
Manuscript prepared for Ocean Sci.

with version 2014/09/16 7.15 Copernicus papers of the LATEX class copernicus.cls.

Date: 18 January 2016

Effects of Vertical Shear in Modeling Horizontal

Oceanic Dispersion

A. S. Lanotte1,2, R. Corrado3, L. Palatella1,2, C. Pizzigalli1, I. Schipa4, and
R. Santoleri3

1CNR ISAC, GOS Team, Str. Prov. Lecce Monteroni, 73100 Lecce, Italy
2INFN, Sez. di Lecce, 73100 Lecce, Italy
3CNR ISAC, GOS Team, Via Fosso del Cavaliere 1, 00133 Rome, Italy
4ARPA Puglia (Regional Environmental Protection Agency), Corso Trieste 27, 70126 Bari, Italy

Correspondence to: A.S. Lanotte (a.lanotte@isac.cnr.it)

Abstract. The effect of vertical shear on the horizontal dispersion properties of passive tracer par-

ticles on the continental shelf of South Mediterranean is investigated by means of observative and

model data. In-situ current measurements reveal that vertical gradients of horizontal velocities in the

upper mixing layer decorrelate quite fast (∼ 1 day), whereas an eddy-permitting ocean model, like,

e.g., the Mediterranean Forecasting System tends to overestimate such decorrelation time because5

of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting

System, is mosty affected by: 1) unresolved scale motions, and mesoscale motions that are largely

smoothed out at scales close to the grid spacing; 2) poorly resolved time variability in the profiles

of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a

suitable use of deterministic kinematic parameterisations is helpful to implement realistic statistical10

features of tracer dispersion in two and three dimensions. The approach here suggested provides a

functional tool to control the horizontal spreading of small organisms or substance concentrations,

and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

1 Introduction

The role of small-scale motion in geophysical flows is receiving a renewed attention (Kantha and Clayson,15

2000), concerning the hydrodynamical modelling, as well as in relation to the biological conse-

quences of specific phenomena (Durham and et al., 2013).Tracer dispersion in the ocean (Davis,

1983) has an impact on different environmental, chemical, biological and technological problems.

Mean currents mostly contribute to the large-scale transport, while small-scale motions tend to

spread concentration fields or, equivalently, Lagrangian trajectories of passive or active tracers. Very20
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little is known about the way turbulence and diffusion - in addition to other physical mechanisms-,

model marine habitat and promote or impede the life of certain organisms (Ikawa et al., 1998).

Three dimensional turbulence is thought to mostly have an homogenising effect, smearing sharp

gradients and promoting super-diffusive separation in time of initially close trajectories. The relative

eddy-diffusivity is expected to grow as the 4/3 power of the separation distance R(t), D(R)≡25

d〈R2(t)〉/dt∼R4/3, and the separation distance hence grows as 〈R2(t)〉 ≃ t3, as suggested by

Richardson in his pioneering work (Richardson, 1926; Falkovich et al., 2001). Beyond the case of

three-dimensional turbulence, Richardson 4/3 law is observed also in the case of anisotropic rela-

tive dispersion, e.g. in the presence of a zonal mean shear and a meridional random walk (Bennett,

1987).30

While the mathematical formulation of the problem of turbulent dispersion can be considered es-

tablished (Bennett, 2005; Garrett, 2006), observations reported by experimental studies are much

less clear (see e.g., LaCasce, 2010; Okubo, 1971; Morel and Larchevêque, 1974; Er-el and Peskin,

1981; Berti et al., 2011). This is only partly due to the inherent difficulties of performing float or

dye concentration experiments in the ocean. Much of the uncertainty is due to the complex nature of35

the flow, and the relevance of non-ideal features associated to anisotropies and inhomogeneities, in

addition to temporally or spatially local effects such as wind waves, tidal and inertial fluctuations.

From float trajectories analysis, Ollitrault and collaborators (2005) found that for pairs of particles,

initially separated by a few km, the relative diffusivity followed the 4/3 law for separation distances

between 40 and 300 km. The experiment was conducted in the central part of the North Atlantic,40

where the Rossby internal radius of deformation is about 25 km. Coastal region experiments are puz-

zling. Some, as e.g., Ohlmann et al. (2012), tend to support the existence of an exponential regime,

beside or instead of the power-law one, while others, as Shroeder and et al. (2012), show results con-

flicting with the exponential behavior.

