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Abstract

Sea surface temperature (SST) and turbidity (7) derived from Landsat-8 (L8) imagery
were used to characterize river plumes in the Northern Adriatic Sea (NAS) during a sig-
nificant flood event in November 2014. Sea surface salinity (SSS) from an operational
coupled ocean-wave model supported the interpretation of the plumes interaction with
the receiving waters and among them.

There was a good agreement of the SSS, T, and SST fields at the sub-mesoscale
and mesoscale delineation of the major river plumes. L8 30 m resolution enabled also
the description of smaller plume structures.

Sharp fronts in T and SST delimited each single river plume. The isotherms and
turbidity isolines coupling varied among the plumes due to differences in particle loads
and surface temperatures in the discharged waters. The different plumes reflectance
spectra were related to the lithological fingerprint of the sediments in the river catch-
ments.

1 Introduction

Riverine discharges in the coastal ocean form river plumes, distinct regions where wa-
ter masses properties are significantly influenced by riverine freshwater as it merges
with deeper, salty and dynamical ocean waters (Horner-Devine et al., 2015). The ex-
tent, motion, and general structure of river plumes are mainly determined by the hori-
zontal advection of freshwater from the river mouth, while the along-coast transport of
the river-borne material is determined by several processes, including stratified-shear
mixing, frontal processes, oceanic transport, tide and wind forcing, as well as Coriolis
effects (Hetland, 2005; Horner-Devine et al., 2015). The relative importance of the mix-
ing and transport processes determines the overall fate and transport of the freshwater
discharge, as well as the dissolved and particulate matter concentrations within the
plume (Horner-Devine et al., 2015).
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Within the Mediterranean Sea, the Northern Adriatic Sea (NAS, Fig. 1) is the sub-
basin most influenced by river plumes (DeGobbis et al., 2000; Spillman et al., 2007;
Falcieri et al., 2014). The NAS is a shallow (average depth is smaller than 35m) and
semi-enclosed regional sea, which due to the high amount of freshwater is generally
considered a dilution basin (DeGobbis et al., 2000; Spillman et al., 2007). The Po,
Adige and Brenta rivers produce an almost single river plume, contributing 84 % of the
total freshwater discharge delivered to the basin (Cozzi and Giani, 2011; Falcieri et al.,
2014). However, the local effects of minor rivers should not be neglected, since they can
contribute with low-salinity patches that are relevant to mesoscale and sub-mesoscale
dynamics (Marini et al., 2008; Solidoro et al., 2009). These elevated freshwater dis-
charges and associated particulate and dissolved matter inputs have a significant ef-
fect both on the physical and biogeochemical properties of the whole basin (Zavatarelli
et al., 1998; Marini et al., 2008; Solidoro et al., 2009).

Following a large regional precipitation event affecting northern ltaly, in Novem-
ber 2014 all NAS rivers area flooded concurrently (Fig. 2). Peak discharge for the Po
River reached 8375m>s™' on 19 November 2014, the fifth highest of the last hundred
years (Montanari, 2012). The timing of the flood for each river varied reflecting the
space—time distribution of precipitation and catchment morphology: Piave, Brenta and
Isonzo peaked earlier on 6—7 November, Livenza and Adige on 8 November, while Po
peaked the first time on 9 November (~ 4000 m?® 3_1) and then reached the maximum
discharge on 19 November. During this combined flood event a total of ~ 15 km?® of
freshwater entered NAS, of which ~ 10 km? entered the basin by 19 November, equat-
ing to ~ 1% of the basin volume.

Earth observation has been widely used to describe mesoscale dynamics and phys-
ical oceanographic characteristics of river plumes fronts using SST (sea surface tem-
perature) and OCR (ocean colour radiometry) sensors (e.g. Ullman and Cornillon,
1999; D’Sa et al., 2007; Palacios et al., 2009; Schroeder et al., 2012). Several stud-
ies have combined SST with OCR data and/or with model data to quantify the extent,
strength and variability of the river plumes fronts and to explain their behaviour in rela-
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tion to the main physical forcing processes (e.g. Hickey et al., 2005; Otero et al., 2009;
Pietrzak et al., 2011; Falcini et al., 2012; Margvelashvili et al., 2013).

The recently launched Landsat-8 (L8 hereafter) has been deemed suitable for study-
ing aquatic environments due to improved data quality and spectral coverage (lrons
et al., 2012; Pahlevan et al., 2014). In this study we will combine SST and turbidity de-
rived from L8 imagery to describe at fine spatial resolution (30 m) river plumes and their
sub-mesoscale interactions in the NAS during the significant combined flood event of
November 2014. To this aim we will also use the model data from an operational cou-
pled ocean-wave modelling system to support the interpretation of the plume dynamic
and their interaction with the receiving waters and among them.

