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Abstract 12 

A fifteen-year (1997-2012) time series of chlorophyll-a (CHL) in the Baltic Sea, based on merged 13 

multi-sensor satellite data were analysed. Several available CHL algorithms were sea-truthed 14 

against the largest in-situ publicly available CHL dataset ever used for calibration and validation 15 

over the Baltic region. To account for the known biogeochemical heterogeneity of the Baltic, 16 

matchups were calculated for three separate areas: (1) the Skagerrak and Kattegat, (2) the Central 17 

Baltic, including the Baltic Proper and the gulfs of Riga and Finland, and (3) the Gulf of Bothnia. 18 

Similarly, within the operational context of the Copernicus Marine Environment Monitoring 19 

Service (CMEMS) the three areas were also considered as a whole in the analysis. In general, 20 

statistics showed low linearity. However, a bootstrapping-like assessment did provide the means 21 

for removing the bias from the satellite observations, which were then used to compute basin 22 

average time series. Resulting climatologies confirmed the three regions to display completely 23 

different CHL seasonal dynamics. The Gulf of Bothnia displays a single CHL peak during spring, 24 

whereas in the Skagerrak and Kattegat the dynamics is less regular and made of highs and lows 25 

during winter towards a small bloom in spring and a minimum in summer. In the Central Baltic, 26 

CHL follows a dynamics of a mild spring bloom followed by a much stronger bloom in summer. 27 

Surface temperature data are able to explain a variable (with years) fraction of the intensity of the 28 

summer bloom, in the Central Baltic. 29 

  30 
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1. Introduction 31 

Global to regional monitoring of the surface ocean is believed to be an essential element for the 32 

sustainability of the ocean resources. In Europe, the Ocean Colour (OC) Thematic Assembly Centre 33 

(TAC) is the entity devoted to produce and provide ocean colour remote sensing data; and this is 34 

performed in the context of the Copernicus Marine Environment Monitoring Service (CMEMS). OC 35 

data are currently provided at both global and regional scales. These two scales refer to both the 36 

geographical limits and the algorithms used to process the data. The OCTAC is thus meant to 37 

provide an added value by not only zooming the data from the global domain to the single 38 

regional European seas, but also and especially for the application of tailored ad hoc regional 39 

algorithms for chlorophyll (CHL) retrieval. The present work aims at assessing the performance of 40 

existing CHL algorithms for operational applications over the Baltic Sea. CHL is routinely measured 41 

over the world oceans with two main kinds of algorithms: i) those using the blue-to-green 42 

reflectance ratio (e.g., empirical) and ii) the semi-analytical, e.g., those using the inherent optical 43 

properties to infer the chlorophyll concentration. The former builds on the common experience 44 

that water colour spans from blue to green as CHL increases, in open ocean (Case I waters). The 45 

latter are mathematically more complex and thus based on a larger number of assumptions; 46 

nevertheless, they are believed to be more suited for optically complex waters (known as Case II 47 

waters) where the colour of the ocean is determined by several non-covarying constituents, such 48 

as CHL, Coloured Dissolved Organic Matter (CDOM) and non-algal particles. Both types of 49 

algorithms are very sensitive to the in-situ observations used to calibrate them, thus providing the 50 

motivation of the regionalization approach adopted within CMEMS. Those based on neural 51 

network constitute a third kind of algorithms for CHL retrieval whose limitations are, in theory, the 52 

same as the first two: strong dependency on the training datasets that limit their overall 53 

applicability. Here, all three kinds of algorithms are tested. 54 
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The Baltic Sea is a semi-enclosed basin bordering the North Sea in correspondence of the Danish 55 

archipelago. Skagerrak and Kattegat are generally not associated with the Baltic Sea. However, the 56 

Baltic domain that is defined within CMEMS extends the eastern limit to the meridian 9.24 °E, thus 57 

including most of the Skagerrak and the entire Kattegat basins. The Baltic is characterized by 58 

significant CDOM concentration due to high river runoff. It is known that high CDOM 59 

concentration reduces the water-leaving radiance making the seawater darker (Berthon and 60 

Zibordi, 2010), and this constitutes one of the main challenges for ocean colour algorithms to work 61 

properly over the Baltic Sea (Mélin and Vantrepotte, 2015). Despite the fact that the Baltic Sea is 62 

widely recognized as a challenging test bed for remote sensing, literature on calibration and 63 

validation of CHL algorithms is not abundant. Standard algorithms are those provided by the space 64 

agencies for global and operational applications. The application of these algorithms to the in-situ 65 

Remote Sensing Reflectance (Rrs) collected in 707 stations off Poland between 1993 and 2001 66 

revealed uncertainties exceeding 100% when the output was compared against collocated CHL 67 

measurements (Darecki and Stramski, 2004). Even less encouraging results were obtained when 68 

four standard CHL algorithms were applied to Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) 69 

images between 2000 and 2001 (HELCOM, 2004). Matchup with 75 CHL profiles across all the 70 

Baltic Sea, with predominance of Swedish coastal waters, gave virtually null correlation, with 71 

satellite CHL underestimating the in-situ CHL by 180% to 500%, in contradiction with Darecki and 72 

Stramski (2004). More recently, the Case II Regional, Boreal, and Eutrophic MERIS processors were 73 

applied to images between 2006 and 2009 (Attila et al., 2013). Matchup with 312 stations in the 74 