More recently, Poje et al. (2014) performed a Lagrangian experiment in the Gulf of Mexico, the45

GLAD experiment, deploying an unprecedented numbers of CODE drifters. In particular, they quan-

tified pair dispersion rates in agreement with Richardson law. Also, they pointed out that the sub-

mesoscale dispersion rates when based on ocean model or altimetric velocities are largely underes-

timated with respect to the observed ones.

When dealing with ocean diffusion, there is a huge experimental gap between buoyant/surface/two50

dimensional processes and three-dimensional ones, the former being much more observed than the

latter. Lagrangian diffusion due to horizontal velocities variations across the three-dimensional struc-

ture of the mixing layer is clearly crucial to the transport and fate of sediments, biological material

such as chlorophyll, and contaminants suspended in the ocean (Young et al., 1982; Steinbuck et al.,

2011). In particular, the role of sub-mesoscale and small-scale turbulent motions is at the core of55

recent research (see e.g., Lévy et al. (2012); Zhong and Bracco (2013)). Its full assessment is ham-

pered by the lack of high-frequency, multiscale measurements of the velocity field within and below
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the mixing layer.

To simplify the problem, one could be tempted to use depth-averaged currents for predicting hori-

zontal dispersion, so neglecting vertical shear effects. As it is discussed in the sequel, this approach60

can be misleading and can have some important practical drawbacks when estimating the dispersion

of 3D tracers.

The effect of vertical shear on the horizontal dispersion was first experimentally investigated in

Okubo (1968, 1971). Later, in LaCasce and Bower (2000), it was discussed in relation to the disper-

sion of subsurface floats in the North Atlantic. On the basis of estimates inferred from the mean flow65

and not from the fluctuating velocities, it is argued that vertical shear is expected to be much less

important than horizontal shear for the oceanic horizontal diffusion (LaCasce and Bower, 2000).

From the numerical modelling point of view, being able to simulate Lagrangian dispersion in the

ocean has great relevance, but it is a delicate task because of the finite resolution of the circulation

models, and more fundamentally because of the nonlinear character of the dynamics. Indeed, when70

dealing with basin scale models, not only the mixing layer dynamics is often missing, but also the

velocity field features from sub- to meso-scales are poorly resolved both temporally and spatially.

At this regard, various techniques (Griffa, 1996; Berloff and McWilliams, 2002; Haza et al., 2007,

2012) have been developed to model the sub-mesoscale or unresolved velocity components which,

nonetheless, play an important role for tracer dispersion.75

In this paper, we focus on the role of vertical shear as important mechanism promoting the hori-

zontal diffusion in the upper ocean. By vertical shear, we mean the vertical gradients of the hori-

zontal velocities. The approach here considered consists in combining observative and model data

to assess the effect of vertical shear for the tracer horizontal relative dispersion. Observative data

come from Acoustic Doppler Current Profilers (ADCP), deployed in a narrow region of the South80

Mediterranean. Numerical data come from the Mediterranean sea Forecasting System model, and are

supplemented with the use of deterministic kinematic models (Palatella et al., 2014; Lacorata et al.,

2014), to parameterise poorly resolved mesoscale motions, or unresolved processes in GCMs.

The Kinematic Lagrangian Model (KLM) here adopted can be two dimensional, to better account

for the horizontal dispersion due to mescoscale eddies, or three dimensional, to simulate vertical85

turbulent-like motions in the ocean mixing layer. Both dynamics are often underestimated in Gen-

eral Circulation Models (GCM). Even if our primary interest is in the former situation, we will

discuss both.

The paper is organized as follows. In Sec. 2, we compare in-situ observations of vertical gradients

of the horizontal velocities with measures obtained from MFS. The comparison highlights that ve-90

locity gradients correlation times derived from MFS are considerably larger than the observed ones:

such anomalous temporal persistence of the vertical shear is responsible of an enhanced relative

dispersion rate, which is possibly an artifact of the low temporal resolution of the model. Since the

comparison is performed in one location only, its results might not be of general validity. Rather, they
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point to differences that can arise between model and data, which in turns motivate the sensitivity95

study presented in Sec. 3, where we discuss the relative dispersion properties of neutrally buoyant

tracers by means of numerical simulations. We show that, by a suitable implementation of the kine-

matic model, the anomalous shear effect can be overcome. Section 4 contains the final remarks and

perspectives.