2 Methods
2.1 Satellite imagery

To image the Earth throughout the visible and thermal portions of the spectrum, L8
carries two separate sensors, the Operational Land Imager (OLI) and the Thermal In-
frared Radiometer Suite (TIRS). Both OLI and TIRS represent an evolution in Landsat
sensor technology in terms of data quality and spectral coverage (Irons et al., 2012).
The OLI provides coverage of the VNIR and SWIR portions of the spectrum at 30 m
spatial resolution in nine spectral bands with a relatively high SNR (~ 300 for the blue
bands) (Irons et al., 2012; Pahlevan et al., 2014). The TIRS adds two long-wave ther-
mal spectral bands at 100 m spatial resolution, centred at 10.9 and 12.0 um (bands 10
and 11, respectively) (Irons et al., 2012). Historically Landsat data has been used in
coastal and inland waters to map both particulate matter and surface temperature (see
Hellweger et al., 2004). OLI is considered particularly adequate for ocean colour re-
trievals and turbidity mapping due to its radiometric resolution and calibration accuracy
(Pahlevan et al., 2014; Vanhellemont and Ruddick, 2014; Franz et al., 2015).
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In this study we used OLI and TIRS imagery of 19 November 2014 capturing a sig-
nificant freshwater inflow into the NAS for mapping both turbidity and SST. For turbidity,
OLI data were converted into water-leaving radiance reflectance (p,,, dimensionless)
with ACOLITE, an automatic method for atmospheric correction designed specifically
for OLI over turbid waters (Vanhellemont and Ruddick, 2014, 2015). The p,, data were
then converted into turbidity (T) expressed in Formazin Nephelometric Unit (FNU) fol-
lowing Dogliotti et al. (2015). As at higher turbidity values, p,, (655 nm) starts to saturate
while p,, (865 nm) still linearly increases with turbidity, they use a switching scheme to
avoid saturation at 655 nm and retrieve accurately turbidity in the 1-1500 FNU range
(Dogliotti et al., 2015). SST values were retrieved from atmosphere brightness tem-
perature in TIRS band 10 with a radiative-transfer based atmospheric correction (Barsi
et al., 2014, 2005).

2.2 Hydrodynamic forecasting model data

As a complement to the L8 images, we analysed model data generated by an
operational implementation in the northern Adriatic basin of the Coupled Ocean—
Atmosphere-Wave-Sediment Transport (COAWST, Warner et al., 2008) where the Re-
gional Ocean Modeling System (ROMS) and the Simulating Wave Nearshore (SWAN)
model are 2-way fully coupled (Russo et al., 2013a, b). COAWST was implemented
for the NAS on a grid with horizontal spacing of 0.5 km and 12 vertical terrain-following
s-levels, offline nested to parent operational models covering the whole Adriatic and
the Italian seas ran by ARPA Emilia Romagna in Bologna (ltaly) (Russo et al., 2013a,
b). The operational system is forced by the operational high-resolution (7 km x 7 km)
meteorological model COSMO-17 (Russo et al., 2013a, b). Following Hetland (2005),
at the river mouths grid cells momentum was injected giving a vertical structure to the
plume, i.e. injecting most of the freshwater discharge in the surface layers (~ 80 % in
the four uppermost sigma levels, corresponding to about 1.5m). Daily time series of
freshwater supplies from the Po river were imposed (and kept constant along the 72 h
of forecast), while the remaining NAS rivers were prescribed based on monthly clima-
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tological estimates (Raicich, 1994). In order to represent the Po river delta system, the
outflow measured at Pontelagoscuro (50 km upstream the river mouth) is split into five
major branches (Maistra, Pila, Tolle, Gnocca and Goro) following the percentage divi-
sion proposed in Zasso and Settin (2012). Minor Po river branches, north of the Po di
Pila mouth, and some minor freshwater inputs (e.g. nearby the Caorle and Baseleghe
wetlands) are not considered.

To delineate the surface extent of river plumes and the freshwater influence in the
basin, the daily averaged surface level of the modelled salinity field was considered as
the sea surface salinity (SSS). This approach explicitly does not consider the vertical
structure of the plume or the mixed layer depth (as proposed in Otero et al., 2008,
2009) as the shallow waters of NAS and the weak tidal dynamics not always allow the
development or the identification of a mixed layer (Falcieri et al., 2014).