Gulf of Finland and in the central Baltic Sea showed large CHL overestimation. However, when the 75 

standard bio-optical relationships of these processors were tuned with the local in-situ CHL, the 76 

bias did reduce significantly (Fig. 6 in Attila et al., 2013). The heterogeneity of results combined 77 

with the limited spatial and temporal representativeness of the in-situ observations used in the 78 
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mentioned data comparisons prompts for further investigation. This work aims at filling this gap by 79 

using the largest and publicly available in-situ dataset ever used over the Baltic Sea for validation 80 

activities. 81 

There is an extensive literature on the biogeochemistry of the Baltic Sea and its relation to physics. 82 

River outflows release large amounts of organic matter, which sinks to the bottom and lowers the 83 

oxygen concentration leading to large amounts of phosphate to be released by the sediment and 84 

upwelled through complex mixing processes (Reissmann et al., 2009). In spring, a nutrient-85 

enriched hypolimnion and warmer temperatures trigger diatom and dinoflagellate blooms, 86 

depleting nitrogen. In summer, nitrogen-fixing cyanobacteria take advantage of the relatively 87 

phosphate-rich, calm and warm surface waters, producing another bloom (Reissmann et al., 88 

2009). The Central Baltic Sea is characterized by summer blooms of cyanobacteria that are known 89 

to have buoyancy regulation ability (e.g., N. Spumigena and Aphanizomenon sp., Ibelings et al., 90 

1991) and that, under calm conditions, can accumulate at the sea surface (Ploug, 2008). 91 

Cyanobacteria blooms are commonly observed in the central Baltic Proper but not in the 92 

Skagerrak and Kattegat nor in the Gulf of Bothnia (Wasmund and Uhlig, 2003). Skagerrak and 93 

Kattegat are subject to much higher influence from the North Sea, so that the phytoplankton 94 

dynamics, here, is expected to be different than that of the Baltic Sea. Thus there is a strong need 95 

for the calibration and validation of the proposed algorithms to take account of the complex 96 

morphology and biogeochemistry of the basin. Algorithms are then tested in four geographical 97 

areas: (1) Skagerrak and Kattegat, (2) the Baltic Proper and the gulfs of Riga and Finland, here 98 

referred to as “Central Baltic”, (3) the Gulf of Bothnia, and (4) the entire area (1 to 3). 99 

Ocean colour has cloud cover as additional problem, which is particularly high over northern 100 

Europe. To increase the spatial coverage of daily products, the International Ocean-Colour 101 
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Coordinating Group (IOCCG) recommended the merging of ocean colour data from multiple 102 

missions (IOCCG, 2007). At European level, the Climate Change Initiative (CCI) program (www.esa-103 

oceancolour-cci.org) and the Globcolour (www.globcolour.info) project followed this 104 

recommendation and reprocessed archived data from various medium-resolution sensors. Here, 105 

the CCI-derived Rrs are used as input to the CHL algorithms for the comparison exercise (see 106 

section 2.1 for their description). One of the limitations of this approach is given by the fact that 107 

the CCI does not include any bands in the near-infrared, which are known to be better suited than 108 

the blue-green for Case II waters (Odermatt et al., 2012). On the other hand, merged data spans 109 

for longer time periods (1997-2012) than any of the individual sensors alone and provide higher 110 

coverage on a daily basis. 111 

Applications of remote sensing in the Baltic Sea have been mainly focused on a few main topics: 112 

cyanobacteria blooms (Reinart and Kutser, 2006), light penetration (Pierson et al., 2008) and 113 

management of various coastal areas (Kratzer et al., 2008). A good overview of such different 114 

applications can be found in Siegel and Gerth (2008). Long-term multisensor satellite data were 115 

recently used to develop an indicator of surface cyanobacteria accumulation over defined Baltic 116 

regions for trend analysis (Kahru et al., 2007;Kahru and Elmgren, 2014). However, long-term 117 

phytoplankton dynamics over the entire Baltic region is still lacking, despite the fact that this is 118 

required by the European Water Framework Directive for coastal and inland waters and by the 119 

Marine Strategy Framework Directive for open ocean waters. In this article, we aim to partially fill 120 

this gap by focusing on long-term remote sensing of CHL at basin scale. 121 
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2. Data and methods 122 

2.1 Satellite CHL data 123 

Table 1 summarizes the four satellite CHL products evaluated in this article with their respective 124 

references. 125 

Acronym Input CHL Algorithm Reference 

GLC Rrs from single sensors GSM  (Maritorena and Siegel, 2005) 

OC4v6 ESA-CCI Rrs OC4v6  (Werdell, 2010) 

OC5 ESA-CCI Rrs OC5  (Gohin et al., 2002) 

MLP ESA-CCI Rrs MLP  (D'Alimonte et al., 2011) 

Table 1: summary of the algorithms used in the validation analysis with the acronym used in this 126 

work along with the required input for each of them. GLC stands for GlobColour, OC4v6 for Ocean 127 

Colour four bands algorithm (version 6), OC5 for Ocean Colour five bands, and MLP for Multi-Layer 128 

Perceptron. 129 

The GlobColour dataset (GLC hereafter) was developed in the framework of the European Space 130 

