Dear Prof Kantha,

Please find the revised version of the manuscript OS-12-1669 by Brando et al.

All general and specific comments by the reviewers were addressed. Please find enclosed to the letter a table with a point-to-point response to the reviewer’s comments, and a track-change version of the manuscript. The manuscript has been carefully edited.

Following the reviewers comments, more details were added throughout the manuscript:

- Three new paragraphs were added to the introduction:
 - One to detail the Horner-Devine et al. (2015) plume dynamical regions
 - One to describe the main circulation patterns in NAS and the role of wind- and wave-driven resuspension on the turbidity dynamics in NAS
 - One to describe the manuscript structure
- A new figure (Figure 3) detailing the circulation patterns prior to and at the acquisition date of the Landsat-8 image was added with corresponding text to strengthen sections 3.1.
- Figures 4 and 5 (now 5 and 6) were redrawn to improve readability.
- In Sections 3.3 and 3.4 the SST and T fields were commented in relation to published literature for NAS.
- Figure 5c (now Figure 7) was improved by including also SSS.
- A new section was added (3.5) to describe the relations between SST, T and SSS in Figures 5, 6 and 7.
- In section 3.6 (previously 3.5) a paragraph was added referring to the broad classification of the plumes carried out by Syvitski et al. (2005).

During the revision of the manuscript we decided to not add another Landsat 8 image from a “normal” condition. To select a “normal condition” we briefly analyzed all L8 images of NAS, but they all show different patterns, depending on wind, wave and flow regimes. This work will be described separately in a separate manuscript. In our view, adding a new figure, as suggested by both reviewers, would entail justifying the selection of an appropriate date for the comparison and then describing all associated meteo-marine conditions. This would lengthen considerably the manuscript and change its focus.

We wish to thank reviewers for the insightful comments.

Regards,
Vittorio Brando
<table>
<thead>
<tr>
<th>Reviewer 1</th>
<th>Specific comments</th>
</tr>
</thead>
</table>
| **R1_S1** | - It’d be interesting to show another L8 image (either RGB or T or SST) to show a "normal" or non flooded situation to highlight the difference in the properties found in the two cases.
A new figure with a new another L8image was not be added to the manuscript. In our view, adding a new figure would entail justifying the selection of an appropriate date for the comparison, describing all associated meteo-marine conditions and it would lengthen the manuscript.
The results of this work were discussed in reference to published work on NAS SST and turbidity dynamics in sections 3.3 and 3.4.
See also response to R2_G2 |
| **R1_S2** | - Is there any reference in the literature about this near-shore trapped warm waters (NTTW)? Have they been previously described? What do the authors think or hypothesize about the origin of these waters?
We changed the acronym in the manuscript to NTWW to better reflect “near-shore trapped warm water”.
We are not aware of any other studies, based on remote sensing or modelling, describing similar structures in the Po Delta area or in NAS. Thus, in the first paragraph of the conclusions we added a statement “To our knowledge, this study provided the first evidence of NTWWs in NAS.”
As we are lacking detailed information on the vertical structure of this observed phenomenon we are not ready to speculate on the underlying processes. Hence, we added to the conclusions a recommendations for “dedicated field and numerical investigations are needed to characterize the temporal evolution of the spatial and vertical...
- In order to show more clearly the relation between the three variables analyzed (T, SST and SS) information of SSS for each site could be included in Figure 5c in different colors, while the shape could be used to identify their location.

The figure was improved as suggested in the revised version (now figure 7). A new section (3.5) describing the dilution pathways and the relationships between SSS, SST and T was added to the manuscript.

- In Section 3.5, it is mentioned that the two ROFIs identified are "Plume F" type, following Horner-Devine et al. (2015) classification. And it’s stated that the borders can be identified by the 36 isohaline corresponding to the 5 FNU and 18°C isotherm. From figures 4 and 5 this seems to be the case for the cyclonic coastal current, but not for the western rivers, where the 36 isohaline does not correspond with the 18°C isotherm or 5 FNU isoline, but is located further offshore. Thus both SST and T seems not to be good indicators of the region of freshwater influence. Include some discussion in the text about this.

To enable a thorough description of the ROFI boundaries in section 3.4 Figure 5b(now figure 6) was extended to show the outer boundaries of the Po river plume. In section 3.4 we clarified the use of the 3 and 5 FNU isolines to delineate the surface expression of the plumes in the T field from the adjacent ocean waters (Fig. 6). Also we added a new section (3.5) describing the dilution pathways and the relationships between SSS, SST and T, and a revised detailed text in section 3.6 (previous 3.5) addressing this comment.

- Using in situ data and simulations Dogliotti et al. (2015) showed that uncertainty for turbidity estimation is expected to be low (typically less than 6% using simulations and ~13% from in situ data). Thus, the high variability in the composition of the region is not expected to affect the algorithm accuracy, but the relationship between T and suspended matter

A statement on the accuracy was added to section 2.1.

The statement of the future work on the conclusions was revised according to this comment: “The observed optical complexity of NAS due to the variability in composition of the particulate matter may affect accuracy of the Dogliotti et al.
concentration for each river. Indeed, future work is needed to characterize the optical properties including side-scattering (turbidity), i.e. to validate the cited algorithm. (2015) algorithm for T retrievals, and the relationship between T and suspended matter concentration for each river. Hence future work is needed to characterize optical properties of particulate and dissolved matter delivered by each river in flood and non-flood conditions. This will also enable the validation of the Dogliotti et al. (2015) algorithm and the parameterization of other OCR algorithms (e.g. Melin et al., 2011; Vantrepotte et al., 2012; Brando et al., 2012) to accurately retrieve chlorophyll and suspended matter concentrations in these complex coastal waters."

