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500m to 4000m”. If you mean there are several cells (alternately positive and negative) 



between 500m and 4000m depth, then “between 500m and 4000m depth”. 

Reply: Thanks for the nice comment. We have updated this sentence as the Topic Editor 

suggested (lines 234). 

 

Same paragraph last sentence, omit “period corresponding to the”, better 

“frequencies” not “periods”. 

Reply: Thanks for the nice comment. We have updated this sentence as the Topic Editor 

suggested (lines 236). 

 

 

Paragraph 4 sentence2. Better “. . propagates southwards from the region near Luzon 

Strait . .” 

Reply: Thanks for the nice comment. We have updated this sentence as the Topic Editor 
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Paragraph 1 last sentence. Better “. . model output peak near the inertial frequency ..” 
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Abstract 31 

We examine near-inertial variability of the meridional overturning circulation in 32 

the South China Sea (SCSMOC) using a global 1/12° ocean reanalysis. Based on 33 

wavelet analysis and power spectrum, we suggest that deep SCSMOC has a 34 

significant near-inertial band. The maximum amplitude of the near-inertial signal in 35 

the SCSMOC is nearly 4Sv. The spatial structure of the signal features regularly 36 

alternating counterclockwise and clockwise overturning cells. It is also found that 37 

the near-inertial signal of SCSMOC mainly originates from the region near the 38 

Luzon Strait and propagates equatorward with the speed of 1-3 m/s. Further analyses 39 

suggest that the near-inertial signal in the SCSMOC is triggered by high-frequency 40 

wind variability near the Luzon Strait, where geostrophic shear always exists due to 41 

Kuroshio intrusion. 42 

Key words: SCSMOC; near-inertial variability; Kuroshio. 43 
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1 Introduction 61 

   Near-inertial internal waves have been considered to be an important energy 62 

source for the diapycnal mixing in the ocean required to maintain the meridional 63 

overturning circulation (MOC, Munk et al., 1998). Previous studies show that the 64 

SCS acts as a mixing mill that mixes the surface and deep waters and returns the 65 

mixed waters out of the Luzon Strait at an intermediate depth (Yuan, 2002; Tian et 66 

al., 2009; Yang et al., 2013, 2014).  67 

The widest and deepest channel in the South China Sea (SCS) is the Luzon Strait, 68 

which has a sill depth of about 2400m, and is the main passage connecting the SCS 69 

and the northwestern Pacific Ocean (Qu et al., 2006). Based on field observations, 70 

studies confirm the hypothesis that the Luzon Strait transport (LST) has a 71 

sandwiched vertical structure, which shows a westward flow in the upper layer 72 

(<500 m) and in the deeper layer (>1500 m), and an eastward flow in the 73 

intermediate layer (500–1500 m, Tian et al., 2006; Yang et al., 2010). The 74 

corresponding circulation in the SCS is consistent with the potential vorticity 75 

constraint (Yang et al., 2000 and 2007), which suggests that the mixing-induced 76 

circulation inside the SCS should be cyclonic gyres at the surface and at the bottom 77 

(Chao et al., 1996; Li et al., 2006; Wang et al., 2011; Lan et al., 2013; Xu et al., 78 

2014), and an anti-cyclonic gyre at an intermediate depth (Isobe et al., 2001; Yuan, 79 

2002). Note that the upper-layer SCS circulation is also affected by the seasonally 80 

reversing monsoon, exhibiting a cyclonic circulation over the whole SCS basin in 81 

winter, and in summer a strong anti-cyclonic circulation in the southern SCS and a 82 

weak cyclonic circulation in the northern SCS (Wrytki, 1961; Chu et al., 1999; Chu 83 

and Li, 2000; Qu, 2000; Hu et al., 2000; Liu et al., 2001; Wang et al., 2003; Su, 84 

