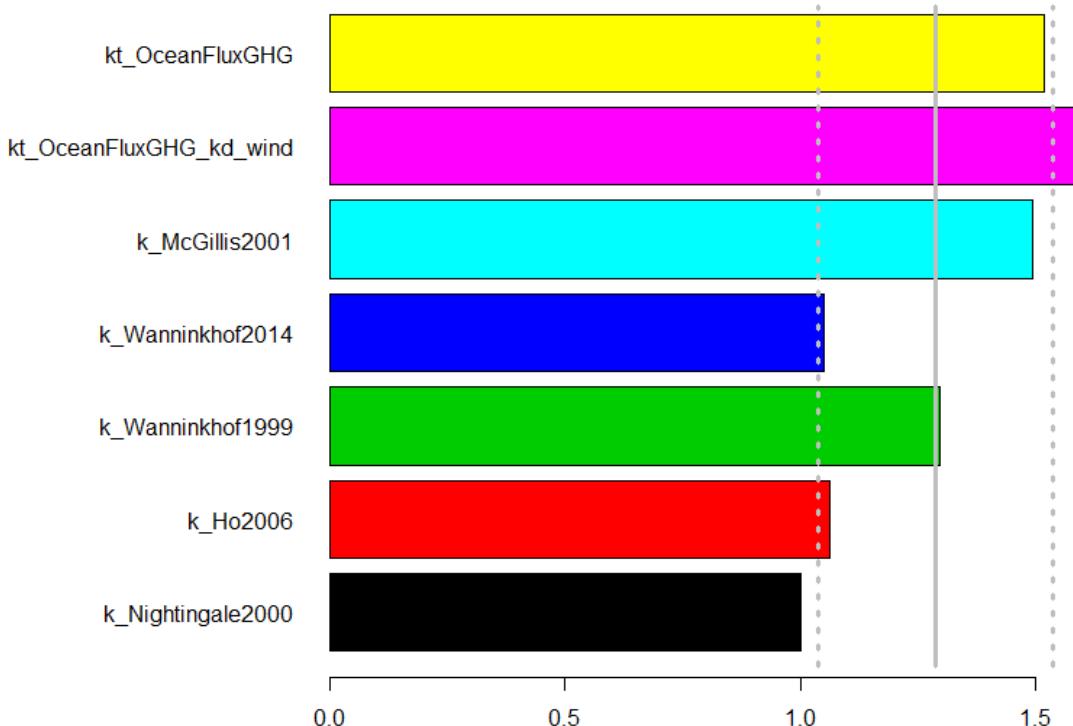
Annual net North Atlantic CO₂ flux normalized to N2000



787
788
789
790

791
792

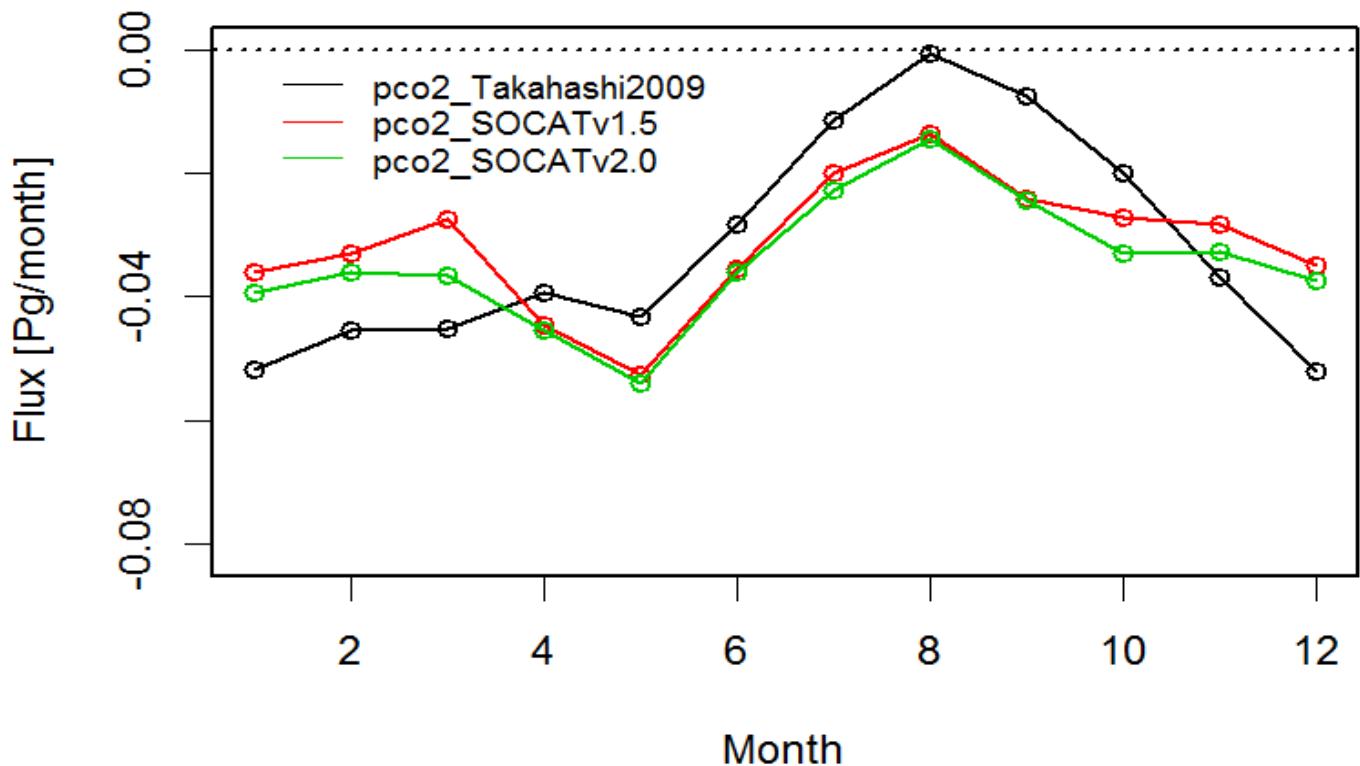
c)