<table>
<thead>
<tr>
<th>Technical corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1_D1</td>
</tr>
<tr>
<td>R1_D2</td>
</tr>
<tr>
<td>R1_D3</td>
</tr>
<tr>
<td>R1_D4</td>
</tr>
<tr>
<td>R1_D5</td>
</tr>
<tr>
<td>Page 1673, line 18:</td>
</tr>
<tr>
<td>R1_D6 Page 1674, line 5:</td>
</tr>
<tr>
<td>R1_D7 Page 1674, line 10:</td>
</tr>
<tr>
<td>R1_D8 Page 1674, line 11</td>
</tr>
<tr>
<td>R1_D9 Page 1674, line 21:</td>
</tr>
<tr>
<td>R1_D10 Page 1675, line 2:</td>
</tr>
<tr>
<td>R1_D11 Page 1675, line 7:</td>
</tr>
<tr>
<td>R1_D12</td>
</tr>
<tr>
<td>R1_D13</td>
</tr>
<tr>
<td>R1_D14</td>
</tr>
<tr>
<td>R1_D15</td>
</tr>
<tr>
<td>R1_D16</td>
</tr>
</tbody>
</table>
| R1_D16 | Page 1681, line 21: | Add a comma (,) after "Moreover,"
|**Rev2**|
| R2_G1 | However, in order to make the analysis clearer, and the manuscript suitable for publications, the authors should provide a better introduction regarding what a “river plume characterization” means. This will give to the reader a better understanding of the main goal of this work and its potential. | A new paragraph was added at the end of the introduction to clarify the aims of this work. |
| R2_G2 | The authors focus on the 19 November 2014 flood | A new figure with a new another L8image was not
event. I believe that such an analysis needs to be complemented by a comparison with satellite, optical measurements during a steady state condition (either a climatologic pattern or a low water discharge state) in order to actually recognize the role of river outflow momentum during the flood.

be added to the manuscript. In our view, adding a new figure would entail justifying the selection of an appropriate date for the comparison, describing all associated meteo-marine conditions and it would lengthen the manuscript.

Further than the particulate matter associated with freshwater discharge the turbidity dynamics of the NAS is controlled by wind and wave driven resuspension. A new paragraph was introduced in the introduction to describe these processes. The results of this work were discussed in reference to published work on NAS SST and turbidity dynamics in sections 3.3 and 3.4.

| R2_S1 | The authors state that they “characterize river plumes in the NAS” but it is not clear what such a characterization means until the discussions. The manuscript will be much clearer if the authors specify, from the beginning, that the goal is to provide an optical/lithological as well as spatial characterization of those plumes. For this purpose, they should briefly summarize, in Introduction, the scheme proposed by Horner-Devine et al. (2015). In this way the reader will follow the analysis and the discussions (Section 3.5, in particular) in a better way. |
| | The scheme proposed by Horner-Devine et al. (2015) was summarized in the introduction and in the new section 3.5. We strengthened the final paragraph of the introduction to describe the aims of the this work. |

| R2_S2 | Something missing in Introduction is a brief comment regarding other satellite sensors that are often used for coastal and river plume waters. The authors should |
| | To clarify the transition from OCR sensor to Landsat, two new sentence were added here: “These studies were based on data acquired from |
provide a sentence that explains why the preferred the L8 with respect to other satellites (e.g., MODIS). I believe that their goal was to recognize the “fine structure” of the plumes and thus they preferred to go for a high spatial resolution approach. All this need to be stated.

<table>
<thead>
<tr>
<th>R2_S3</th>
<th>I would suggest to add an additional section that provides a better introduction of the NAS circulation and the role that river inputs have on it.</th>
<th>In the introduction we expanded the description of NAS providing more details on the general circulation, detailing the effects of winds and river discharge.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2_S4</td>
<td>The analysis does not include any in situ data for calibration and validation of the satellite measurements. A comment on this (in the methodologies) would be appreciated.</td>
<td>A statement on the accuracy was added to section 2.1. Please see also response to R1_S5</td>
</tr>
<tr>
<td>R2_S5</td>
<td>It is not clear to me what the SSS (provided by the numerical model) adds. I see two main issues here: i) spatial resolution of the model is much lower than the satellite one; ii) while for the Po River input the numerical simulation considers the actual (daily or hourly) water discharge, for the other rivers the authors consider monthly climatological estimates (Page 1674; Line 28). Both issues weaken some of the discussions in Section 3.3. My suggestion is to restrict the SSS analysis to the Po River plume only, where the SSS and SST fields are more coherent and allow for a better discussion.</td>
<td>We feel that showing that current resolution and the (lack of) available near real-time inputs of the operational model have some limits in describing such an extreme event may be useful for the local scientific community. Hence, in section 3.3 we clarified that the mesoscale patterns are well captured, while differences arise at submesoscale and fine scale due to differences in resolution and the lack of near real-time data for freshwater discharge. Also in the revised version we strengthened section 3.1 by adding a new figure describing the modeled circulation patterns.</td>
</tr>
</tbody>
</table>
As I mentioned in the general comment, I was expecting to see a comparison between the river plume patterns during a high water discharge event and a low stage state. In this way, the authors can really quantify the role of riverine outflows in forming the bulges and delivering sediments.

<table>
<thead>
<tr>
<th>Minor Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2_D1 Page (167)1, Line 5:</td>
</tr>
<tr>
<td>R2_D2 Line 20:</td>
</tr>
<tr>
<td>R2_D3 Line 23:</td>
</tr>
<tr>
<td>R2_D4 Line 23-24:</td>
</tr>
<tr>
<td>R2_D6 Line 27:</td>
</tr>
<tr>
<td>R2_D7</td>
</tr>
</tbody>
</table>