2004).  85 

In the context of the strong mixing in the SCS and the sandwiched vertical 86 

structure of the Luzon Strait transport, Wang et al. (2004) proposed that the shallow 87 

meridional 88 

overturning in the SCS (SCSMOC) is semi-enclosed, transporting waters from north 89 

to south at the depth of about 500m (200 m) and returning waters to north at surface 90 



in winter (summer). The shallow SCSMOC hints at a transport path such that 91 

intermediate water enters the SCS from the northwestern Pacific Ocean (Wang et al., 92 

2004; Xie et al., 2013). Zhang et al. (2014)
1
 further show that the shallow SCSMOC 93 

consists of downwelling in the northern SCS, a southward subsurface branch 94 

supplying upwelling in the southern SCS and a northward return flow of surface 95 

water. Based on the high-resolution global reanalysis data (GLBa0.08), Shu et al. 96 

(2014) found that the whole SCSMOC also has a sandwiched structure driven by the 97 

Luzon Strait transport, consisting of a stronger semi-enclosed clockwise overturning 98 

circulation in the upper layer, a weaker counterclockwise overturning circulation in 99 

the intermediate layer, and a weaker clockwise overturning circulation in the deep 100 

layer.  101 

The SCSMOC variability spans a wide range of time scales. On a decadal time 102 

scale, the intermediate water of the SCS was fresher in the 1980s than that in the 103 

1960s, caused by the deep SCSMOC decreasing from the 1960s to the 1980s 104 

according to an ocean reanalysis (Liu et al., 2012). On the interannual scale, the 105 

Luzon Strait transport shows a remarkable inter-annual variability associated with El 106 

Niño-Southern Oscillation (ENSO, Qu et al., 2004). The upper LST correlates with 107 

the local wind stress while the lower LST shows a statistically significant correlation 108 

with Nino3.4 index (Qu et al., 2005; Wang, D. et al., 2006; Wang, Y. et al., 2006), 109 

indicating that the shallow SCSMOC also has an interannual variability related with 110 

ENSO. On a seasonal scale, the seasonal variability of the shallow SCSMOC mostly 111 

controls the strength of seasonal intrusions of the North Pacific Water into the SCS 112 

(Liu et al., 2008). Moreover, the deep overflow through the Luzon Strait is strong in 113 

summer while weak in winter, driving the seasonal variability of the deep SCSMOC 114 

(Lan et al., 2015). 115 

  The existence of near-inertial (several days) variability of the Atlantic 116 

meridional overturning circulation (AMOC) has been recently reported by using a 117 

high-resolution oceanic general circulation model (Blaker et al., 2012). This 118 
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variability is associated with equatorward-propagating near-inertial gravity waves 119 

(NIGWs). However, there is no study so far for shorter time-scale variability 120 

(especially for near-inertial variation) of the SCSMOC. Whether high frequency 121 

(near-inertial) variability exists in the SCSMOC is the main purpose of this study. 122 

The rest of the paper is organized as follows. The data and methods are introduced in 123 

Sect. 2. The results are presented in Sect. 3. Sections 4 and 5 give discussion and 124 

conclusion. 125 

2 Data and Method 126 

The product of Hybrid Coordinate Ocean Model+Navy Coupled Ocean Data 127 

Assimilation (HYCOM+NCODA) global 1/12° Reanalysis (GLBu0.08, 128 

http://hycom.org/dataserver/glb-reanalysis) provided by the Naval Research 129 

Laboratory is used in this study. As a dynamical model, HYCOM 2.2 is configured 130 

for the global ocean with the bathymetry derived from the 30 arc-second GEBCO 131 

(General Bathymetric Chart of the Oceans) dataset. The K-Profile Parameterization 132 

(KPP) mixing scheme is adopted for the vertical diffusion of momentum, 133 

temperature, and salinity (Thoppil et al., 2011). The model is forced by the hourly 134 

wind stress and heat fluxes derived from National Center for Environmental 135 

Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) with horizontal 136 

resolution of 0.3125°. Note that there is no tidal forcing during the integration. It is 137 

initialized using temperature and salinity from the 1/4° Generalized Digital 138 

Environmental Model (GDEM4) climatology in January. The NCODA assimilates 139 

available satellite altimeter observations, satellite and in-situ sea surface temperature 140 