Annual net Arctic CO₂ flux normalized to N2000

793
794

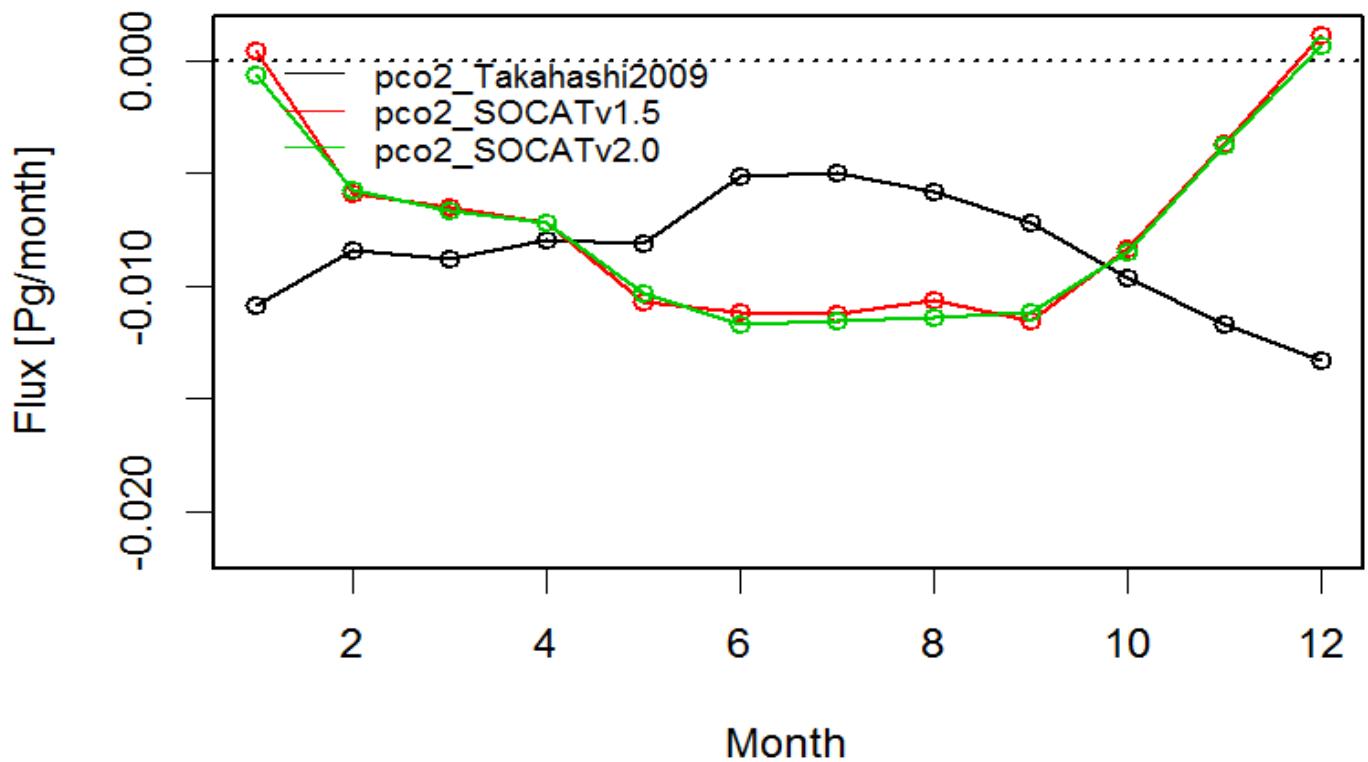
d)