3 Results and discussion

In the pseudo-true colour composite of the OLI imagery of 19 November 2014 (Fig. 1)
two very large regions of freshwater influence (ROFI, Simpson, 1997) are delineated
in the NAS by the convolution of the plumes generated by the northern rivers from the
Isonzo to the Piave and then by the western rivers i.e., the Brenta, Adige and Po. As the
river mouths are close to each other, sharp fronts delineate the river plumes from the
cyclonic coastal current transporting dissolved and particulate matter from upstream
plumes. The area in front of the Venice Lagoon shows specific patterns generated by
the interaction between the coastal current and local tidal dynamics at the lagoon inlets,
enhanced by the presence of long artificial jetties (Bellafiore, 2010).

3.1 Meteo-oceanographic conditions

The basin was characterized by relatively calm conditions in the days before the im-
age retrieval. Regional circulation patterns in the week from 12 to 19 November were
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initially dominated by along-shore coastal currents (daily-average up to 0.7ms " at
the surface), followed by effect of increasing riverine inflow spreading offshore with
strong vertical gradients in temperature and salinity. These patterns are consistent
with the conditions recorded at the Acqua Alta Oceanographic Tower (AAOT) located
about 15 km off the Venice Lagoon (Fig. 1). On 19 November the average wind speed
was 4ms”' and the sea state was characterized by a mean significant wave height
smaller of 0.3 m. Oceanic currents were weak reaching a vertically integrated value of
0.1 ms_1, and mostly directed southwestwardly.

3.2 Spectral properties

From a qualitative point of view, the plumes and the coastal waters in the NAS appear
very different in color ranging from white to yellow/brown shades in the RGB composite
(Fig. 1). Figure 3 presents reflectance spectra extracted from selected locations of
interest in NAS: the spectra for the center of the basin have a peak at 443 and 482 nm
typical of blue waters (p,, (482) ranging 0.01-0.03), while the AAOT, the Venice lagoon
inlets (Chioggia, Malamocco and Lido) and Grado inlet of the Marano lagoon have
a 562 nm peak typical of green waters (p,, (562) ranging 0.04-0.07). The waters flowing
from the western Marano lagoon (Lignano inlet) and Caorle and Baseleghe wetlands
have higher spectra and p,, values at 562 and 655 nm are very similar (ranging 0.10-
0.12 and 0.08-0.12, respectively).

The river plumes spectra show a peak at 655 nm of whitish/yellow/brown waters (o,
(655) ranging 0.09-0.23). In particular, the Isonzo, Tagliamento and Piave river plumes
appear as almost white in the true-color as they have high p,, at both 562 and 655 nm,
while the Po, Brenta, Adige, Sile and Livenza river plumes appear in yellow/brown
shades, as p,, (562) is lower, ranging 0.08-0.12. The Po river plumes show p,, (865)
ranging 0.10-0.12, similarly to p,, (655), whilst for all other river plume spectra p,, (865)
was lower than the p,, (655).
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The very high reflectances and the colours of eastern Alpine rivers (Isonzo, Taglia-
mento and Piave) plumes are related to carbonate-rich sediments, yielded by their
prevailing Mesozoic limestone and dolomite catchments (Pigorini, 1968; Castellarin
and Vai, 1982). The yellow/brown shades of other rivers are due to the lithological
fingerprint of their sediments. The Adige River drains a metamorphic and porphyric
catchment in North-eastern Alps (Dinelli and Lucchini, 1999). The Po River drains
both the Alps and Northern Apennines, respectively characterized by metamorphic-
intrusive rocks and terrigenous sequence (shales, calcareous, mudstones and sand-
stones) (Dinelli and Lucchini, 1999). The remaining minor rivers, including Venice and
Marano lagoons tributaries, mostly drain terrains constituted by mixed river deposits
of the floodplain (Piovan et al., 2010). A considerable fraction of the flux from wetland-
lagoon systems, constituted by organic particulate and high dissolved matter, also con-
tribute to the dark-brown colour.

3.3 SST and SSS fields

Following Falcieri et al. (2014), we can identify the surface extent of the freshwater
influence in the NAS with the 36 isohaline resulting from the salinity fields obtained
by the numerical model (Fig. 4). The freshwater discharged during the combined flood
event extended 15 km offshore for the plumes generated by the northern rivers, 18 km
in front of the Adige and Brenta rivers and more than 60km in front of the Po River,
consistently with the Falcieri et al. (2014) high discharge plume patterns. Overall, the
waters delineated by the 36 isohaline were colder (~ 12-17°C) than the saltier part
of the basin (SST >~ 18°C). In particular, SST ranged between 12—15°C for the river
and lagoon plumes, and between 15-17 °C in the coastal current connecting the river
plumes. The area in front of the Venice Lagoon was warmer than the neighbouring
ROFIs (SST = 16-18°C).