Agency Data User Element program to support global carbon cycle research. Daily GlobColour data 131 

were downloaded from the project web site (www.globcolour.info). Products are obtained by 132 

merging MERIS, MODIS, SeaWiFS and VIIRS data. Validation at global scale was carried out by 133 

Maritorena et al. (2010). Downloaded data are 2
nd

 reprocessing Level 3 binned images (L3b), 134 

having a resolution of 1/24 of degree at the equator (i.e., around 4.63 km) and consisting of the 135 

accumulated data of all merged level 2 products, corresponding to periods of one day. Merged 136 

data are generated by the GSM model (Maritorena and Siegel, 2005), which also produces the CHL 137 

parameter, delivered as product named CHL1. CHL1 parameter is meant to provide best 138 

performances over case I waters and thus it is not recommended for use over optically complex 139 

waters, but no alternative is given for the Baltic Sea (further details in the Product User Guide, 140 

GlobColour, 2015). 141 
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The ESA Ocean Colour CCI program has the goal to provide stable, long-term, multisensor satellite 142 

products. The dataset consists of the merged SeaWiFS, MODIS, and MERIS data, by shifting MODIS 143 

and MERIS Rrs to the SeaWiFS wavebands, before merging (ESA-OC-CCI, 2014). Data are mapped at 144 

4 km resolution and are available through the OC-CCI (www.oceancolour.org) and the CMEMS 145 

portals (marine.copernicus.eu). Standard CHL products are global-ocean daily mean sea surface 146 

CHL. ESA-CCI retrieves CHL through the application of the OC4v6 algorithm (O'Reilly et al., 147 

2000;Werdell, 2010) to the merged Rrs. The dataset available from CMEMS also includes an 148 

additional CHL product by applying the OC5 algorithm (Gohin et al., 2002), developed as an 149 

adaptation of the OC4 to French Atlantic coastal waters (further details in the Product User 150 

Manual, CMEMS, 2015). Calibrated Rrs are also available for the application of custom algorithms. 151 

We used these Rrs to test a Baltic Sea-specific CHL algorithm, available for the SeaWiFS bands, 152 

developed by D’Alimonte et al. (2011). This algorithm is based on a Multi-layer perceptron (MLP) 153 

and was trained with in-situ Rrs and CHL. MLP was only validated with in-situ Rrs and CHL 154 

(D'Alimonte et al., 2012), thus not taking into account all the known issues linked to the 155 

atmospheric correction over the basin. 156 

An image pre-analysis revealed ~15 % more flagged (invalid) pixels for MLP than for OC4v6 and 157 

OC5, despite all are derived from the same CCI reflectances. The cause is the frequent occurrence 158 

of negative Rrs(412) most likely due to aerosol optical thickness overestimation in the blue 159 

together with high CDOM. In contrast, OC4v6 does not use Rrs(412), the most sensible band to the 160 

atmospheric correction procedure, thus allowing for problematic pixels (those with Rrs(412)<0) to 161 

be retrieved as well. Similarly, OC5 is insensitive to negative Rrs(412) values, thus allowing CHL to 162 

be retrieved also under the extreme conditions of atmospheric correction failure. 163 
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2.2 In-situ CHL data 164 

We downloaded publicly available in-situ CHL data, contained in the repositories at Seadatanet 165 

(www.seadatanet.org), the Baltic Marine Environment Protection Commission (www.helcom.fi) 166 

and the NOAA World Ocean Database (www.nodc.noaa.gov/OC5/WOD/pr_wod.html). CHL is 167 

computed from bottle samples using standard laboratory techniques. The technique used to 168 

collect and measure CHL spans from fluorimetry to spectrophotometry and HPLC. The amount of 169 

information provided depends upon each environmental agency or research institution that 170 

collected and uploaded the data. For their part, data repositories have additional quality control 171 

criteria based on outlier estimation. All data collected in the Baltic region during the period 172 

covered by the satellite observations (1997-2012) were merged and duplicates were eliminated. 173 

Since the remote sensing signal can be fairly considered as a weighted average within the first 174 

optical depth, in-situ observations must be treated accordingly. In-situ CHL consisted either of a 175 

single sub-surface reading or CHL profiles derived from a few depth readings. In this latter case, a 176 

proper vertical average of a CHL profile is needed for comparison to remote-sensing data. The 177 

vertical weighting function depends on the inherent optical properties (IOPs) that cannot be 178 

inferred solely from CHL in case II waters. In rigor, coincident IOP measurements are needed to 179 

perform the vertical averaging, but such measurements are scarce and not publicly available. In 180 

case I waters, vertical averaging can be performed with the method by Morel and Berthon (1989) 181 

with input CHL profile data. The remaining applicable options to our in-situ data were either to 182 

select only the sub-surface CHL value or to average the profiles with the method by Morel and 183 

Berthon (1989), despite the theoretical inconsistencies. Calculations (not shown) revealed that 184 

satellite-in-situ correlations did improve (even if only slightly) if available profiles were vertically 185 

averaged (and this is the approach used in this work) instead of taking only the uppermost 186 
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reading. To avoid bottom contribution to the water-leaving radiance, only stations with a bottom 187 

depth of at least 10 m were selected. 188 

 189 

Fig. 1: a) Spatial distribution of the 4492 in-situ stations used in the matchup analysis (see section 190 