2 Vertical shear statistics : experimental versus numerical data100

We analyse the profiles of the horizontal velocities recorded with two Acoustic Doppler Current Pro-

filers working at 300 kHz. These have been deployed on the continental shelf of the South Mediter-

ranean: the first one is located at the following position: 31.91 N, 30.58 E, the second one at the

close position 31.92 N, 32.00 E (see Fig. 1). Both instruments are bottom-mounted at the depth of

104 m; currents, (U(Z,t),V (Z,t)), are uniformly measured between Z =−13 m and Z =−93 m,105

the spacing is δZ = 4 m. The vertical component of the velocity is not directly available. Measure-

ment database covers the period from February 1, 1999 until February 11, 2000: for each day we

have on average 144 profiles (ten minutes interval). We analyse data separating them into two time

intervals: I1 refers to February - April 1999; I2 refers to December 1999 - February 2000. In both

periods, the thermocline is about 80 m deep. Figure 1 shows three examples of the recorded pro-110

files, together with the ADCPs location. ADCP results on vertical shear are significant with respect

to measurement errors. We note however that the dataset can be considered of good quality, both

in terms of the statistical accuracy and of the measurement conditions: only seldom low acoustic

backscatter and diurnal migration of the scattering source may cause noise in the data. By averaging

over a large number of profiles, we can reduce ADCP velocity uncertainties.115

In-situ measurements are compared to current data, at the same locations and for the same pe-

riod, extracted from MFS (Tonani et al., 2008). MFS model uses the primitive equations with the

Boussinesq, hydrostatic and incompressible approximations written in spherical coordinates. Grid

resolutions are of 1/16◦ × 1/16◦ degrees in the horizontal directions (≈ 6.5 km), with 72 vertical

levels. The unevenly spaced levels have a thickness ranging from 3 m near the surface, to 300 m at120

the bottom. The first level is 1.5 m deep and the last is about 5000 m deep. If we estimate the first in-

ternal Rossby radius of deformation of the order 10 km on average, then MFS is an eddy-permitting

model for the Mediterranean Sea. Current data outputs are daily.

Being our primary interest on the vertical shear, we adopted the following procedure in the statistical

analysis of ADCP current profiles :125

• we remove the mean velocity component from the current measurements at different levels,

U ′(Z,t) and V ′(Z,t);
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Figure 1. (Color online): Three instances of the observed instantaneous current profiles of the horizontal ve-

locities, from the ADCP located at 31.91 N, 30.58 E. Empty red cirles: velocity modulus; black filled circles:

direction from the north. In the top right panel, the small purple triangles indicate the ADCP locations.

• for each δZ, the time series of the vertical gradients of the horizontal components are con-

structed as

γx(Z,t) = [U ′(Z,t)−U ′(Z − δZ,t)], and γy(Z,t) = [V ′(Z,t)−V ′(Z − δZ,t)];130

• velocity gradient residual times series, γ′
x(Z,t) and γ′

y(Z,t), are obtained by removing the

mean gradient, estimated over the whole time series.

We first calculate the auto-correlation function Cx,y(τ) separately for each velocity gradient com-

ponent as

Cx,y(τ)≡
〈[γ′

x,y(t0 + τ)γ′
x,y(t0)]〉

〈[γ′
x,y(t0)]

2〉
, (1)135

where the average is performed over different choices of the initial record t0, and over few depths

between Z =−20 m and Z =−50 m, to gain statistical accuracy. Currents at lower and larger depths

have not been considered.

In Figure 2, we compare the auto-correlation functions obtained from the ADCPs with those of the

MFS fields, for the same days and the same locations. Data exhibit specific behaviour depending on140

the location and on the averaging period. However, general features can also be found. The ADCP

Cx,y(τ) curves are oscillatory, which makes the determination of the correlation time

Tc =

∞∫

0

C(τ)dτ (2)

quite difficult. In the absence of a well converged integral, a possible choice is to estimate the value

of Tc from the time lag at which the curve attains the value 0.1. Clearly such extrapolation is quite145

rough and an error of the order of 10% should be considered. ADCP data show that vertical shear
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Figure 2. Log-lin plot of the velocity gradient autocorrelation functions versus the time lag. All data refer to the

γ′

x
(t) component. Top plot is for the ADCP located at 31.91 N, 30.58 E; bottom plot is for the ADCP located

at 31.92 N, 32.00 E. Symbols: Filled circles are for ADCP data of the period I1, Feb-April 1999; empty circles

for ADCP data of the period I2, Dec 1999-Feb 2000; Squares are for the MFS data averaged over period I1 and

I2. Dotted lines indicate the value 0.1.

components usually persist over a correlation time T ADCP
c ≃ 0.5 day or less.