Please, see response to R2_G2
<table>
<thead>
<tr>
<th>Page, Line, Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 3, Line 3: comment regarding other satellites that are often used for coastal and river plume waters (e.g., MODIS) as well as a sentence that explains why the preferred the L8 with respect to other satellites (see specific comments).</td>
</tr>
<tr>
<td>R2_D8 Line 8-10: As I mentioned I do not believe that the COAWST model “support” the interpretation, but rather it may add some additional information (this is true for the Po River mouths only; see specific comments). Please, rephrase this sentence.</td>
</tr>
<tr>
<td>R2_D9 Line 10: Please, indicate here the spatial resolution of the model.</td>
</tr>
<tr>
<td>R2_D10 Page 5, Line 19: a dedicated section on the general circulation of the NAS will make this sentence more robust.</td>
</tr>
<tr>
<td>R2_D11 Page 5, Line 24: Where are these data from? Please, specify</td>
</tr>
<tr>
<td>R2_D12 Page 6, Line 13: I would rephrase as “the spectra for the offshore part of the basin”.</td>
</tr>
<tr>
<td>R2_D13 Page 7, Line 1-13: Maybe I am wrong, but I believe that all this part would be much more quantitative if the authors provide a plot for the ratios 865/655 and 655/562 (and a consequent discussions based on it.</td>
</tr>
<tr>
<td>R2_D14 Line 5: isn’t it this true for the Brenta, Livenza, and Sile too?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please see response to R2_D1</td>
</tr>
<tr>
<td>To simplify the sentence, the resolution of the satellite was removed</td>
</tr>
<tr>
<td>Done, please see response to R2_S3</td>
</tr>
<tr>
<td>This data were from the model outputs. We strengthened section 3.1 by referring to a new figure (Fig 3) describing the modeled circulation patterns.</td>
</tr>
<tr>
<td>done</td>
</tr>
<tr>
<td>We tried to plot the suggested ratios but we found the figure very difficult to interpret and describe. Hence we will not include this plot in the revised version.</td>
</tr>
<tr>
<td>Two sentences were added to section 3.2, one for the Brenta river an one for the rivers draining the floodplain and agricultural soils</td>
</tr>
<tr>
<td>R2_D15</td>
</tr>
<tr>
<td>R2_D16</td>
</tr>
</tbody>
</table>
High resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event

V. E. Brando¹,², F. Braga³, L. Zaggia³, C. Giardino¹, M. Bresciani¹, E. Matta¹, D. Bellafiore³, C. Ferrarin³, F. Maicu³, A. Benetazzo³, D. Bonaldo³, F. M. Falcierti³, A. Coluccelli⁴, A. Russo⁴,⁵, S. Carniel³

[1] {Consiglio Nazionale delle Ricerche – Istituto per il Rilevamento Elettromagnetico Ambientale (CNR-IREA), Via Bassini 13, 20133 Milano, Italy}
[2] {Commonwealth Scientific & Industrial Research Organization (CSIRO), Canberra, Australia}
[4] {Università Politecnica delle Marche – Dipartimento di Scienze della Vita e dell’Ambiente (UNIVPM-DISVA), Via Brecce Bianche, 60131 Ancona, Italy}
[5] {NATO STO Centre for Maritime Research and Technology, V.le San Bartolomeo 400, 19126 La Spezia}

Correspondence to: V. E. Brando (brando.v@irea.cnr.it)

Abstract

Sea surface temperature (SST) and turbidity (T) derived from Landsat-8 (L8) imagery were used to characterize river plumes in the Northern Adriatic Sea (NAS) during a significant flood event in November 2014. Circulation patterns and sea surface salinity (SSS) from an operational coupled ocean-wave model supported the interpretation of the plumes interaction with the receiving waters and among them.

There was a good agreement of the SSS, T, and SST fields at the sub-mesoscale and mesoscale delineation of the major river plumes. L8 30m resolution enabled also the description of smaller plume structures. The different plumes reflectance spectra were related to the lithological fingerprint of the sediments in the river catchments.

Sharp fronts in T and SST delimited each single river plume. The isotherms and turbidity isolines coupling varied among the plumes due to differences in particle loads and surface temperatures in the discharged waters. The surface expressions of all the river plumes
occurring in NAS were classified based on the occurrence of the plume dynamical regions in the L8 30 m resolution imagery.

1 Introduction

Riverine discharges in the coastal ocean form river plumes, distinct regions where water masses properties are significantly influenced by riverine freshwater as it merges into ocean waters with different thermohaline and dynamical properties (Horner-Devine et al., 2015). The extent, motion, and general structure of river plumes are mainly determined by the advection and mixing processes of freshwater from the river mouth, while the along-coast transport of the river-borne material is determined by several processes, including stratified-shear mixing, frontal processes, oceanic transport, tide and wind forcing, as well as Coriolis effects (Hetland, 2005; Horner-Devine et al., 2015; Geyer et al., 2004; Nof and Pichevin, 2001). The relative importance of these processes determines the overall fate and transport of freshwater, as well as the associated dissolved and particulate matter within the plume (Horner-Devine et al., 2015; Devlin and Schaeffelke, 2009; Brodie et al., 2010; Syvitski et al., 2005).

Following Horner-Devine et al. (2015, and references therein), the river plume structures can be described in terms of four regions characterized by different dominant dynamical balances: 1) the source region, where the buoyancy and momentum that initiate a river plume are determined by estuarine processes; 2) a jet-like near-field region of initial plume expansion; 3) an unsteady, anticyclonic eddy circulation, i.e. a “bulge”, that accumulates a fraction of the river discharge; and 4) a region beyond where the plume water has lost all memory of the inflow momentum but is still distinct from the ambient receiving water, i.e. a far-field plume or coastal current.

Within the Mediterranean Sea, the Northern Adriatic Sea (NAS, Fig. 1) is the sub-basin most influenced by river plumes (DeGobbis et al., 2000; Spillman et al., 2007; Falcieri et al., 2014). The NAS is a shallow (average depth is smaller than 35 m) and semi-enclosed regional sea, which due to the high amount of freshwater is generally considered a dilution basin (DeGobbis et al., 2000; Spillman et al., 2007). Riverine input along the Northern Adriatic coast is generally associated to sharp coastal fronts and significantly contributes in driving a southeastward current along the Italian coast (Bergamasco et al., 1999), while mechanisms and sub-mesoscale patterns of plume spreading within the basin are strongly controlled by the
modulation of freshwater discharge and wind regime (Bignami et al., 2007; Falcieri et al., 2014; Spillman et al., 2007; Tesi et al., 2011). Sediment dispersal in the basin is mostly controlled by the wave action generated by dominant and prevailing winds blowing on the Adriatic Sea: (namely, Bora and Sirocco; e.g. Sclavo et al., 2013; Boldrin et al., 2009).