3.1) along with the partition of the area of study. Skagerrak and Kattegat is highlighted in blue with 191 

1456 matchup points. Central Baltic is highlighted in red with 2922 matchup points, and the Gulf 192 

of Bothnia is green with 114 stations. Temporal station distribution is also shown using the same 193 

colour code (b). The frequency distribution of the entire in-situ CHL is shown in panel c. 194 

Similarly, to ensure representativeness of the data in the case of CHL stratification, only stations 195 

with the uppermost reading shallower than 2 m were retained for the analysis. The spatial location 196 

of matchup stations is shown in Fig. 1a. Although covering the entire Baltic region, data are not 197 

uniformly distributed, as the dataset is built from different sources, in which individual institutions 198 
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and agencies are interested in specific zones. The number of matchups increases significantly 199 

when both MODIS-Aqua and MERIS started to be operational in 2002 (Fig. 1b), thus providing 200 

further evidence of the utility of merging different sensors for oceanographic research. The CHL in-201 

situ dataset used in the following of this work is log-normally distributed around the mean value of 202 

~ 2.46 mg m
-3

 and spanning from 0.1 mg m
-3

 to 77 mg m
-3

 (Fig. 1c). Fleming and Kaitala (2006) 203 

reported CHL values 7 to 12 mg m
-3

 in the northern Baltic Proper during the spring bloom. Our 204 

gathered in-situ matchup dataset during April in the northern Baltic Proper (35 samples) shows 205 

CHL to range from 1.39 to 14.7 mg m
-3

, consistent with these previous findings. 206 

2.3 Statistical evaluation 207 

Satellite CHL was extracted from single pixels without further spatial windowing. To calculate the 208 

mean bias and the RMS we applied decimal logarithm-transformation to the CHL data, and 209 

returned to percentage linear scale: 210 

 (1) 211 

 (2) 212 

where xi and yi are the log10-transformed in-situ and satellite CHL, respectively. N is the number of 213 

matchups. The best linear fits were found using the log-transformed CHL. The corresponding 214 

coefficient of determination (R
2
), slope (m) and intercept (n) are also presented. The whole area 215 

was divided into regions with expected bio-optical differences (see Fig. 1a). The number of 216 

observations available from the Gulf of Bothnia is very limited, so the statistical information that 217 

can be derived from the regressions must be interpreted with caution. Nevertheless, results are 218 
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presented for completeness. The p-value of the regressions was zero for all regions except for the 219 

Gulf of Bothnia, where it was p<10
-3

. 220 

Outliers were defined as data in which any of the four algorithms gave CHL outside the range 221 

within one twentieth and twenty times the in-situ CHL. In applying this criterion, roughly 3.5 % of 222 

the data were discarded and led N to become 1873. Most of these discarded matchups were 223 

rejected because of the GLC underestimation, together with the high scattering (Fig. 2a). The 224 

discarded data were evenly distributed over the entire range of CHL variability and without any 225 

specific temporal or spatial patterns. For comparison issues among algorithms, only matchups 226 

with coincident valid pixels for all four satellite products within the same day were considered, but 227 

once the best performing algorithm was identified, all available matchup stations for this 228 

algorithm were used to provide its full record of statistics (N = 4492). 229 

3. Results and discussion 230 

3.1 Matchups 231 

In general, satellite and in-situ data show modest agreement in the Baltic. This can be intuitively 232 

associated with both the non-full traceability of the methods used to assemble the in-situ dataset 233 

and the satellite algorithms. MLP and GLC provide poor R
2
 and negative BIAS with respect to the 234 

in-situ data. Results of OC4v6 (R
2
=0.43) are consistent with findings by Darecki and Stramski 235 

(2004). The positive bias of 44 % here (Fig. 2b) is smaller than 119 %, as found by Darecki and 236 

Stramski (2004), but still confirms the OC4v6 to overestimate CHL in the Baltic Sea. OC4v6 matches 237 

better the in-situ data for high CHL, whereas tends to saturate for low values. OC5 has similar 238 

linearity (R
2
=0.44) but significantly improves in terms of bias (-14 %) with respect to OC4v6. 239 

Besides the similar R
2
, we appreciated graphical similarities between the scatter plots of OC4v6 240 
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and OC5. Guided by this hint, we performed a linear regression in log form between OC4v6 and 241 

OC5 satellite derived CHL (not shown). Regression analysis revealed a very high linear dependence 242 

(R
2
=0.97), although the relationship is more complex in theory (Gohin et al., 2002), and this will 243 

have implications for the rest of this work (see below). 244 

Geographical partition of the matchup dataset highlighted significant differences in the statistical 245 

behaviour of algorithms. For instance, the performance of MLP strongly degrades in Skagerrak and 246 

Kattegat (Fig. 2h) with respect to the central Baltic Sea (Fig. 2l). MLP was calibrated with data only 247 

inside the Baltic Sea, and not in the Skagerrak and Kattegat (D'Alimonte et al., 2012, Fig. 2d). It 248 

appears then that such algorithm design is highly dependent on the calibration data. GLC performs 249 

always worst in all regions, and the scatter plots seem like undefined clouds, which is best 250 

highlighted by the large RMS errors. OC4v6 displays similar statistics at both sides of the Danish 251 