(SST) as well as available in-situ vertical temperature and salinity profiles from 141 

XBTs, Argo floats and moored buoys using a 3-D variational scheme (Cummings, 142 

2005). The model output is stored every 3 h. 143 

Based on the equation of continuity, the meridional overturning streamfunction 144 

can be defined as (Endoh et al., 2007): 145 
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  Because there is no vertical velocity (w) provided in GLBu0.08, the meridional 148 

overturning streamfunction in SCS could be calculated as: 149 
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where xw and xe are the western and eastern limits of the basin, respectively, and H is 151 

the ocean bottom. Although the meridional overturning streamfunction is calculated 152 

only by the meridional velocity (v), it also represents the integrated vertical motions 153 

in the basin because of the equation of continuity (Endoh et al., 2007). Shu et al. 154 

(2014) have used another product of HYCOM+NCODA global 1/12° Reanalysis 155 

(GLBa0.08, Fig. 1a) to depict the structure of the SCSMOC. The only difference 156 

between GLBa0.08 and GLBu0.08 is the external forcing field. GLBa0.08 is forced 157 

by Navy Operational Global Atmospheric Prediction System (NOGAPS), while 158 

GLBu0.08 is driven by Climate Forecast System Reanalysis (CFSR). Figure 1 shows 159 

the SCS meridional overturning stream function averaged from 2004 to 2010 based 160 

on GLBa0.08 and GLBu0.08. It is found that the two products show roughly a 161 

similar SCSMOC, which consists of a semi-enclosed clockwise upper overturning 162 

cell, a counterclockwise intermediate overturning cell and a clockwise deep 163 

overturning cell as shown in Fig. 1. The main difference is that the intermediate cell 164 

in GLBu0.08 is stronger and the deep cell stretches less southward compared with 165 

the GLBa0.08. And the upper cell in GLBu0.08 is deeper. More importantly, 166 

compared with the daily-output GLBa0.08, GLBu0.08 has a three-hour output, 167 

which is better for studying motion with periods of only a couple of days. So the 168 

GLBu0.08 product in 2010 is chosen to analyze the characteristics of near-inertial 169 

variability of the SCSMOC in this study. 170 



 171 

Figure 1. SCSMOC averaged from 2004 to 2010 based on GLBa0.08 (a) and GLBu0.08 (b). 172 

3 Characteristics of the near-inertial variability of the SCSMOC 173 

 Figure 2a shows the 120-day time series of the deep SCSMOC (at 1500 m and 174 

14°N) since 1 January, 2010. It is found that the SCSMOC experiences an obvious 175 

intra-seasonal variability superimposed with persistent high-frequency undulations 176 

(Fig. 2a). The wavelet analysis shows that the high-frequency undulations are 177 

corresponding to strong and persistent power on the band of 1-3 days while the 178 

intra-seasonal variability has power with periods of about 16-32 days (Fig. 2b). The 179 

spectral analysis further confirms that there is an obvious period band of 1–3 days in 180 

the deep SCSMOC time series (Fig. 2c). It is also found that the period 181 

corresponding to the power peak of SCSMOC is prolonged equatorward from 1 day 182 

at 20°N to 3 days at 10°N (Fig. 3a). It is noted that the near-inertial band in the SCS 183 

is from 1.46 days at 20°N to 3.59 days at 10°N (Chen et al, 2014). Comparing with 184 

the local inertial period in the SCS, the deep SCSMOC is at super-inertial 185 

frequencies (the frequency corresponding to the power peak is larger than the local 186 

inertial frequency), while the shallow SCSMOC is at inertial frequencies.However, 187 

the SCSMOC between 8°N and 10°N is at sub-inertial periods (the frequency 188 

corresponding to the power peak is less than the local inertial frequency). Our results 189 