During flood events the Po, Adige and Brenta rivers produce an almost single river plume, contributing 84% of the total freshwater discharge delivered to the basin (Cozzi and Giani, 2011; Falcieri et al., 2014). However, the local effects of the northern rivers (form Isonzo to Piave rivers, Fig. 1) is considerable, since they can contribute with low-salinity patches that are relevant to mesoscale and sub-mesoscale dynamics (Marini et al., 2008; Solidoro et al., 2009). These freshwater discharges and associated particulate and dissolved matter inputs have a significant effect both on the physical and biogeochemical properties of the whole basin (Zavatarelli et al., 1998; Marini et al., 2008; Solidoro et al., 2009; Bignami et al., 2007; Barale et al., 1986; Tesi et al., 2011).

Following a large regional precipitation event affecting northern Italy, in November 2014 all NAS rivers flooded concurrently (Fig. 2). Peak discharge for the Po River reached 8375 m³s⁻¹ on 19 November 2014, the fifth highest of the last hundred years (Montanari, 2012). The timing of the flood for each river varied reflecting the space-time distribution of precipitation and catchment morphology: Piave, Brenta and Isonzo peaked earlier on 6-7 November, Livenza and Adige on 8 November, while Po peaked the first time on 9 November (~4000 m³s⁻¹) and then reached the maximum discharge on 19 November. During this combined flood event a total of ~15 km³ of freshwater entered NAS, of which ~10 km³ entered the basin by 19 November 2014, equating to ~1% of the basin volume.

Earth observation has been widely used to describe mesoscale dynamics and physical oceanographic characteristics of river plumes fronts using sea surface temperature (SST) and ocean colour radiometry (OCR) sensors (e.g. Ullman and Cornillon, 1999; D’Sa et al., 2007; Palacios et al., 2009; Schroeder et al., 2012; Brodie et al., 2010). Several studies have combined SST with OCR data and/or with model data to quantify the extent, strength and variability of the river plumes fronts and to explain their behaviour in relation to the main physical forcing processes (e.g. Hickey et al., 2005; Otero et al., 2009; Pietrzak et al., 2011; Falcini et al., 2012; Margvelashvili et al., 2013; Bignami et al., 2007). Most of these studies were based on data acquired from MODIS, SeaWiFS or AVHRR sensors with a 1-4 km spatial resolution and 1-3 days revisit time (Robinson, 2010).
Historically Landsat data has been used in coastal and inland waters to map both particulate matter and surface temperature at finer spatial resolution (~30 m and ~100 m respectively) (Hellweg et al., 2004; Fisher and Mustard, 2004, and references therein). The recently launched Landsat-8 (L8) has been deemed suitable for studying aquatic environments due to improved data quality and spectral coverage (Irons et al., 2012; Pahlevan et al., 2014).

In this study we combined SST and turbidity (T) derived from L8 imagery to describe at fine spatial resolution river plumes and their sub-mesoscale interactions in the NAS during the significant combined flood event of November 2014. To this aim we used the model data from an operational coupled ocean-wave modelling system to support the interpretation of the plumes’ dynamics and their interaction with the receiving waters and among them. Section 2 provides details on the satellite imagery processing and on the operational coupled ocean-wave modelling system, while in section 3 the optical and spatial characterization of the river plumes based on T and the SST fields is presented. In this work we classified the surface expressions of all the river plumes occurring in NAS based on L8 30 m resolution imagery following the Horner-Devine et al. (2015) classification scheme for plume morphology, thus extending the broad classification carried out by Syvitski et al. (2005) using MODIS imagery at 250 m resolution.

2 Methods

2.1 Satellite imagery

To image the Earth throughout the visible and thermal portions of the spectrum, L8 carries two separate sensors, the Operational Land Imager (OLI) and the Thermal Infrared Radiometer Sensor (TIRS). Both OLI and TIRS represent an evolution in Landsat sensor technology in terms of data quality and spectral coverage (Irons et al., 2012). The OLI provides coverage of the visible, near infrared and shortwave infrared (SWIR) portions of the spectrum at 30 m spatial resolution in nine spectral bands with a relatively high signal to noise ratio (~300 for the blue bands) (Irons et al., 2012; Pahlevan et al., 2014). OLI data is considered particularly adequate for ocean colour retrievals and turbidity mapping due to its radiometric resolution and calibration accuracy (Pahlevan et al., 2014; Vanhellemont and Ruddick, 2014; Franz et al., 2015). The TIRS adds two long-wave thermal spectral bands at 100 m spatial resolution, centred at 10.9 and 12.0 μm (bands 10 and 11, respectively) (Irons et al., 2012). As these two Landsat 8 datasets are complementary, they are distributed as combined data products, where the TIRS 100 m pixels are resampled and co-aligned with the
In this study we used OLI and TIRS imagery of 19 November 2014 capturing a significant freshwater inflow into the NAS for mapping both T and SST. For turbidity, OLI data were converted into water-leaving radiance reflectance (ρ_w, dimensionless) with ACOLITE, an automatic method for atmospheric correction designed specifically for OLI over turbid waters (Vanhellemont and Ruddick, 2014, 2015). As recommended in moderately to extremely turbid waters (Vanhellemont and Ruddick, 2015), a per-pixel variable aerosol type was determined from the ratio of reflectances in the SWIR bands (1609, 2201 nm), after having applied the Pahlevan et al. (2014) radiance gains for radiometric calibration. The ρ_w data were then converted into T expressed in Formazin Nephelometric Unit (FNU) following Dogliotti et al. (2015). As at higher T values, ρ_w (655nm) starts to saturate while ρ_w (865nm) still linearly increases with T, they use a switching scheme to avoid saturation at 655 nm and retrieve accurately T in the 1-1500 FNU range (within ~13% of in situ data, Dogliotti et al., 2015). SST values were retrieved from top-of-atmosphere brightness temperature in TIRS band 10 (10.9 µm) with a radiative-transfer based atmospheric correction (Barsi et al., 2014; Barsi et al., 2005).