Strait, although the slope of the regression line decreases towards Skagerrak and Kattegat. In each 252 

region, OC4v6 overestimates CHL by more than 40 %. The behaviour of OC5 is always in 253 

accordance with OC4v6, with a shifted BIAS, given the very high correlation between the two. Due 254 

to the much simpler applicability of OC4v6 and its wider diffusion in the community, the following 255 
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analysis will be based on the OC4v6.256 

 257 

Fig. 2 Density scatter plots of in-situ versus satellite-retrieved CHL for all algorithms providing 258 

meaningful values. The line of best fit (blue) and that of equal value (black) are superimposed 259 

together with relevant statistics. 260 

The matchup analysis is here repeated with the same conditions, including the definition and 261 

removal of the outliers, but now for OC4v6 alone. Only 22 matchups were discarded (< 0.5 % of 262 

the data), of which 17 due to overestimation (i.e., higher than twenty times the in-situ 263 
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counterpart). As mentioned, when the coincidence with the other algorithms is removed, the 264 

number of matchups increases to 4492, distributed as 1456 in Skagerrak and Kattegat, 2922 in the 265 

Central Baltic and 114 in the Gulf of Bothnia. Fig. 3 shows the corresponding density scatter plots 266 

and statistics. In general, the interpretation from Fig. 2 still holds, with the bigger size of the 267 

matchup dataset providing increased confidence level of the derived statistics. However, since the 268 

additional data were previously discarded (not used to produce Fig. 2), it is not surprising that the 269 

latter statistics did degrade (R
2
 = 0.43, BIAS = 72%, RMSE = 151%, m = 0.57, n = 0.41, N = 2619). 270 

The orders of magnitude of the uncertainties found here (Fig. 3) are in line with those available 271 

from the literature (Darecki and Stramski, 2004) even considering the wider space and time 272 

distribution of the data (both in-situ and satellite) used here. 273 
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 274 

Fig. 3 Density scatter plots of in-situ versus satellite-retrieved CHL for OC4v6 algorithm. The best 275 

linear regression (blue) and the line of equal value (black) are superimposed along with relevant 276 

statistics. 277 

3.2 Validation 278 

When the regression coefficients are used to re-calibrate existing algorithms, the validity and 279 

robustness of the matchup statistics needs to be validated against independent data. Starting 280 

from the matchups for OC4v6 alone (Fig. 3a), we performed a sensitivity study to test the dataset 281 

homogeneity by a bootstrapping-like assessment (Efron, 1979) as used in recent validation 282 
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exercises (Brewin et al., 2013). The whole dataset (N = 4492) was partitioned a thousand times 283 

into two randomly chosen halves: calibration (Ncal = 2246) and validation (Nval = 2246). Each 284 

calibration dataset is used to compute the linear regression coefficients (m,n) which are then 285 

applied to the corresponding complementary validation half to compute the associated statistics. 286 

The obtained series of coefficients and statistics are shown in Fig. 4. Results are remarkably 287 

robust: the averages of the regressions found (m=0.5843, n=0.3657, green dashed line in Fig. 4) 288 

are almost equal to those when the whole dataset is used (m=0.5845 and n=0.3656, red line in Fig. 289 

4). Moreover, the dispersion is very small with the coefficient of variation being 2.07 % when 290 

computed over the slopes and 1.38 % over the intercepts. As for the validation statistics, their 291 

mean values (graphically shown in green in Fig. 4) R
2
 = 0.4236, BIAS = 59.55 %, RMS = 136.13 % are 292 

very similar to those obtained for the whole dataset (Fig. 3a, R
2
 = 0.4241, BIAS = 59.53 %, RMS = 293 

136.19 %). 294 

 295 

Fig. 4 Left up, in black: best linear fits (slope m and intercept n) of 1000 randomly chosen 296 

calibration datasets (Ncal = 2246, X axes) of log10(CHLin-situ) versus log10(CHLOC4v6). Left down: 297 
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application of all 1000 (m,n) pairs to the OC4v6 vs. in-situ scatter cloud. In red, slope and intercept 298 

for the whole dataset, as shown in Fig. 3a. In green, average of the 1000 calibration results. Right, 299 

in black: statistics when applying each m and n pairs from the left side to the complementary 300 

validation datasets (Nval = 2246, X axes). These are: coefficient of determination, BIAS (eq (1) and 301 

RMS (eq. (2)). In red: same statistics found for the whole dataset, as shown in Fig. 3a. In green, 302 

average of the 1000 validation results. 303 

3.3 Algorithm regional calibration 304 

Efficient and useful algorithm regionalization needs appropriate bio-optical in-situ data. 305 

