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Abstract

Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill
that floats on top of water, as well as decreasing the fauna populations, affects the
food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the wa-
ter, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine5

mammals for instance, disclosed to oil spills their insulating capacities are reduced,
and so making them more vulnerable to temperature variations and much less buoy-
ant in the seawater. This study has demonstrated a design tool for oil spill detection
in SAR satellite data using optimization of Entropy based Multi-Objective Evolutionary
Algorithm (E-MMGA) which based on Pareto optimal solutions. The study also shows10

that optimization entropy based Multi-Objective Evolutionary Algorithm provides an ac-
curate pattern of oil slick in SAR data. This shown by 85 % for oil spill, 10 % look-alike
and 5 % for sea roughness using the receiver-operational characteristics (ROC) curve.
The E-MMGA also shows excellent performance in SAR data. In conclusion, E-MMGA
can be used as optimization for entropy to perform an automatic detection of oil spill in15

SAR satellite data.

1 Introduction

Lately, oil spills in coastal zones have received much critical anxiety for its great dam-
ages on the coastal ecological system. Synthetic aperture radar (SAR) has proved
as appropriate sensor for oil spill surveying for its wide-area and all-day all-weather20

surveillance potentials. Owing to its extraordinary imaging mechanism, conversely, the
accuracy of oil spill detection is challenged by multiplicative speckle noise and dark
patches instigated by other physical phenomena. In this perspective, dark patches do
not be related to oil spills are known as look-alikes. They can be acclaimed to zones of
low wind speed, internal waves, biogenic films, grease ice, wind front areas, areas shel-25

tered by land, rain cells, current shear zones and up-welling zones (Lombardini et al.,
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1989; Teivero et al., 1998; Marghany, 2001). Consequently, three steps are expected
to automatically detect oil spills in SAR images: (i) dark spot detection, (ii) dark spot
feature extraction, and (iii) dark spot classification. Various classification algorithms for
oil spill detection have been utilized, including pattern recognition algorithms (Teivero
et al., 1998), spatial frequency spectrum gradient algorithms (Lombardini et al., 1989;5

Nirchio et al., 2005) and algorithms based on fuzzy and neural networks (Barni et al.,
1995; Calabresi et al., 1999; Garcia-Pineda et al., 2013). Consequently, the oil spill au-
tomatic detection from SAR data are requested standard algorithm to overwhelm the
multiplicative speckle noise and look-alike phenomena appearances. Marghany (2001)
introduced entropy algorithm which is based on texture coocurrenace matrix for oil spill10

automatic detection from RADARSAT-1 SAR data. He found that entropy algorithm is
able to discriminate between oil spill and look-alike phenomena. Indeed, the entropy
algorithm can support the automatic detection of oil spill by reducing the uncertainty on
the basis of information produced by multiplicative speckle noise and look-alike phe-
nomena effects. Further, Shi et al. (2008) have implemented entropy texture algorithm15

for oil spill detection from SAR and optical remote sensing data. They found that the oil
spill pixels are smoother than the surrounding environment. Shi et al. (2008) confirmed
the work done by Marghany (2001). Besides, Minchew et al. (2012) declared the vari-
ability of the entropy is consistent with the variability of the oil properties suggesting
that the entropy is providing a qualitative measure of the oil characteristics. Specifi-20

cally, when there is open water and a thin sheen, the entropy is close to 0, but in the
presence thicker oil (e.g. emulsion) the entropy has values that are close to 1.

Conversely, Skrunes et al. (2012) reported several disadvantages associated with oil
spill detection using the current SAR sensors and stated that SAR sensors cannot de-
tect the thickness distribution, volume, oil/water emulsion ratio or chemical properties25

of an oil slick. Instead, that group recommended the use of multi-polarization observa-
tions, i.e., the data acquired by the RADARSAT-2 and TerraSAR-X satellites. In addition,
quad-pol RADARSAT-2 SAR (Zhang et al., 2011) can provide information about oil spill
thickness compared to other SAR single channel such as RADARSAT-1 SAR, ERS-
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1/2 and Terra SAR. In this reagrd, range of theoretical polarimetric SAR developments
has gradually qualified the accurate distinction between mineral oil slicks and biogenic
slicks (Liu et al., 2011; Minchew et al., 2012; Skrunes et al., 2012). Recently, Minchew
et al. (2012) used Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-
band polarimetric for retrieving the oil volumetric concentration in a thick slick that is5

based on Cloude-Pottier entropy algorithm (Cloude and Pottier, 1996). The work of Liu
et al. (2011); Minchew et al. (2012); Skrunes et al. (2012) the Cloude-Pottier entropy
algorithm (H) (0 ≤ H ≤ 1) can provide a measure of the amount of mixing between
scattering mechanisms. For a wind-roughened ocean surface, the scattering is domi-
nated by a single dominant scattering mechanisms, namely Bragg scattering (H→ 0).10