2.2 Hydrodynamic forecasting model

As a complement to the L8 images, we analysed model data generated by an operational implementation in the northern Adriatic basin of the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST, Warner et al., 2008) where the Regional Ocean Modeling System (ROMS) and the Simulating Wave Nearshore (SWAN) model are 2-way fully coupled (Russo et al., 2013b; Russo et al., 2013a). COAWST was implemented for the NAS on a grid with horizontal spacing of 0.5 km and 12 vertical terrain-following s-levels, offline nested to parent operational models covering the whole Adriatic and the Italian seas (Russo et al., 2013b; Russo et al., 2013a). The operational systems were forced by the operational high-resolution (7 km x 7 km) meteorological model COSMO-17 (Russo et al., 2013b; Russo et al., 2013a). Following Hetland (2005), at the river mouths grid cells momentum was injected giving a vertical structure to the plume, i.e. injecting most of the freshwater discharge in the surface layers (~ 80% in the four uppermost sigma levels, corresponding to about 1.5 m). Daily time series of freshwater supplies from the Po river were imposed (and kept constant along the 72h of forecast), while the remaining NAS rivers were prescribed based on monthly climatological estimates (Raichich, 1994). To represent the Po river delta system, the flow measured at Pontelagoscuro (50 km upstream the river mouth) is split into five major...
branches (Maistra, Pila, Tolle, Gnocca and Goro) following the partitioning proposed in Zasso and Settin (2012). Minor Po river branches, north of the Po di Pila mouth, and some minor freshwater inputs (e.g. nearby the Caorle and Baseleghe wetlands) are not considered.

To delineate the surface extent of river plumes and the freshwater influence in the basin, the daily averaged surface level of the modelled salinity field was considered as the sea surface salinity (SSS) field. This approach explicitly does not consider the vertical structure of the plume or the mixed layer depth (as proposed in Otero et al., 2008, 2009) as the shallow waters of NAS and the weak tidal dynamics not always allow the development or the identification of a mixed layer (Falcieri et al., 2014). Hence, following Falcieri et al. (2014), in this study the surface extent of the freshwater influence in the NAS was identified with the 36 isohaline resulting from the salinity fields obtained by the numerical model.

3 Results and Discussion

In the pseudo-true colour composite of the OLI imagery of 19 November 2014 (Fig. 1) two very large regions of freshwater influence (ROFI, sensu Simpson, 1997) are delineated in the NAS by the convolution of the plumes generated by the northern rivers from the Isonzo to the Piave and then by the western rivers i.e., the Brenta, Adige and Po. As the river mouths are close to each other, sharp fronts delineate the river plumes from the cyclonic coastal current transporting dissolved and particulate matter from upstream plumes. The area in front of the Venice Lagoon shows specific patterns generated by the interaction between the coastal current and local tidal dynamics at the lagoon inlets, enhanced by the presence of long artificial jetties (Bellaﬁore, 2010).

3.1 Meteo-oceanographic conditions

The basin was characterized by relatively calm conditions in the days before the L8 image retrieval. Modelled regional circulation patterns in the week from 12 to 19 November 2014 were initially dominated by a southeastward current along the Italian coast (daily-average speed up to 0.7 m s⁻¹ at the sea surface), although the freshwater injected in the previous days (6-11 November 2014, see Fig. 2) was already spread over a large fraction of NAS (Fig. 3a). The increasing riverine inflow progressively enhanced the effect of Po River in controlling surface circulation in the NAS, with a plume spreading offshore with strong vertical gradients in temperature and salinity (Fig. 3b). These patterns are consistent with the conditions recorded at the Acqua Alta Oceanographic Tower (AAOT) located about 15 km off the Venice Lagoon (Fig. 1), where on 19 November 2014, the average wind speed was 4 m s⁻¹ and
the sea state was characterized by a mean significant wave height smaller than 0.3 m. Depth-averaged oceanic currents were weak (reaching a modelled value of 0.1 m s\(^{-1}\)) and mostly directed southwestwardly, while surface currents appeared dominated by riverine inflow. In particular, modelled surface current velocities exceeded 0.5 m s\(^{-1}\) in large coastal areas off the Po river mouths, while the propagation of the plume (isohaline 36) was characterised by velocities of approximately 0.35 m s\(^{-1}\) in large sectors of the frontal region (Fig. 3b).

3.2 Spectral properties

From a qualitative point of view, the plumes and the coastal waters in the NAS appear very different in **colour** ranging from white to yellow/brown shades in the pseudo-true colour composite (Fig. 1). Fig. 4 presents reflectance spectra extracted from selected locations of interest in NAS: the spectra for the center of the basin (indicated as “open waters” in Fig. 4a) have a peak at 443 and 482 nm typical of blue waters (\(\rho_w(482)\) ranging 0.01-0.03), while the AAOT, the Venice lagoon inlets (Chioggia, Malamocco and Lido) and Grado inlet of the Marano lagoon have a 562 nm peak, typical of green waters (\(\rho_w(562)\) ranging 0.04-0.07). The waters flowing from the western Marano lagoon (Lignano inlet) and Caorle and Baseleghe wetlands have higher spectra and \(\rho_w\) values at 562 and 655 nm are very similar (ranging 0.10-0.12 and 0.08-0.12, respectively).