Annual net Southern Ocean CO₂ flux normalized to N2000



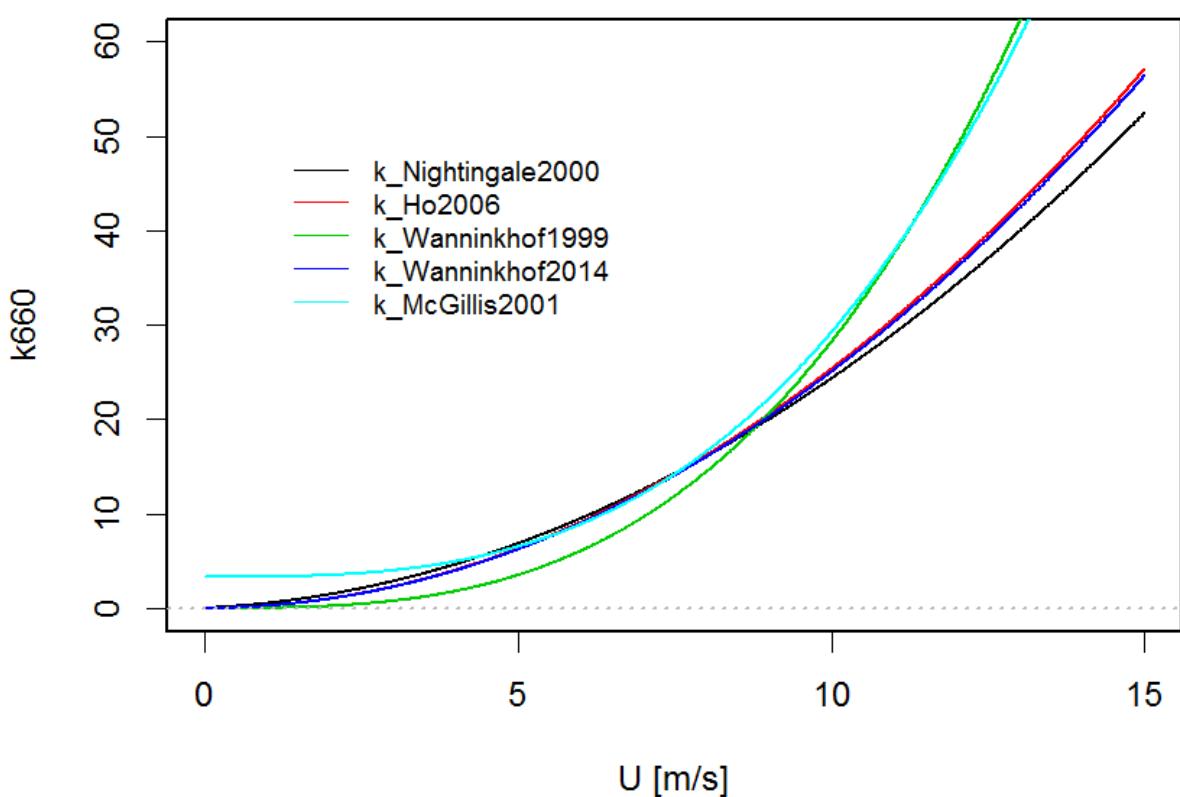
795
796
797
798

Figure 6. Annual air-sea fluxes of CO₂ for the five (eq. 4-8) parameterizations as well as for backscatter (default) and wind driven OceanFluxGHG parameterization normalized to flux values of Nightingale et al. (2000) k parameterization.


799
800

a)

801
802


b)

803
804
805
806

Figure 7. Comparison of monthly values fluxes of air-sea CO₂ fluxes calculated with different $p\text{CO}_2$ datasets (Takahashi et al., 2009, SOCAT v. 1.5 and 2.0) using the same k parameterization (Nightingale et al., 2000) in a) North Atlantic, b) European Arctic.

807
808

809
810

Figure 8. Different k_{660} parameterizations as a function of wind speed.