also show that these near-inertial variations of the SCSMOC exist in other seasons 190 

and other years (not shown). The near-inertial variations of the SCSMOC also have a 191 

strong seasonality. The analysis of other months or years cannot change our 192 

conclusion significantly, so we just use the 2010 data to depict the near-inertial 193 



variations of the SCSMOC. 194 

 195 

Figure 2 (a) Time series of SCSMOC at 1500m, 14
o
N; (b) The continuous wavelet power 196 

spectrum (black contours representing 95% significance); (c) The power spectrum (the dashed 197 

black line and red line show 95% confidence levels and the local inertial period respectively). 198 

 199 

Figure 3 (a) The period corresponding to the power peak of the SCSMOC, which passes 95% 200 

significance; (b) The ratio of the peak period of the SCSMOC to the local inertial period. 201 

  To extract the near-inertial signal of the SCSMOC, a third-order Butterworth 202 

filter is applied to the time series of the SCSMOC at each latitude and depth. Cutoff 203 

frequencies are set at [0.33, 1] cpd, which is corresponding to the 1-3day band. The 204 

maximum standard deviation (STD) of the filtered SCSMOC signal is nearly 4 Sv 205 

(Fig. 4b), nearly half of the maximum STD of total SCSMOC in 2010 (Fig. 4a). The 206 

largest amplitude of the near-inertial signal in SCSMOC is found in mid layer 207 

(500–2500 m). There are two high STDs at the mid depth (500–2500 m), the 208 

northern one is between 16°N and 20°N, and the southern one between 12°N and 209 

14°N (Fig. 4b). Near the Luzon Strait (around 19°N in Fig. 4b) there exists a 210 



maximum of the shallow SCSMOC variability in the layer (100–500 m).  211 

Based on the snapshot of the integrated filtered meridional velocity field from 212 

the bottom to 1000m at 24:00, January 15, 2010 (Fig. 5a), it is obvious that the 213 

integrated velocity field consists of regularly alternating positive and negative bands. 214 

Furthermore, Fig. 5b is the snapshot of the filtered SCSMOC signal at the same time 215 

as in Fig. 5a. The spatial structure of the near inertial signal is stacked with regularly 216 

alternating positive and negative cells. The maximum amplitude of these cells is 217 

nearly 5Sv, and most of the cells concentrate in the depth between 1000m to 2500m 218 

and within the latitude between 10°N and 20°N while the cells are not so evident in 219 

the upper layer. These cells are stretched not in the meridional direction but in the 220 

vertical direction, which means each cell consists of both the strong upwelling 221 

branch and the downwelling branch. The regularly alternating positive and negative 222 

bands in the meridional direction imply a characteristic wavelength of ~150-200 km 223 

while the vertical coherent structure suggests that these cells are dominated by the 224 

first baroclinic mode, which is consistent with the near-inertial variations of AMOC 225 

(Blaker et al., 2012; Sévellec et al., 2013). From 4°N to 10°N and 20°N to 22°N, 226 

there are also weak cells. Upwelling and downwelling in the mid depths are also 227 

found in the open ocean like the Atlantic and Pacific Oceans based on the 228 

high-resolution model simulations where the vertical velocity was used to diagnose 229 

the deep ocean near-inertial gravity waves (Komori et al., 2008; von Storch, 2010). 230 

The pattern of the near-inertial variability of SCSMOC (Fig. 4b) is very similar to 231 

the near-inertial variability of the Pacific or Atlantic Oceans. The imprint of NIGWs 232 

in AMOC is also stacked with regularly alternating positive and negative cells 233 

between 10 and 40
o
N , which are spanning 500m to 4000m (Komori et al., 2008; 234 

Blaker et al., 2012; Sévellec et al., 2013). The power peak of AMOC is at 235 

super-inertial frequencies, which is similar to that of the SCSMOC.  236 

 237 



 238 

Figure 4 (a) The standard deviations of the SCSMOC in 2010and (b) The filtered 1-3day 239 