The river plumes spectra show a peak at 655 nm of whitish/yellow/brown waters (\(\rho_w(655)\) ranging 0.09-0.23, Fig. 4b). In particular, the Isonzo, Tagliamento and Piave river plumes appear as almost white in the true colour as they have high \(\rho_w\) at both 562 and 655 nm, while the Po, Brenta, Adige, Sile and Livenza river plumes appear in yellow/brown shades, as \(\rho_w(562)\) is lower, ranging 0.08-0.12. The Po river plumes show \(\rho_w(865)\) ranging 0.10-0.12, similar to values found for \(\rho_w(655)\), whilst for all other river plume spectra \(\rho_w(865)\) was lower than the \(\rho_w(655)\).

The very high reflectances and the colours of eastern Alpine rivers (Isonzo, Tagliamento and Piave) plumes are related to carbonate-rich sediments, yielded by their prevailing Mesozoic limestone and dolomite catchments (Pigorini, 1968; Castellarin and Vai, 1982). The yellow/brown shades of all the other rivers are due to the lithological fingerprint of their sediments. The Brenta River drains a mix of carbonate, volcanic and metamorphic terrains in North-eastern Alps (Dinelli and Lucchini, 1999). The Adige River drains a metamorphic and porphyric catchment in North-eastern Alps (Dinelli and Lucchini, 1999). The Po River drains both the Alps and Northern Apennines, respectively characterized by metamorphic-intrusive
rocks and terrigenous sequence (shales, calcareous, mudstones and sandstones) (Dinelli and Lucchini, 1999). Some of the major rivers (e.g. Brenta and Po) also drain mixed river deposits of the floodplain and agricultural soil, while the remaining minor rivers, including Venice and Marano lagoons tributaries, mostly drain these reworked terrains (Piovan et al., 2010). A considerable fraction of the flux from wetland-lagoon systems, constituted by organic particulate and high dissolved matter, also contribute to the dark-brown colour.

3.3 SST and SSS fields
Following Falcieri et al. (2014), we can identify the surface extent of the freshwater influence in the NAS with the 36 isohaline resulting from the salinity fields obtained by the numerical model (Fig. 5). The freshwater discharged during the combined flood event extended 12-15 km offshore for the plumes generated by the northern rivers, ~50 km in front of the Adige and Brenta rivers and more than 60 km in front of the Po River, consistently with the Falcieri et al. (2014) high discharge plume patterns. For the northern rivers and the Po River the 35 and 36 isolines were within 2-3 km, whilst for the area in front of the Venice Lagoon and the Adige and Brenta rivers these isolines were 20-40 km apart.

Overall, the waters delineated by the 36 isohaline were colder (~12-17 °C) than the adjacent ocean waters (SST > ~18 °C). In particular, SST ranged between 12 °C and 15 °C for the river and lagoon plumes, and between 15°C and 17 °C in the coastal current connecting the river plumes. The area in front of the Venice Lagoon was warmer than the neighbouring ROFIs (SST = 16-18 °C). The SST field was consistent with the autumn/winter flood conditions described in previous studies on the SST dynamics in NAS (Gacic et al., 1997; Barale et al., 2004; Borzelli, 2008; Bignami et al., 2007).

The over-imposed isohalines showed a good correspondence with the observed SST field in delineating at the mesoscale the major river plumes (Isonzo Tagliamento, Brenta, Adige and Po rivers). For the northern rivers between the Isonzo and the Piave, the 36 isohaline coincided with 17.5 °C isotherm, while in front of the Brenta, Adige and Po rivers the 36 isohaline coincided with the 19.5 °C isotherm. Due to the lack of near real-time data for freshwater discharge for all rivers except the Po, and as some minor freshwater inputs (e.g. the Caorle and Baseleghe wetlands) are not considered in the model, there were some areas of mismatch between the SST and SSS fields at the submesoscale, particularly in the coastal region east of the Venice Lagoon.

As the L8 TIRS 100 m pixels are resampled and co-aligned with the OLI 30 m data, the SST
data used in this study has a spatial resolution one or two order of magnitude finer than the satellite data used for previous SST studies (Gacic et al., 1997; Barale et al., 2004; Borzelli, 2008; Bignami et al., 2007). Therefore, in the L8 SST field is possible to identify small near-shore trapped warm water (NTWW) parcels, which are warmer than the adjacent plumes and the coastal current, with values similar to those of the central part of the basin (SST ranging 17-19 °C). These NTWWs are located outside of the Marano lagoon (45.71 °N, 13.23 °E), between the Sile and Piave river plumes (45.49° N, 12.64° E) and to the south of the Po di Pila (44.88 °N, 12.49 °E). These features were also spectrally different than the neighbouring waters, showing a peak typical of green waters with ρ_s (562) ranging 0.09-0.12 (Fig. 4). The occurrence and locations of these small features were not adequately captured by the model derived SSS, most likely due to resolution limits.

3.4 Turbidity field

Fig. 6 presents the maps of T for the northern rivers (Fig. 6A) and the Brenta, Adige, and Po river plumes (Fig. 6B). Close to the river mouths, the Tagliamento river plume presented the most turbid waters ($T_{>1700}$ FNU), while T_{50} ranged 600-800 FNU for the Po river plumes and 100-300 FNU for the other rivers. In the cyclonic coastal gyre connecting the plumes T ranged 10-30 FNU, while for the open waters outside the ROFIs T ranged 1-5 FNU. The NTWWs were clearly identifiable also in the T field: T ranged 10-50 FNU, up to one order of magnitude lower than the neighbouring plumes and significantly higher than the open ocean waters.

As the wind and wave re-suspension was negligible during this event, T is mostly related to the suspended particle load transported by the plumes in the basin (Sclavo et al., 2013; Tesi et al., 2011; Boldrin et al., 2009). Since T higher than ~3-5 FNU can be deemed as indicative of terrestrial discharge in NAS (Boldrin et al., 2005; Boldrin et al., 2009; Tesi et al., 2011; Braga et al., 2013), these values were used to delineate the surface expression of the plumes in the T field from the adjacent ocean waters (Fig. 6). Based on the 3 and 5 FNU isolines, in this event the combined plumes of suspended matter delivered by northern rivers extended 15-18 km offshore, the plumes of Adige and Brenta rivers spread 20-28 km from the coast, while the Po River plume reached a distance of 30-50 km.