The over-imposed isohalines showed a good correspondence with the observed SST
field in delineating the major river plumes (Isonzo Tagliamento, Brenta, Adige and Po
rivers). As some minor freshwater inputs (e.g. the Caorle and Baseleghe wetlands) are
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not considered in the model, there were some areas of mismatch between the SST
and SSS fields in the coastal region east of the Venice Lagoon.

In the SST field is possible to identify small near-shore trapped warm water (NTTW)
parcels, which are warmer than the adjacent plumes and the coastal current, and more
similar to the central part of the basin (SST ranging 17-19°C). These NTTWs are
located outside of the Marano lagoon (45.71° N, 13.23° E), between the Sile and Piave
river plumes (45.49° N, 12.64° E) and to the south of the Po di Pila (44.88° N, 12.49°E).
These features were also spectrally different than the neighbouring waters, showing
a peak typical of green waters with p,, (562) ranging 0.09-0.12 (Fig. 3). The locations
of these small features are not adequately captured by the model derived SSS, most
likely due to resolution issues.

3.4 Turbidity fields

Figure 5 presents the maps of T for the Isonzo to the Piave ROFI (Fig. 5a) and the
Brenta, Adige and Po river plumes ROFI (Fig. 5b). The Tagliamento river plume pre-
sented the highest turbidity values (T > 1700 FNU) close to the mouth, while the Po
river mouths plumes ranged 600-800 FNU, and the turbidity nearby the other river
mouths ranged 100—-300 FNU. For the open waters outside the ROFIs T ranged 1-5
FNU, while in the cyclonic coastal gyre connecting the plumes it ranged 10-30. As the
wind and wave re-suspension was negligible during this event, T can be interpreted as
a measure of the suspended particle load transported by the plumes in the basin.

The sharp fronts delimiting each single river plume observed in Figs. 1 and 4 appear
delineated both by 7 and SST even if the isotherms and turbidity isolines coupling
varied among the plumes due to differences in particle loads and surface temperatures
in the discharged waters (Fig. 5¢). The T and SST coupling does not necessarily reflect
the composition of the transported particulate matter, as the Adige and Isonzo rivers
(~13°C, ~ 100 FNU) or the Livenza and Brenta rivers (~ 14.5°C, ~ 150 FNU) have
similar coupling but transport different material sources as described in Sect. 3.3. The
dilution of the riverine freshwater within the plumes for the T and SST fields indicates
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that both quantities acted as possible tracers for freshwater influence in this specific
event, perhaps with the exception of the NTTWs where T ranged 10-50 FNU, up to
one order of magnitude lower than the neighbouring plumes and significantly higher
the open seawaters.

3.5 Plume morphologies

The river plume structures can be described in terms of dynamical regions charac-
terized by different dominant processes (Horner-Devine et al., 2015). Based on the
presence/absence of these regions, Horner-Devine et al. (2015) proposed a classifica-
tion of six plumes morphologies (plumes A—F). Following this classification, in Figs. 1,
4 and 5 the surface expressions of these morphologies can be identified for the NAS
plumes observed on 19 November 2014:

— The Isonzo, Tagliamento, Piave, Adige and Brenta rivers form “prototypical”
plumes (“plume A”), comprising all dynamical regions: the initial jet-like plume
expansion forms a bulge that then merges in the coastal current.

— The Livenza River jet-like plume merges in the coastal current without forming
an anticyclonic eddy, probably because of the very long jetties, hence it may be
classified as non rotational plume (“Plume B”).

— The freshwater discharged in the western side of the Marano Lagoon form on the
sea-side a wide estuary plumes type (“plume C”). In this case the tidal dynamics
lead to have no clear near-field, a weak mid-field, and no bulge.

— The discharge from the Baseleghe wetland forms an “angled inflow” plume
(“plume D”), showing no bulge, due to a significant component of alongshore mo-
mentum as the inflow is at a small angle to the coast.