SCSMOC signal in 2010. 240 

 241 

Figure 5 The snapshot of (a) the integrated meridional velocity field  from the bottom to 1000m 242 

and (b) the filtered SCSMOC signal at 24:00, January, 2010. 243 

To investigate the meridional propagation of near-inertial signals in the 244 

SCSMOC in mid-depths (500–2500m), Fig. 6 shows the meridional structure of the 245 

filtered near-inertial signal at 1500m in four typical months (January, April, July and 246 

October) in 2010. It is found that most of the signal propagates southwards from the 247 

region near Luzon Strait (where 18
o
N is the latitude of the southern tip of the Luzon 248 

Strait in Fig. 6) regardless of the different months. The propagating velocity is about 249 

1-3 m/s. It was noted that the NIGWs usually have the dominant frequency of f 250 

(Coriolis frequency) and usually propagate equatorward due to beta-dispersion 251 

(Anderson and Gill, 1979; Nagasawa et al., 2000; Garrett, 2001). The meridional 252 

propagation of the filtered SCSMOC signal and near inertial period (Fig. 3b) 253 



indicate that the striped pattern of the filtered 1-3day SCSMOC signal represents 254 

ocean NIGWs formed especially near the Luzon Strait and propagating equatorward.  255 

 256 

Figure 6 Time-latitude plot of 1-3day band-passed SCSMOC signal at 1500m in (a) January, (b) 257 

April, (c) July and (d) October in 2010. 258 

4  Discussion 259 

  The East Asian monsoon system prevails over the SCS, which is frequently 260 

affected by strong tropical cyclones(TCs) originating from the western Pacific 261 

(Zheng et al., 2015). Strong vertical mixing and horizontal pressure gradients caused 262 

by typhoon winds can lead to the formation of strong NIGWs in the ocean interior 263 

(Garrett, 2001). Previous observations of NIGWs are focused on the upper layer in 264 

the SCS (Liang et al., 2005;Xie et al., 2009; Xu et al., 2013; Chen et al., 2013), only 265 

Yuan et al. (2002) have found there are strong NIGWs below 1800m in the 266 

northeastern SCS using two current-meters. The mooring was located at 114.57°E, 267 

17.99°N, where the water depth is about 3500m. An Aanderaa current-meter was 268 

positioned at 300 m above the bottom and the valid current-meter data were 269 

collected from March 21, 2006 to September 19, 2006 with the sampling interval of 270 

1 h. The 120-day data since April 1, 2006 was used in this study. The power 271 

spectrum of zonal velocity and meridional velocity in the mooring data and model 272 

output peak near the inertial frequency (Fig. 7). 273 



 274 

275 

Figure 7 The power spectrum of zonal velocity (a) and meridional velocity (b) derived from the 276 

mooring (black line) and GLBu0.08 (blue line). The dashed black and blue line shows 95% 277 

confidence levels while the dashed red line represents the local inertial period. The tide effects 278 

have been removed in the mooring data. 279 

Near-inertial variability in the ocean is mainly caused by wind variability through 280 

a resonant response of ocean currents to wind (Gill, 1984).The imprint of NIGWs on 281 

AMOC has been found mostly related to wintertime storm tracks (Blaker et al., 2012; 282 

Sévellec et al., 2013; Furuichi et al., 2013; Rimac et al., 2013) while the imprint of 283 

NIGWs on SCSMOC might be related to wind variability near Luzon Strait (Li et al., 284 

2015). Figure 8 further shows the monthly mean near-inertial energy input by wind 285 

during four representative months (January, April, July and October) in 2010. It is 286 

found that wind-induced near-inertial energy input is always strong west of the 287 

Luzon Strait. In spring, autumn and winter, these strong high-frequency wind wakes 288 

in the Luzon Strait could drive the NIGWs near the Luzon Strait (Fig. 8a–b and d). 289 