Unfortunately, the Baltic lacks of such publicly available in-situ dataset that therefore prevents a 306 

canonical regionalization. This, together with the high confidence level associated with the 307 

described statistics and in view of obtaining an unbiased proxy for CHL, with the available data, 308 

prompt for using the computed coefficients (m and n in Fig. 4) for recalibrating the OC4v6, as 309 

follows: 310 

( )
( )

m

n−
= OC4v610

OC4v6corr10

CHLlog
CHLlog  (3) 311 

Errors between eq. (3) and the complementary in-situ validation matchups were calculated. Each 312 

of the 1000 chosen combinations generated a vector of errors with length Nval = 2246. Their 313 

accumulation led to a total of 2246000 error estimates, whose distribution is shown in Fig. 5, 314 

together with the fitted Gaussian curve. The recalibration via eq. (3) removed the bias, resulting in 315 

a zero-centred error distribution. It is worth reminding that within the calibration and validation 316 

exercises the two datasets are independent. The standard deviation (σ = 0.4582) includes all 317 

errors not taken into account by the system, i.e. atmospheric noise, errors in the in-situ 318 

measurements and, most of all, the limited suitability of algorithms as the OC4v6. 319 
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 320 

Fig. 5 Histogram of the absolute error between OC4v6corr and in-situ CHL, both in logarithmic form. 321 

Associated mean and standard deviation are also shown and used to compute relevant fitted 322 

Gaussian distribution (black line). 323 

The symmetric and zero-centred error distribution (Fig. 5) obtained with the application of eq. (3) 324 

within the bootstrapping-like assessment warrants a high level of confidence when basin averages 325 

are calculated; all the errors at the level of individual pixels are expected to cancel out when a 326 

horizontal (pixel-wise) average is performed over a large region. Although the former statement 327 

implies that the statistical properties of the matchup dataset can be extrapolated to the whole 328 

Baltic area, the good spatial and temporal coverage of the former (see Fig. 1) is a good asset to 329 

support this argument. From this point, we defined the algorithm OC4v6corr through eq. (3), with 330 

the coefficients (m = 0.5884, n = 0.3751) of Fig. 3a. This enabled the bias to be removed. 331 

Nevertheless, RMS was altered, rising up to 187 %, in agreement with σ = 0.4582 in Fig. 5 through 332 

eq. (2). The mathematical explanation of the latter relationship is that the RMS and the standard 333 

deviation of a zero-mean distribution are equal. 334 
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Among all regions in which the Baltic Area has been divided, Fig. 3 highlights different best linear 335 

fits. Given the coefficients of variation 2.07 % and 1.38 % for the slope and intercept respectively 336 

found in the bootstrapping assessment, the coefficients in Fig. 3 are significantly different. If 337 

OC4v6 is linearly adjusted with eq. (3), the coefficients must be different for each region, in 338 

particular, equal to those found in Fig. 3. Therefore, for Skagerrak and Kattegat, they were set to 339 

0.4212 and 0.3027, respectively for m and n. Due to the lack of enough data, the stations in the 340 

Gulf of Bothnia were aggregated to those of the Central Baltic. Resulting statistics for these two 341 

regions were almost equal to those of the Central Baltic alone: R
2
 = 0.35, BIAS = 60.45 %, RMS = 342 

138.64 %, m = 0.5632, and n = 0.4206. These linear coefficients were applied to recalibrate OC4v6 343 

for the Central Baltic and the Gulf of Bothnia. Even if the same algorithm was used results are 344 

presented separately for the two basins. 345 

3.4 Satellite derived basin averages 346 
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Fig. 6 CHL daily Climatology. For any given day of the year, the average was computed only if data 348 

for a minimum of six years were available. Plots of individual time series with their associated 349 

standard deviation bars can be found in the supplementary material. To improve the plot 350 

readability, all time series were smoothed with a one-week moving average. 351 

Horizontally-averaged CHL for OC4v6corr were computed only for images with a minimum number 352 

of 1000 valid pixels. The entire Baltic has 21424 pixels, with the Gulf of Bothnia contributing with 353 

5750 pixels, Skagerrak and Kattegat with 2625 pixels and the Central Baltic with 13049 pixels. One 354 

thousand pixels correspond to 5 %, 17 %, 38 % and 7 % of their respective surfaces. CHL dynamics 355 

strongly varies among regions at both seasonal (Fig. 6) and interannual time scales (supplementary 356 

material). In Skagerrak and Kattegat, the dynamics consists of intermittent growth periods in late 357 

winter (up to ~ 4 mg m
-3

) and a small bloom in spring, reaching a minimum in summer (~ 0.5 mg m
-

358 

3
), consistent with other works (Edelvang et al., 2005) . In the Gulf of Bothnia, the overall range of 359 

CHL variability is limited to ~ 2 mg m
-3 

(0.7 – 2.8 mg m
-3

) with minima in winter and a series of 360 

bloom-like pulses from spring to fall. The spring bloom is the most intense and lasts longer than 361 

the others (Carstensen et al., 2015). Given the prolonged winter darkness, the length of this data 362 

time series is shorter than those from the other regions. Moreover, in winter the Gulf of Bothnia is 363 

normally ice-covered and some ice remains in the northern part until May, thus not the entire 364 

domain contributed to the displayed CHL. A non-trivial point is that this time series has to be 365 

interpreted with caution due to lack of a significant number of data for specific calibration in this 366 

area. In the Central Baltic, the dynamics is completely different. Two distinct CHL maxima are 367 

appreciable (Reissmann et al., 2009): the first one peaks at the end of April, reaching ~ 2.5 mg m
-3