For MFS curves, the situation is rather different: in one case, the curve never really attains zero; in

the other case, it does on a time lag T MFS
c ≃ 5 days, so about ten times bigger. This observation

suggests that at least this GCM might overestimate the temporal persistency of velocity gradients,150

unrealistically increasing the effect of the shear on the horizontal dispersion.

Beside the characteristic time scales, it is useful to quantify the amplitude of velocity gradient fluc-

tuations. Figure 3 shows the behavior of the probability distribution functions (PDFs) of the vertical

shear components; PDFs are normalised to have unit variance. The PDF are extracted from the

ADCP at 31.92 N, 32.00 E, averaging over the periods I1 and I2; the same is repeated for MFS data155

interpolated at the same location. If we directly compare ADCP with MFS data, it appears that the

former has a larger variance, which is clearly associated to the fact that MFS velocities do not have

small-scale and high-frequency variability. Additionally, the ADCP probability density function has

fat tails, the fingerprint of a turbulent-like dynamics. Taking into account such variability could be

important for the modelling of ocean mixing layer dynamics (Fox-Kemper and Ferrari, 2008). How-160

ever if we compare daily averaged ADCP with MFS data, the cores of the unitary variance PDFs are
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very similar (not shown): this implies that at least for mean fluctuations, experimental ADCP and

numerical MFS data account for dynamical behaviours having the same mean amplitudes.

3 Lagrangian dispersion: the effect of vertical shear

We start by considering a neutrally buoyant tracer particle whose position is given by the three-165

dimensional vector X(t). The trajectory is assumed to evolve according to the Lagrangian equation

dX

dt
(t) =U(X, t)+u(X, t) (3)

where the velocity field is simply decomposed in a large-scale term, U(x, t), and a small-scale con-

tribution u(x, t). We define the former, (U,V,W ), as the resolved component of the GCM, and the170

latter, (u,v,w), as the unresolved or poorly resolved component.

When considering Lagrangian dispersion, the problem is easily reformulated in terms of the time

evolution of the pair separation vector R(t)≡Xi(t)−Xj(t), where the indices i, j = 1, . . . ,n indi-

cate the tracer particles, and i 6= j :

dR

dt
(t) =∆RU(R, t)+ δRu(R, t) . (4)175

Two particles at mutual distance R0 = |R(t= 0)| start to separate because of a non-zero velocity

fluctuations at that scale. Depending on the value of R0 and on the local dynamics, such velocity

fluctuations can be ascribed to very different flow motions. Let us consider the simple situation of

two particles, P1 and P2, located in the ocean mixing layer and initially separated along the vertical

direction only, i.e. R0 = (≃ 0,≃ 0,R0). In the absence of vertical shear, and taking into account that180

vertical velocities are very small, these particles will keep their initial separation almost unchanged

so that R(t)≃R0, or would separate very slowly. As a result horizontal diffusion will be very weak.

The situation is different when e.g. particles have the chance to experience for some time a mean
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Figure 4. An illustration of the effect of vertical shear onto the mean horizontal dispersion of two particles, P1

and P2, initially separated along the vertical direction.

vertical shear. If this is the case, with U(Z1, t) 6= U(Z2, t) and/or V (Z1, t) 6= V (Z2, t), particles

will start separating. This is better illustrated in Figure 4, which shows that vertical shear causes185

horizontal pair dispersion. It is clear that the vertical shear is bounded by two opposite situations: on

one hand, a mean shear, i.e. a shear profile with very long correlation time as it happens for example

in the presence of strong background currents; on the other hand, a fluctuating vertical shear due

to turbulent motions and hence rapidly changing in time. As we have seen in the previous section,

the situation in the mixing layer of the Mediterranean sea is in between these two extrema, and the190

typical time scale turns out to be less or of the order of one day. MFS estimate is much longer, as

a result of the low temporal resolution of the vertical gradients of the horizontal velocities in the

model.

3.1 Numerical simulations of Lagrangian dispersion

We discuss different sets of numerical simulations based on the velocity configurations of the MFS195

model, also supplemented by the use of the kinematic model to described poorly resolved motions.