— The Po River enters the NAS through a deltaic system, delivering freshwater via
five main river channels. The Po River Delta plume is the “convolution” of 12
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plumes formed by each of the channel outlets interacting with each other (“plume
E”). Plume dynamics for each single plume depends of river flow thrust and on be-
haviour of neighbouring plumes. The plumes at the mouth of the various branches
carry similar concentration of particulate matter (T = 600-800 FNU, Fig. 5), even
if they differ in proportion of freshwater discharge.

— The shallow characteristics of the whole NAS littoral zone allow the identification
of wider coastal areas where several rivers contribute to a common hydrodynamic
pattern. The interactions of the northern rivers plumes from the Isonzo to the Pi-
ave River and then of the western rivers — the Brenta, Adige and Po river plumes
— form two distinct ROFIs (“Plume F”) where the plume water has lost memory of
the inflow momentum but is still distinct from the ambient receiving water. The off-
shore borders of these ROFIs can be identified by the 36 isohaline corresponding
to the 5 FNU isoline and the 18 °C isotherm.

— The Venice Lagoon, as a specific transitional water body with scarce freshwater
sources in its interiors, could not properly classified as a ROFI. Coastal circulation
in front of the lagoon is dominated by tidal dynamics and the presence of jetties
and breakwaters at the inlets is highly influencing the shaping of less salty water
(but still not freshwater) tidal plumes (Bellafiore, 2010).

4 Conclusions

In this study, the combined use of high-resolution OCR and SST imagery enabled the
identification of the dynamical regions at small scale and sub-mesoscale for all plume
structures and their interactions in the NAS. The independent satellite observations of
T and SST were used as tracers for the surface expression of the freshwater influence
in this significant flood event. This was corroborated by the good agreement of the pat-
terns in these fields with the modelled SSS field at the sub-mesoscale and mesoscale.
Furthermore, the spatial resolution of the L8 imagery enabled the classification of the
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NAS plumes of 19 November 2014 based on their morphology including the descrip-
tion of smaller plume structures and the NTTWs in NAS, whilst these features were not
adequately resolved by the 500 m resolution of the SSS model data.

Although the event discussed in this study was captured with a sensor having a re-
visiting time of 16 days, we expect that with the recent launch of ESA’s Sentinel 2A and
the forthcoming launch of Sentinel 2B the temporal resolution will increase reaching al-
most those normally associated with OCR missions (Dickey, 2003; Hestir et al., 2015;
Mouw et al., 2015). Combined with their radiometric resolution similar to OCR mis-
sions, these developments will thus offer an opportunity to also describe the temporal
evolution of plume structures at the sub-mesoscale.

The observed optical complexity of NAS due to the variability in composition of the
particulate matter may affect accuracy of the Dogliotti et al. (2015) algorithm for T
retrievals. Hence future work is needed to characterize optical properties of particulate
and dissolved matter delivered by each river in flood and non-flood conditions. This
will also enable the parameterization of other OCR algorithms (e.g. Melin et al., 2011;
Vantrepotte et al., 2012; Brando et al., 2012) to accurately retrieve chlorophyll and
suspended matter concentrations in these complex coastal waters.

There are almost no studies on the flux of water and sediment flowing through dis-
tributary branches of a delta or adjacent rivers due to the complexity and cost associ-
ated with a simultaneous sampling effort at all branches or rivers (Syvitski et al., 2005).
Moreover flood events are difficult to observe in situ, as with ship-based activities is
seldom possible to reach river mouths while autonomous vehicles are not operating
in shallow waters (Hetland, 2005; Devlin and Schaeffelke, 2009). On the other hand,
observations from instrumented sites or coastal observatories such as AAOT provide
detailed information on a large array of variables but do not provide a sufficient spa-
tial coverage and may happen not be located favorably to observe events of interest
(Dickey, 20083).

The potential of an integrated use of earth observation, numerical models, and in-
situ observations for describing coastal dynamics has been progressively emphasized

1681

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq |

Jaded uoissnosiq

OSD
12, 16691692, 2015

High resolution
satellite observations
of river plume
interactions

V. E. Brando et al.

Title Page
Abstract Introduction
Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/12/1669/2015/osd-12-1669-2015-print.pdf
http://www.ocean-sci-discuss.net/12/1669/2015/osd-12-1669-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

in recent years (e.g. Dickey, 2003; Staneva et al., 2009; Stanev et al., 2011). The adop-
tion of triple-collocation algorithms will allow the intercalibration of quantities and prop-
erties retrieved from the different sources (Janssen et al., 2007 and references therein).
Furthermore, the use of the independent data sets will enable the identification of the
relevant time- and space-scales for the observed (and modelled) phenomena (Chang
et al., 2002).
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