, 368 

which is at the lower end of the variability previously observed by Schneider et al. (2006); the 369 

intensity of the second peak, in mid-July, (~ 4.6 mg m
-3

) is consistent with previous observations in 370 

the area (Schneider et al., 2006), and from which it steadily decreases and reaches a minimum in 371 
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winter. The dynamics of the entire domain (black line in Fig. 6) is clearly dominated by the Central 372 

Baltic due to its major weight in terms of area coverage. The summer bloom that occurs in the 373 

Central Baltic is known to be due to cyanobacteria taking advantage of the milder weather 374 

conditions and of the increased water temperature. As cyanobacteria can form surface scum, it is 375 

worth questioning whether such data would be masked during the operational image processing. 376 

A previously documented mild cyanobacteria bloom on the 11
th

 of July, 2010 was visible from 377 

space via qualitative RGB image, and for which surface accumulation was not reported (SMHI, 378 

2010). To assess whether the standard processing is able to provide reliable observations also in 379 

these conditions, MODIS-Aqua Level-1A was downloaded and processed to L2 using the same 380 

settings used to produce the CCI input data. Fig. 7a shows the Central Baltic blooming also in the 381 

areas identified as cyanobacteria by the SeaDAS Level-2 flag TURBIDW (Fig. 7b) used to 382 

discriminate the accumulation of cyanobacteria (Kahru and Elmgren, 2014). During summer 2005, 383 

the Baltic experienced the second largest cyanobacteria bloom (Kahru and Elmgren, 2014) that 384 

covered 25% of the entire domain (183000 km
2
). As for the 2010 bloom and apart from the small 385 

area classified as too bright in the north Baltic Proper (in light grey in Fig. 7c and 7d), the standard 386 

processing demonstrated its ability to provide valid data also under these conditions. Therefore, 387 

the data used here appear suitable for the study of phytoplankton dynamics throughout the year, 388 

even during cyanobacteria bloom events, during which only a negligible percentage of pixels is 389 

affected by atmospheric correction failures (Kahru and Elmgren, 2014). 390 
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 391 

Fig. 7: MODIS Level-1A of the 11
th

 of July, 2010 (a and b) and 2005 (c and d) were downloaded 392 

from the OBPG website (Ocean Biology Processing Group, oceancolor.gsfc.nasa.gov) and 393 

processed to Level-2 using the standard settings within SeaDAS version 7.3 (seadas.gsfc.nasa.gov). 394 

Kahru and Elmgren (2014) recently identified the presence of cyanobacteria accumulating on the 395 

sea surface using the SeaDAS Level-2 flag TURBIDW (“Turbid water”) when the flag MAXAERITER 396 

(“Maximum Aerosol Iterations”) is turned off within the Level-1 to Level-2 processing. Here, CHL 397 

images without (panels a and c) and with (panels b and d) the application of the TURBIDW flag is 398 

shown; pixels affected by TURBIDW are coloured black. As mentioned by Kahru and Elmgren 399 
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(2014), the MAXAERITER flag is, by default, turned on within the NASA standard processing (e.g., 400 

the same used here); light grey area (panels c and d) in the north-western Baltic Proper is 401 

perceived by the operational processing as too bright (i.e., masked as MAXAERITER) and as such 402 

not processed. 403 

Fig. 6 shows that the strongest signal in the Central Baltic is given by the summer bloom. 404 

Cyanobacteria-like species are known to bloom under warm and calm weather conditions (Ploug, 405 

2008). High sea surface temperature (SST) are known to enhance the growth of cyanobacteria, 406 

both directly through higher growth rates, and indirectly by increasing the stability of the water 407 

column to allow cyanobacteria to take advantage of their buoyancy regulation ability (Ibelings et 408 

al., 1991). Analogously, cyanobacteria were demonstrated to provide positive feedbacks to the 409 

surface temperaure by absorbing the incoming radiation (Kahru et al., 1993). It is then reasonable 410 

to investigate whether CHL and SST covary over the Central Baltic during summer. In the specific 411 

context of this cross-correlation analysis, we are implicitly assuming that both SST and CHL 412 

respond to the calm weather conditions with the same time lag. For this matter, daily-averages 413 

SST data (1998-2009) over the Baltic Sea were downloaded from the CMEMS website. The SST 414 

dataset is the merged product from the sensors AVHRRs (series 7, 9, 11, 14, 16, 17, 18), Envisat 415 

ATSR1 and ATSR2, and the AATSR (see CMEMS (2015) for details and Supplementary Material for 416 

their basin-average time series). Both CHL and SST data time series were deseasonalized by 417 

computing the anomalies with respect to their climatologies, which were used as input for the 418 

cross correlation analysis. Fig. 8 shows the two time series anomalies along with correlation values 419 

computed over the summer period (between the Julian days 150 and 250) for all years for which 420 

SST was available. Prior to the correlation analysis, the CHL anomaly time series was further 421 

smoothed with a one-week moving average. Here, the basic underlying assumption is that warm 422 

waters, as proxy of calm weather conditions, can explain the dynamics of cyanobacteria. Thus 423 
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when cyanobacteria do represent a high fraction (in terms of their space and time presence) of the 424 