Kinematic models can be adapted to the different dispersion regimes, namely exponential separa-

tion, turbulent dispersion, and standard diffusion. Their implementation hence depends on the spe-

cific dynamics and specific range of scales that one wants to describe. Here, we compute transport

properties by introducing statistical Lagrangian motions for the mixing layer motions (3D KLM),200

and separately for the poorly mesoscale motions (2D KLM). By doing so, we demonstrate that i)

small-scale motions enabling tracer pairs to explore the whole mixing layer do not modify MFS

horizontal dispersion properties, in reason of the anomalous persistence of vertical gradients of the

horizontal velocities in the MFS model, that overrides the small scale fluctuations; ii) differently,
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the horizontal relative separation resulting from the introduction of the 2D KLM is fast enough to205

become dominant with respect to the anomalous shear effect produced by the MFS solution.

Lagrangian numerical simulations are performed using as large-scale velocities the zonal U(x, t) =

UMFS and meridional V (x, t) = VMFS components provided by MFS, and interpolated at particle

positions; the velocity vertical component W (x, t) is not explicitly available in MFS datafile consid-210

ered, and we did not consider it. To take into account unresolved fluctuations, we adopt a strategy in

terms of a Lagrangian deterministic kinematic modelling.

In the following, we first describe the 3D KLM which is meant to account for the transport and

mixing in the upper layer of the ocean; then we introduce the 2D KLM accounting for the poor-

resolution of mesoscale horizontal motions. More details on the KLM definition and implementation215

can be found in Palatella et al. (2014); Lacorata et al. (2014).

The 3D Kinematic Lagrangian Model. In compact form, the three dimensional velocity field of the

KLM, (u,v,w), is defined as the curl of the vector potential Φ(x, t)

u(X, t) =
∂Φ1(x, t)

∂z
,

v(X, t) = −
∂Φ2(x, t))

∂z
, (5)220

w(X, t) = −
∂Φ1(x, t))

∂x
+

∂Φ2(x, t)

∂y
,

hence u(x, t) is divergence-free by definition. The vector potential itself Φ= (Φ1(x,z, t),Φ2(y,z, t),0)

has two components and depends on the three spatial variables and the time variable, as follows

Φ1(x,z, t) =
A

k̂
sin[k(x− ssin(ωt))] sin[k̂(z− ssin(ωt))] ,

Φ2(y,z, t) =
A

k̂
sin[k(y− ssin(ωt))] sin[k̂(z− ssin(ωt))] ,

(6)

in analogy with chaotic cellular flows (Solomon and Gollub, 1988; Crisanti et al., 1991; Lacorata et al.,225

2008). Further, the suppression of the vertical dynamics below the mixing layer is included in terms

of a damping term Υ(z) = exp(−|z|/L), multiplying the vector potential Φ. Such exponential re-

laxation term guarantees that KLM velocities go to zero at depths much larger than the length scale

L, where L is of the order of the mixing layer depth.
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The explicit form of the velocity components of the 3D model then results as follows,230

u3D = e−|z|/L ×[
Asin[k(x− ssin(ωt))]cos[k̂(z− ssin(ωt))]−

A

Lk̂
sin[k(x− ssin(ωt))] sin[k̂(z− ssin(ωt))

]
,

v3D = e−|z|/L ×[
−Asin[k(y− ssin(ωt))]cos[k̂(z− ssin(ωt))] +

A

Lk̂
sin[k(y− ssin(ωt))] sin[k̂(z− ssin(ωt))]

]
,

w3D = e−|z|/L ×235 [
−A

k

k̂
cos[k(x− ssin(ωt))] sin[k̂(z− sin(ωt))] +A

k

k̂
cos[k(y− s sin(ωt))] sin[k̂(z− ssin(ωt))]

]

+e−|z|/L ×[
A

k

Lk̂
sin[k(x− ssin(ωt))] sin[k̂(z− sin(ωt))]−A

k

Lk̂
sin[k(y− s sin(ωt))] sin[k̂(z− ssin(ωt))]

]

(7)

In the expressions above, A is the velocity amplitude; k = 2π/l0 is the horizontal wavenumber asso-240

ciated to the wavelength l0 of the flow; k̂ = 2k is the vertical wavenumber assumed to be twice the

horizontal wavenumber for isotropy; tc = l0/A is the convective time scale; s and ω are amplitude

and pulsation of the time-dependent oscillating terms.