An average of about 7 TCs pass through the Luzon Strait from the Northwest Pacific 290 

Ocean each year (Wang et al., 2007; Zheng et al., 2015), especially there were 2 TCs 291 

on July 2010 and 1 TC on October 2010 passing through the region to the west of the 292 

Luzon Strait, inducing strong wind-induced near-inertial energy input into the ocean 293 

(Fig. 8c), so TCs could also be drivers of the NIGWs near the Luzon Strait. The 294 

horizontal distribution of large integrated near-inertial kinetic energy roughly 295 

corresponds to that of the strong wind-induced near-inertial energy input (Figs. 8 and 296 

9). In addition, due to beta-dispersion of the NIGWs (Anderson and Gill, 1979; 297 



Garrett, 2001), the region of the integrated near-inertial kinetic energy is stretched 298 

equatorward. Furthermore, a strong density front usually exists in the Luzon strait 299 

due to the Kuroshio (Wang et al., 2001), inducing positive vorticity west of the 300 

Kuroshio and negative vorticity to its east. On the one hand, the disturbance of the 301 

front (Kuroshio) can drive NIGWs through geostrophic adjustment (Kunze, 1985; 302 

Wang et al., 2009; Whitt et al., 2013). On the other hand, the transfer of near-inertial 303 

energy to the deep ocean can be enhanced by the negative vorticity field (Lee et al., 304 

1998; Zhai et al., 2005). As the NIGWs leave the density front, they will propagate 305 

equatorward due to beta-dispersion (Anderson and Gill, 1979; Garrett, 2001). 306 

Therefore, strong NIGWs near the Luzon Strait can be detected in the deep 307 

SCSMOC south of the Luzon Strait as far as 10ºN. Although the Kuroshio intrusion 308 

is a low-frequency process, it can provide the background vorticity field for the 309 

vertical propagation through the chimney effect (Lee et al., 1998; Zhai et al., 2005) 310 

because negative vorticity west of the Kuroshio near the Luzon Strait always exists. 311 

When the Kuroshio intrusion is from one state to the other state (Nan et al., 2015), 312 

the geostrophic adjustment will also trigger near-inertial waves. This process is well 313 

depicted by Nagai et al(2015) about the Kuroshio meander.The question of the 314 

relative importance of high-frequency wind and Kuroshio intrusion on the 315 

near-inertial variations of SCSMOC needs more observational and modelling work 316 

in the future study. 317 



 318 

Figure 8 Spatial distribution of the monthly mean near-inertial energy input by wind in (a) 319 

January, (b) April, (c) July and (d) October in 2010.The black line is the best track of TC derived 320 

from the Joint Typhoon Warning Center (JTWC). 321 

 322 
Figure 9 The monthly mean integrated near-inertial kinetic energy from the bottom to 1000m in 323 

(a) January, (b) April, (c) July and (d) October in 2010. 324 

5 Conclusion 325 

 A high-resolution ocean reanalysis (GLBu0.08) is used to reveal characteristics 326 

of the near-inertial variability in the deep SCSMOC. It is shown that there is an 327 

obvious high power peak on the near-inertial band in the deep SCSMOC time series. 328 

The maximum amplitude of the near-inertial signal in the SCSMOC is nearly 4 Sv, 329 

and its largest amplitude appears in the middle layer (500–2500m).The near-inertial 330 



signal in the SCSMOC propagates equatorward with the speed of 1-3m/s from the 331 

region near the Luzon Strait. The imprint of NIGWs on the SCSMOC highlights the 332 

possible importance of NIGWs in the horizontal and vertical redistribution of wind 333 

energy throughout the SCS. Although the effect of these NIGWs in depth on 334 

turbulent mixing is still unknown, however, it is speculated that the breaking of these 335 

deep ocean NIGWs could be a candidate for the enhanced mixing in the SCS. 336 

 337 

 338 

 339 
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