CHL signal, the correlation is expected to be high, and vice versa. 425 

Fig. 8 shows quite a surprising relationship between both quantities with high-amplitude SST 426 

correlating with those of CHL. This related behaviour is somewhat unexpected, because we are 427 

comparing here not absolute CHL and temperature, but their differences with respect to their 428 

climatological values. Generally, during the second half of the time series, from 2003 on, the 429 

correlation appears to be tighter. The causes of the dynamics shown are undoubtedly complex 430 

involving considerations on the circulation and the peculiar biogeochemistry of the basin 431 

(Reissmann et al., 2009). Nevertheless, this article is focused on the remote sensing aspect and the 432 

intensity of the cyanobacteria bloom appears to depend on the timing of the summer temperature 433 

peak: although 2004 had a high SST peak, such peak happened late in the season (August 10
th

), 434 

which appeared not favourable for cyanobacteria growth. On the contrary, years 2002, 2003, 2005 435 

and 2006 had SST peaks of similar or lower intensity, but much earlier in the season. Instead, 2001 436 

displayed two marked positive SST anomalies that were only mildly followed by CHL anomalies. 437 

Despite the CHL and SST anomalies are poorly correlated during 1998 (Fig. 8), they are both 438 

negative suggesting that in that year the cyanobacteria bloom, generally dominating the summer 439 

signal in the Central Baltic, was only partially contributing to the overall dynamics. This is clearly 440 

documented in Kahru and Elmgren (2014), who found the Fraction of Cyanobacteria 441 

Accumulations of only 6%, in 1998; FCA being the ratio of the number of pixels classified as 442 

cyanobacteria to the number of cloud-free sea-surface views during the period July to August. 443 

On the other hand, the year 2008 was completely anomalous with respect to both the climatology 444 

value and timing of the summer bloom, with a maximum at the beginning of May. This massive 445 

and early bloom has already been documented (Majaneva et al., 2012;Larsson et al., 2014), with 446 
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the dominant species being Prymnesium polylepis. Responsible abiotic factors were exceptionally 447 

calm and sunny weather during October 2007, resulting in high light availability and low 448 

turbulence above the thermocline (Majaneva et al., 2012;Larsson et al., 2014). These conditions 449 

enabled P. polylepis to build up a considerable biomass. The following winter was the mildest since 450 

more than a century, which allowed P. polylepis to persist throughout the winter. Improving 451 

weather and plenty of nutrients allowed further growth until a maximum in spring. 452 

 453 

Fig. 8 Time series of the CHL and SST anomalies with respect to their climatologies, over the 454 

Central Baltic. The reference value 0 is also displayed. Shaded areas indicate the part of the time 455 

series not used for the computation of the cross-correlation coefficient, which is indicated on each 456 

year. Full size plots of individual years can be found in the supplementary material. 457 
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4. Conclusions 458 

A fifteen-year merged-multi-sensor-daily dataset of satellite-derived CHL contains very valuable 459 

information for ecological studies if information is properly processed. Matchup analysis was 460 

undertaken with the largest in-situ database ever used for calibration and validation purposes 461 

over the Baltic region. Standard algorithms demonstrated easy to apply but, in the Baltic Sea, 462 

required further adjustments before an unbiased estimation of the basin-average CHL was 463 

obtained. Our derived time series take advantage of the independence of the error added by other 464 

water constituents and additional sources. The error distribution of the CHL estimates is such that, 465 

when averaging over a large number of observations, tends to zero, thus demonstrating that more 466 

accurate observations can be achieved when averaging over large areas. 467 

The OC4v6corr-derived climatology in Skagerrak and Kattegat revealed strong productivity in winter 468 

and a rather inactive summer. However, it should be noted that the blue-green CHL algorithms are 469 

not optimal for the coccolithophore detection (Gordon et al., 2001), commonly observed in this 470 

area. In the Gulf of Bothnia, CHL exhibits a single bloom during spring and experiences lower 471 

variability than the Skagerrak and Kattegat regions or the Central Baltic. In the latter region, the 472 

productivity in late fall, winter and early spring is severely inhibited. A first growth period with a 473 

maximum at the end of April is detected, followed by a stronger summer bloom peaking at the 474 

second week of July. The summer bloom in the Central Baltic constitutes the most intense signal 475 

found in this work, and attributed to cyanobacteria-like species. CHL and SST anomaly time series 476 

were cross-correlated to assess the cyanobacteria contribution to the overall CHL dynamics during 477 

the summer period of the Central Baltic. For example, the exceptionally warm winter 2007/2008 478 

triggered an intense spring bloom in 2008 that also altered the normal dynamics throughout the 479 

year. 480 
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The Baltic region is widely recognized as a challenging test bed for ocean colour remote sensing. 481 

The interfering CDOM at blue wavelengths suggests that better CHL algorithms should use red and 482 

NIR bands, like the fluorescence line height or the maximum chlorophyll index algorithms 483 

(Odermatt et al., 2012, Fig. 1). Most of the Baltic CHL values range between ~ 1 and 10 mg m
-3

 and 484 

are at the lower part of the retrievable concentrations, via these algorithms (Odermatt et al., 485 

2012, Fig. 1). These algorithms are only applicable to the archived MERIS data (2002-2012). The 486 

Ocean and Land Colour Instrument, on-board the Sentinel-3 will provide continuity with MERIS 487 

and algorithms will be adapted. The addition of the 400 nm band will expectedly aid in the 488 

separation of the CDOM contribution, given that proper atmospheric correction is achieved. 489 
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