In order to simulate the mixing-layer dynamical effect of a multi-scale velocity field with a turbulent-

like behaviour, as customary we superimpose n different modes. For the 3D KLM, we use n= 5 and245

the velocity field of eqs.7 becomes the sum of different terms with A=Ai;k = ki;ω = ωi;s= si

for i= 1, . . . ,5. The small spatial scales li and their associated fast time-scales ti ≃ li/A are chosen

to reproduce, on average, the dynamical properties within the mixing layer. Pulsations of the per-

turbations, responsible for the Lagrangian chaotic behaviour, are dimensionally chosen, ∝ 1/ti. In

particular for the 3D KLM, we use these values for the model parameters250





ln = {25.0,33,4,50.0,70.7,100}m

kn = 2π/ln;An = (ǫln)
1/3 m/s

ωn = 2πAn/ln;

L= 100 m, ε= 10−5m2s−3 .

(8)

Finally, ε is the kinetic energy dissipation rate and it is used as main parameter through the dimen-

sional relation |u|3 ≃ Lε, valid for turbulent-like regime (Frisch, 1995).

The 2D Lagrangian Kinematic Model. The Kinematic Lagrangian model for the unresolved mesoscale

motions is built up, in analogy with the 3D model, in terms of an ensemble of horizontal cells form-255

ing a 2D regular lattice (Palatella et al., 2014).
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The explicit form of the 2D sub-grid velocity is

u2D =

6∑

j=1

Aj sin[kjx− kjsj sin(ωjt))]cos[kjy− kjsjsin(ωjt+ θ)] ,

v2D =−

6∑

j=1

Aj cos[kjx− kjsj sin(ωjt))] sin[kjy− kjss sin(ωjt+ θ))] , (9)

where the subscript is meant to stress that the 2D KLM is not equal to the 3D KLM in the absence260

of the vertical velocity. The choice of the parameters for the 2D model is the following





lj = {10.0,14.120.0,28.0,40.0,56.5} km

sj = lj/10, θ = π/4

ε= 10−9m2s−3 ,

(10)

and Aj ∝ (εlj)
1/3, ωj = 2πAj/lj , ans kj = 2π/lj . As in Lacorata et al. (2014), these parameters

have been tuned in order to numerically obtain an horizontal dispersion with the same statistical

properties (more precisely the same Finite-scale Lyapunov Exponent) of the actual surface drifters265

(see below the points labelled as "Surface floats" in Fig. 5). It is important to note the difference

between the choice of parameters of the 2D and 3D models: they act on well separated range of

scales, and mimick different effects, as mentioned above.

Numerical experiment set up. We performed three series of numerical simulations releasing Npair ≃

50,000 pairs of neutrally buoyant particles. In all series, pairs are initially homogeneously distributed270

in the whole Mediterranean Sea, 10 km offshore from the coast. An elastic collision takes place

when particles meet the domain boundaries. Within each pair, particles start at the same latitude

and longitude position, but they are vertically separated: one particle start at z =−3 m below the

surface, the other at z =−43 m, hence R0 = (0,0,40). Simulations are carried out for one year

(from January 1st to December 31st, 2009), and integration time step is dt= 120 s.275

The three series of simulations are so characterised:

– Series I : the KLM velocity is absent and particles keep their initial depth unchanged through-

out the entire simulation. This is quite far from realistic conditions, however this numerical

experiment is useful to quantify the effect of the vertical shear solely due to the mesoscale

MFS model dynamics.280

– Series II : the 3D KLM term is switched on, with the parameters shown at (8). As a result

of the presence of the sub-grid-scale turbulent dynamics, particles can also move vertically

(between the surface and a depth scale of the order of L).

– Series III : it differs from the Series II due to the fact that in addition to the 3D KLM, the 2D

KLM model is also implemented u= u3D+u2D. The 2D KLM is essential in simulating the285

mesoscale structures that are not completely resolved by the MFS model.
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Figure 5. (Color online) log-log plot of the Finite-scale Lypaunov exponent λ(δ) versus the separation scale δ.

Black filled circles: surface drifters; Red filled circles: MFS surface particles (both after Lacorata et al. (2014));

Blue filled squares: Series I, that is MFS model for particle pairs at fixed depths; Purple empty squares: Series

II, that is MFS model plus the 3D KLM; Black empty circles with solid line: Series III, as Series II plus the 2D

KLM. Error bars, often smaller than the symbols themselves, are estimated from the standard deviation of the

FSLE.