At the submesoscale, the L8-derived T field (Fig. 6) is coherent with the overall pattern of suspended matter described in previous studies based on satellite data and during autumn/winter floods, although their investigations were performed using different satellite-
derived products. For instance, Barale et al. (1984) presented the vertical attenuation coefficient variability, Bignami et al. (2007) used both the vertical attenuation coefficient and an index for turbid (Case 2) waters occurrence, while other studies (Barale et al., 1986; Bohm et al., 2003; Barale et al., 2005; Spillman et al., 2007) used OCR derived chlorophyll concentration as a proxy to describe the basin response to freshwater discharge and wind events.

3.5 Dilution pathways

Following Horner-Devine et al. (2015, and references therein), the river plume structures can be described in terms of four dynamical regions characterized by different dominant dynamical balances: 1) the source region; 2) the jet-like near-field region; 3) the “bulge” that accumulates a fraction of the river discharge; and 4) the far-field plume or coastal current. The pathway to dilution for terrestrially derived freshwater is defined by the mixing and transport processes occurring in the plumes, as the discharge salinity increases through the plume dynamical regions before its ultimate dissolution into the adjacent ocean waters (Horner-Devine et al., 2015). The sharp fronts delimiting each single river plume observed in Fig. 1, 5 and 6 appear delineated both by T and SST even if the isotherms and turbidity isolines coupling varied among the plumes due to differences in particle loads and surface temperatures in the discharged waters (Fig. 7).

Close to the river mouths (SSS < 20), the Tagliamento and Po river plumes differed both in T and SST (~12.5 °C, ~1700 FNU and ~15.5 °C, 600-800 FNU respectively, Fig. 7). The dilution of the terrestrial discharge for the Po and Tagliamento rivers towards “clear” ocean waters (i.e. T < 3 FNU, SSS > 36) consistently maintained a ~2.5 °C difference. Moreover, the T and SST coupling at the river mouth (i.e. in the near-field region) does not necessarily reflect the composition of the transported particulate matter, as the Adige and Isonzo rivers (~13 °C, ~100 FNU) or the Livenza and Brenta rivers (~14.5 °C, ~150 FNU) have similar coupling but transport different material sources as described in section 3.3.

The offshore borders of the far-field plume connecting the individual plumes - identified by the 35 and 36 isohaline - corresponded to different turbidity isolines and isotherms (Fig. 5, 6 and 7). For the northern rivers, the 36 isohaline corresponded to the 3 FNU isoline and the 17.5 °C isotherm. For the western far-field plume, the 36 isohaline was at ~60 km offshore and corresponded to the 19.5 °C isotherm and the 1-2 FNU isolines, while the 3 FNU isoline was 15 km closer to the river mouth. This pattern may be a consequence of freshwater...
3.6 **Plume morphologies**

Based on the presence/absence of the four dynamical regions, Horner-Devine et al. (2015) proposed a classification of six plumes morphologies (plumes A-F). The surface expressions of these morphologies can be identified in Fig. 1, 5 and 6 for the NAS plumes observed on 19 November 2014:

- The Isonzo, Tagliamento, Piave, Adige and Brenta rivers form “prototypical” plumes (“plume A”), comprising all dynamical regions: the initial jet-like plume expansion forms a bulge that then merges in the coastal current.
- The Livenza River jet-like plume merges in the coastal current without forming an anticyclonic eddy, probably because of the very long jetties, hence it may be classified as non rotational plume (“Plume B”).
- The freshwater discharged in the western side of the Marano Lagoon forms on the sea-side a wide estuary plumes type (“plume C”). In this case the tidal dynamics lead to have no clear near-field, a weak mid-field, and no bulge.
- The discharge from the Baseleghe wetland forms an “angled inflow” plume (“plume D”), showing no bulge, due to a significant component of alongshore momentum as the inflow is at a small angle to the coast.
- The Po River enters the NAS through a deltaic system, delivering freshwater via five main river channels. The Po River Delta plume is thus the “convolution” of multiple plumes formed by each of the 12 channel outlets interacting with each other (“plume E”). Plume dynamics for each single plume depends of the river flow thrust in the branch and on behaviour of neighbouring plumes. The plumes at the mouth of the various branches carry similar concentration of particulate matter (T=600-800 FNU, Fig. 6 and 7), even if they differ in proportion of freshwater discharge and ability to transport sediment away from the coast.
- The shallow characteristics of the whole NAS littoral zone allow the identification of wider coastal areas where several rivers contribute to a common hydrological and hydrodynamic pattern. The interactions of the northern rivers plumes from the Isonzo to the Piave River and then of the western rivers - the Brenta, Adige and Po river plumes - form two distinct ROFIs (“Plume F”) where the plume water has lost...
memory of the inflow momentum but is still distinct from the ambient receiving water. The offshore borders of these ROFIs corresponded to different turbidity isolines and isotherms: the 36 isohaline corresponded to the 3 FNU isoline and the 17.5 °C isotherm for the northern ROFI, and to the 19.5 °C isotherm and 1-2 FNUs for the western ROFI.

The Venice Lagoon, as a specific transitional water body with scarce freshwater sources in its interiors, could not properly be classified as a ROFI. Coastal circulation in front of the lagoon is dominated by tidal dynamics and the presence of jetties and breakwaters at the inlets is highly influencing the shaping of less salty water (but still not freshwater) tidal plumes (Bellafiore, 2010).

The classification of the surface expressions of all the river plumes occurring in NAS based on L8 30 m resolution imagery extends the broad classification carried out by Syvitski et al. (2005) for the combined NAS rivers flood of December 2000 using MODIS imagery at 250m resolution, where the northern rivers generated “jet-like plumes”, while the Po River delta produced a “more diffusive plume”.