In addition, we also compare results from these runs with results obtained in Lacorata et al. (2014),

considering MFS surface tracked particle and drifter trajectories. Drifter data belong the Mediter-

ranean Sea- In-Situ Near Real Time Observations (database INSITU_MED_NRT_OBSERVATIONS_013_035

available on http://marine.copernicus.eu/). These are surface buoys, drogued at a nominal depth of290

15 m (Poulain et al., 2012).

The comparison with surface drifters is here used as a benchmark for the 2D kinematic model.

3.2 Lagrangian dispersion diagnostic: the Finite-Scale Lyapunov Exponent

The most natural way to quantify Lagrangian dispersion statistics is in terms of the moments 〈Rp(t)〉,

of the pair separation probability distribution function P (R, t) (LaCasce, 2010; Biferale et al., 2014),295

measuring the probability to observe a pair separated by the distance vector R at time t. Standard

obervables are the moment of order two, the mean square particle separation 〈R2(t)〉, and its time

derivative, i.e., the relative diffusivity D(R, t). Alternatively one can use the Finite-Scale Lyapunov

Exponent (FSLE) (Boffetta et al., 2000). The advantage of this choice, often exploited in ocean

dispersion applications (LaCasce, 2008), is that different dispersion regimes are disentangled and300

crossover effects are minimised. Furthermore, Finite-time Lyapunov Exponent (FTLE) is also used

to detect Lagrangian coherent structures in ocean dynamics applications (Haller, 2000; Sulman et al.,

2013). A discussion of the use of scale-dependent indicators in Lagrangian dispersion problems can

be found in Berti et al. (2011), while a direct comparison of FSLE and FTLE for the identification

of transport barriers can be found in Boffetta et al. (2001).305
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The measure of FSLE consists of fixing a set of threshold scales, δn = ρnδ0, where ρ > 1, n=

1,2,3, . . . and δ0 can be chosen of the order of the initial pair separation. We then need to calculate

the time, T (δ), it takes for the pair separation distance R(t) to change from δn to δn+1. By averaging

over the particle pair ensemble, we obtain the mean exit time, 〈Tρ(δn)〉, or mean doubling time if

ρ= 2. Formally we are calculating the first passage time. The FSLE has the dimension of an inverse310

of time and is defined as

λ(δ)≡
1

〈T (δ)〉
lnρ. (11)

If δ → 0, the FSLE no longer depends on the scale and coincides with the Maximum Lyapunov

Exponent on the flow: this happens when particles separate exponentially in time. For finite sepa-

rations, if relative dispersion is governed by a 〈R2〉 ≃ tν regime, then by dimensional analysis the315

FSLE is expected to scale as λ(δ)≃ δ−2/ν . Most relevant regimes are the case of standard diffusion,

for which we expect λ(δ)≃ δ−2; Richardson’s diffusion, λ(δ)≃ δ−2/3; and ballistic or shear dis-

persion, with λ(δ)≃ δ−1.

Here, since we want to compare how the horizontal diffusion is influenced by the different flow re-

alizations, in the FSLE we consider horizontal separations only.320

In Figure 5, we compare FSLE results from the three Series and results from Lacorata et al. (2014)

at the surface. First, we observe that surface drifters and MFS surface tracers data show a striking

difference: while at large scale they have the same behaviour, at a scale δ ≃ 40 km they depart. In

particular, for Lagrangian particles moving in the MFS velocity field, numerical simulations unre-325

alistically suggest that it would take approximately the same time to reach a separation scale of the

order of few km and a separation scale ten times bigger. As it has been previously observed, this

discrepancy is due to both the coarse spatial resolution and the time averaging of any mesoscale

model (see e.g. Haza et al. (2012) and references therein).

Note that the scale at which MFS surface tracers deviate from drifters is larger that the model reso-330

lution: this suggests that scale resolution is quite crucial for Lagrangian statistics.

How does vertical shear affect these results? Can the vertical shear substantially modify horizontal

dispersion? We address these questions using numerical data from Series I, II and III.

In Series I, the effect of the vertical shear onto the horizontal dispersion comes from the MFS model

only. The associated FSLE curves clealry indicates that vertical shear is able to promote horizontal335

dispersion. Neutrally buoyant tracers moving at different depths experience velocity differences: as

a result they start to separate already at very small scales.

In Series II, the 3D KLM terms are switched on, and particles vertically explore the whole mix-

ing layer. The obtained FSLE curve is very similar to that of Series I, and in particular it results

to be slightly below this last. This finding is somehow surprising since, thanks to the introduction340

of small-scale turbulent-like motions, tracer pairs can explore the whole mixing layer. However the

fluctuations of the 3D KLM do not substantially modify the horizontal pair dispersion, and actually
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they make it slightly slower in the present case. This suggests that the dominant effect is the one

associated with the MFS vertical shear.

In Series III, both the 3D and the 2D KLM are switched on. The resulting FSLE is larger than that345

of Series II at any scale. This means that the most important dynamical correction to the MFS model

is that associated to the 2D KLM. Indeed, the dispersion effect induced by the mesoscale eddies in-

serted in the 2D KLM overrides any other horizontal dispersion effects, including the one associated

to the anomalous persistence of vertical gradients of the horizontal velocities in the MFS model.

We can summarise the results of the numerical simulations as follows. By comparing the horizon-350

tal dispersion of the bare MFS model with Mediterranean surface data, one sees that actual drifter

pair dispersion follows a turbulent-like behavior, whereas modeled surface trajectories separate more

slowly and at a nearly constant rate. A way to solve this mismatch is to add a 3D kinematic model,

enabling vertical shear mixing and promoting surface horizontal dispersion also. However, the adop-

tion of the 3D KLM only does not seem an appropriate choice, since vertical gradients of the hor-355

izontal velocities have an anomalous temporal persistence, resulting in a spurious shear dispersion.

Indeed, such persistence does not seem to have a counterpart in observational data, and we interpret

it is an artifact of the poor temporal resolution of MFS model.

On the other hand, adding a two dimensional kinematic model, one finds that the anomalous shear

dispersion effects become practically negligible, being hidden by the more energetic dispersion pro-360

cesses occurring at the mesoscales. Clearly, mesoscale eddies are not pure 2D structures, but they

have a certain vertical development in the mixing layer. This implies that mesoscale turbulent dis-

persion is not a property of the surface layer only, but belongs to a whole vertical range of ocean

layers. By adding the 2D KLM for mesoscale eddies, one realises that the effect is to have an effi-

cient dispersion that covers the one due to mean vertical shear.365

Finally, it is worth recalling that, as shown in Lacorata et al. (2014), the FSLE measured for the

Mediterranean surface drifters previously discussed follows the Richardson diffusion behaviour

λ(r)∝ r−2/3 for r ∈ [10 : 100] km. This is consistent with the observed dispersion rates in the

GLAD experiment, which spans however a much wider range of scales (Poje, 2014).

4 Conclusions370

In this paper, we have discussed the effect of vertical shear onto the horizontal pair dispersion of

tracer particles in a Mediterranean Sea model. Numerical simulations with the MFS model show

that, differently from drifters, pairs released at the same depth tend to exponentially separate with

a dispersion rate nearly constant over a wide range of scales, up to the mesoscales. At larger scales

(> 100 km), as soon as spatial correlation of the MFS velocity decay, the relative dispersion tends375

to a diffusive regime. However, if two trajectories having the same initial position are shifted in the

vertical direction, then the horizontal dispersion rate grows as the separation tends to zero: it is the
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effect of the persistence of the vertical gradient of the horizontal velocities. This observation implies

that, at spatial scales smaller or comparable with the mixing layer size, shear dispersion can be quite

important. Its relevance might be under or overestimated in the model depending whether vertical380

gradients of the current field change too fast or are anomalously persistent in time, respectively.

Now, the question arises on the proper small-scale ocean model velocity field able to simulate hori-

zontal dispersion of a tracer having 3D structure in the mixing layer and below. The solution to this

problem is very difficult, mainly because experimental data of 3D tracer dispersion are not easily

available. Different modelling solutions can be adopted to account for different problems, depending385

whether mesoscales, sub-mesoscales or small-scales are the relevant range of scales in the dispersion

problem, none of which is straightforward.

For the specific problem of the effect of vertical shear, a different possibility, yet to be explored, is

to build up an ad hoc Lagrangian small-scale kinematic model accounting for the locally homoge-

neous shear-dominated dynamics. In the context of large-eddy simulations, this has been done with390

the shear-improved sub-grid-scale models in the Eulerian framework (Lévêque et al., 2007). Future

ocean experiments focusing on the dispersion properties of tracers having vertical structures, such

as the chlorophyll field, are needed to reveal more about the dynamics and statistics at those spatial

scales where shear might dominate.
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