4 Conclusions

In this study, the combined use of high-resolution OCR and SST imagery enabled the identification of the dynamical regions at small scale and sub-mesoscale for all plume structures and their interactions in the NAS. The independent satellite observations of T and SST were used as tracers for the surface expression of the freshwater influence in this significant flood event. This was corroborated by the good agreement of the patterns in these fields with the modelled SSS field at the sub-mesoscale and mesoscale. Furthermore, the radiometric and spatial resolution of the L8 OLI and TIRS imagery enabled the classification of the NAS plumes of 19 November 2014 based on their morphology including the description of smaller plume structures and the NTW Bs, whilst these features were not adequately resolved by the 500m resolution of the SSS model data. To our knowledge, this study provided the first evidence of NTW Bs in NAS.

Although the event discussed in this study was captured with a sensor having a revisiting time of 16 days, we expect that with the recent launch of ESA’s Sentinel 2A and the forthcoming launch of Sentinel 2B the temporal resolution will increase reaching almost those normally associated with OCR missions (Dickey, 2003; Hestir et al., 2015; Mouw et al., 2015). Combined with their radiometric resolution similar to OCR missions, these
developments will thus offer an opportunity to also describe the temporal evolution of plume structures at the sub-mesoscale.

The observed optical complexity of NAS due to the variability in composition of the particulate matter may affect accuracy of the Dogliotti et al. (2015) algorithm for T retrievals, and the relationship between T and suspended matter concentration for each river. Hence future work is needed to characterize the inherent and apparent optical properties of particulate and dissolved matter delivered by each river in flood and non-flood conditions. This will also enable the validation of the Dogliotti et al. (2015) algorithm and the parameterization of other OCR algorithms (e.g. Melin et al., 2011; Vantrepotte et al., 2012; Brando et al., 2012) to accurately retrieve chlorophyll and suspended matter concentrations in these complex coastal waters.

There are almost no studies on the partitioning of water and sediment fluxes through distributary branches of a delta or adjacent rivers due to the complexity and cost associated with a simultaneous sampling effort at all branches or rivers (Syvitski et al., 2005). Moreover, flood events are difficult to observe in situ, as with ship-based activities is seldom possible to reach river mouths while autonomous vehicles are not operating in shallow waters or in high-density gradients (Hetland, 2005; Devlin and Schaeffelke, 2009; Tesi et al., 2011). On the other hand, observations from instrumented sites or coastal observatories such as AAOT provide detailed information on a large array of variables but do not provide a sufficient spatial coverage and may happen not be located favourably to observe events of interest (Dickey, 2003). Hence, dedicated field and numerical investigations are needed to characterize the temporal evolution of the spatial and vertical structure of the SSS, SST and T fields of river plumes interacting with the receiving waters and among them in varying discharge conditions. This would also enable to define the processes leading to the occurrence of NTWWs.

The potential of an integrated use of earth observation, numerical models, and in situ observations for describing coastal dynamics has been progressively emphasized in recent years (e.g. Dickey, 2003; Staneva et al., 2009; Stanev et al., 2011). The adoption of triple-collocation algorithms will allow the intercalibration of quantities and properties retrieved from the different sources (Janssen et al., 2007 and references therein). Furthermore, the use of the independent data sets will enable the identification of the relevant time- and space-scales for the observed (and modelled) phenomena (Chang et al., 2002).
Acknowledgements

Landsat 8 data were downloaded from USGS. Freshwater discharge data was provided by the regional environmental protection agencies: ARPA Veneto, ARPA Emilia Romagna and Protezione Civile del Friuli Venezia Giulia. Model data for the operational systems (COSMO-I7, AdriaROMS 4.0 and SWAN ITALIA) were provided by ARPA Emilia Romagna.

This study was co-funded by the RITMARE Flagship Project, the European Union (FP7-People Co-funding of Regional, National and International Programmes, GA n. 600407) and the Italian Space Agency (CLAM-PHYM project, contract n. I/015/11/0).

We are grateful to RBINS for making ACOLITE publicly and freely available. Constructive comments by two anonymous reviewers, as well as Erin Hestir, Mark Dowell, Andrea Bergamasco and Mauro Sclavo improved earlier versions of the manuscript.

References

Zasso, M., and Settin, T.: Sulla ripartizione delle portate del Po tra i vari rami e le bocche a mare del delta: esperienze storiche e nuove indagini all’anno 2011 (in Italian). Relazione n. 02/12, ARPAV Dipartimento Regionale Per La Sicurezza Del Territorio, Belluno, Italy, 47, 2012.

Figure 1. Study site with the location of rivers (R.), lagoons (L.) and wetlands (w.). Pseudo true colour Landsat-8 OLI imagery acquired on 19 November 2014.
Figure 2. River discharge for November 2014 for the main rivers flowing in NAS.
Figure 3. Daily-averaged modelled surface currents velocities in the NAS on 12 November 2014 (a) and 19 November 2014 (b). Normalized vectors indicating current direction have been subsampled every 15 grid points for graphical purposes, black thick line indicates modelled isohaline 36.

Figure 4. Reflectance spectra extracted from selected locations in NAS, including open waters, coastal features, lagoon inlets (a), and river mouths (b).
Figure 5. SST field estimated from Landsat-8 TIRS imagery acquired on 19 November 2014. Isohalines from the modelled SSS field are overlaid.
Figure 6. Turbidity map estimated from Landsat-8 OLI imagery acquired on 19 November 2014: a) all the plumes from the Isonzo to the Piave River, b) the Brenta, Adige and Po river plumes. Isotherms from the Landsat-8 TIRS SST field are overlaid. To enhance readability some isotherms have different colour coding in the two areas.
Figure 7 Relations between Turbidity, SST and SSS for selected locations in NAS. The dilution of the Po and Tagliamento river plumes across the SSS gradient is shown with dashed lines.