In the presence of an oil slick, however, the entropy increases (H→ 1) which is due
to the number independent scattering mechanisms increasing due to damping of the
small-scale Bragg waves. Nevertheless, in the region between imaging slick-free wa-
ter and an oil slick, the entropy varied as a function of the properties of the oil (e.g.
sheen, emulsion) (Liu et al., 2011; Zhang et al., 2011; Minchew et al., 2012; Skrunes15

et al., 2012).
Newly, Staples and Rodrigues (2013) stated that entropy cannot be obtained from

single co-polarized radar data, but requires quad-polarized data. Quad-polarized data
means that the radar acquires two co-polarized channels (HH and VV) and two cross-
polarized channels (HV and VH), but equally as important, quad-polarized data are20

phase-preserving meaning that the inter-channel phase difference (e.g. phase differ-
ence between HH and VV) is available. In contrast, Marghany (2001) and Marghany
and van Genderen (2014) entropy texture algorithm provides excellent performance for
oil spill automatic detection from different single SAR data.

Recently, Marghany (2014) utilized the Genetic algorithm (GA) as automatic detec-25

tion algorithm for oil spill in RADARSAT-2 SAR data. Marghany (2014a) confirmed
the work of Topouzelis et al. (2009). Both studies have agreed that the genetic al-
gorithm is able to extract oil spill footprint boundaries automatically from the surround-
ing pixels without using a separate segmentation algorithm, as was done by Skrunes
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et al. (2012). Consistent with Marghany (2014), the genetic algorithm has the ability to
determine the optimal number of regions of oil spill segmentation or to choose certain
features, i.e., the size of the analysis window or selected heuristic thresholds. Further,
The GA is shown to be able to identify and remove pixels that do not significantly con-
tribute to oil slick footprint in SAR data. This conclusion has approved the findings of5

Mohanta and Sethi (2012).
The novelty of this work is designing optimization tool for the real time oil spill au-

tomatic detection using Entropy-Based Multi-objective Evolutionary Algorithm without
involving others tool such as neural network or any image processing classification
tools. Indeed, previous studies have executed artificial neural networks (Topouzelis10

et al., 2009; Mohanta and Sethi, 2012) or post-classification techniques (Barni et al.,
1995; Calabresi et al., 1999), which are considered to be semi-automatic techniques
(Marghany, 2001). Furthermore, both artificial neural networks and post-classification
techniques are time-consuming and the probability of misclassification does not always
decrease as the number of features increases, especially when sample data are insuf-15

ficient.
Incidentally, the main objective of this work is to minimalize the look-alike dark pixels

for accurate oil spill automatic detection in COSMO-SkyMed SAR satellite data which
could be involved with oil spill footprint was detected by entropy and genetic algo-
rithm. The Entropy-Based Multi-objective Evolutionary Algorithm uses both basic and20

advanced operators. For illustrative purposes, the method has been operated to oil spill
footprint boundaries shape optimization which allows local and global optimizations. In-
deed, global optimization which involves finding the optimal oil spill boundary shapes in
COSMO-SkyMed data. Look-alike pixels can be removed to reach the optimal oil spill
automatic shape detection.25
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2 Entropy algorithms

This section describes the main equations of entropy algorithm and entropy-based
multi-objective Evolutionary Algorithm (E-MMGA). These two algorithms are used for
detection of oil spill from observed SAR satellite images.

2.1 Entropy co-occurrence algorithm5

Be a consequence of Harmancioglu (1981), entropy is a quantitative compute of the in-
formation content of a series of data since reduction of uncertainty, by making observa-
tions, equals the same amount of gain in information. Therefore, Marghany (2001) and
Marghany and van Genderen, (2014) stated that entropy is a measure of the degree
of uncertainty of random oil spill footprint discrimination. In a definition adopted from10

information theory (Cloude and Pottier, 1996), entropy is the numerical expression of
oil spill footprint boundaries in SAR images. In using this concept, oil spill footprint can
be measured indirectly based on the degree of the reduction of multiplicative speckle
noises and uncertainty of look-alike effects. The main hypothesis is the oil spill footprint
boundaries have larger entropy compared to surrounding environment. Hence, in order15

to quantitatively assess the cumulative effect of uncertainty in oil spill footprint, entropy
can be used as a metric for population diversity of oil spill footprint boundaries which
are stored at each intersection of the column j and row i of the various slick areas. At
the rear of Amorocho and Espildora, (1973) and Harmancioglu (1981); Magrghany and
van Genderen (2014), the uncertainty (C) associated with the oil spill pixel value of xi20

for a random variable X is then written as

C(xi ) = ln(p(xi ))
−1 (1)

where pi is the probability distribution of X1 = {xi} and i is represented raw. The ex-
pected value of all of the entropy (E ) is adapted from Harmancioglu (1981) which can
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correlated with the random variable X by the following expression:

E (X ) =
∑
i

p(xi ) ln(p(xi ))
−1 (2)

Equations (1) and (2) are expressed the probability of oil spill footprint boundaries and
its entropy in raw i . Therefore, Eq. (2) can be given in two directions of raw i and column
j , then the two dimensional entropy E (X ,Y ) is given as5

E (X ,Y ) =
∑
j

[∑
i

p(xi ,yj ) ln(p(xi ,yj ))
−1

]
(3)

Equation (3), in other words, represents the joint uncertainty associated with oil spill
footprint boundaries in two dimensional of SAR images. It is assumed that the random
variables of oil spill and look-alikes footprint boundaries are independent then Eq. (3)
can extend as10

E (X ,Y ) =
∑
j

[∑
i

p(xi )p(yj ) ln(p(xi )
−1p(yj )

−1)

]
(4)

Equation (4) can be extended to an n-dimensional vector of independently distributed
of oil spill and look-alikes footprint boundaries random variables in SAR data. Hence,
in this case, the entropy E (Z) is sum of all of the individual SAR pixel entropies E (Xi )
and can be expressed as15

E (Z) =
n∑
j

E (Xi ) (5)

In the case of a uniform distribution of given oil spill or look-alikes footprint bound-
aries, the entropy of given probability p(xi ) = N

−1 of the number (N) of homogenous
1269
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clustering of the features can be calculated (Chapman, 1986) as

E (Z) =
N∑
i=1

ln(N)

N
(6)

The number of features (n) in the solution SAR image space can be estimated based on
the upper bound on the joint entropy Eu(Z) for oil spill or look-alikes footprint boundary
population as5

Eu(Z) = n ln(N) (7)

Based on Eqs. (6) and (7) the entropy metric is bounded by

0 ≤ E (Z) ≤ Eu(Z) (8)

Based on Eq. (8), the final entropy metric expression can by written by combination of
Eqs. (6) and (7) as follows:10

0 ≤
n∑
j=1

[
N∑
i=1

p(βi ,j ) ln
(
p(βi ,j )

−1
)]
≤ n ln(N) (9)

where p(βi ,j ) is probability distribution for oil spill footprint backscatter (βi ,j ) in raw and
column of SAR data. If (βi ,j ) is stated as the continuous oil spill backscatter variations
that stick to the probability density function of f (βi ,j ), the conditional entropy can be
expressed in the form of conditional probability density function f (β1|β2) of two given15

continuous random variants of radar backscatter (β1) and (β2). Thus the concept of
conditional probability density function f (β1|β2) (Chapman, 1986) can be estimated by

E (β1|β2) = −
+∞∫
−∞

+∞∫
−∞

f (β1,β2) ln f ((β1|β2)dβ1dβ2 (10)
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where dβ1dβ2 the interval change of oil spill and look-alikes footprint backscatter, re-
spectively.

Marghany (2001); Staples and Rodrigues (2013); and Marghany and van Genderen
(2014) have proved the efficiency and validity of the entropy on oil spill detection in SAR
data. Nonetheless, this approach is required range of threshold procedures to discrimi-5

nate between oil spill footprint quantities and surrounding environment. As a result, the
multiplicative speckle noises are not totally vanished around the boundary of oil spill
footprints. In this prospective, multi-objective optimization algorithm can involve in en-
tropy metric (Gunawan et al., 2004) to preserve the diversity among different solution to
minimize the influence of the look-alikes and multiplicative speckle noise (Lathi, 1968;10

Marghany, 2001; Zhang et al., 2013).

2.2 Entropy-Based Multi-objective Evolutionary Algorithm (E-MMGA)

Take the advantage of E-MMGA of preserving the diversity of solution set (Gunawan
et al., 2004) and solving the multidisciplinary of uncertainty of random oil spill footprint
discrimination in SAR data. The uniqueness of this study is to deal with entropy of15

oil spill detection as multi-objective Genetic Algorithm (GA). Comprehending Coello
et al. (2002), the multi-objective optimization (MOP) has already been successfully
adopted to solve uncertainty of object detection in SAR images (Marghany, 2014a).
In general, MOP consists of n decision variable parameters, k objective functions and
m constraints (Gunawan et al., 2004). Multi-objective Optimization (Marghany, 2014b;20

Gunawan et al., 2004) aims at conducting optimization for a range of functions as
follows

minimize F = (f1(β), f2(β), . . ., fm(β))T (11)

Subject to E (β1|β2) ∈ I ∈Ω (12)

where I is SAR data and Ω is the definition domain of functions or the feasible re-25

gion in decision space. In this research, two objectives are considered. One is oil spill
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backscatter and the other is sea surface, ship, lookalikes, and land backscatters. The
definitions of entropy of oil spill and non-oil spill footprint boundaries are given as fol-
lows:

1. Entropy of oil spill footprint boundaries (E (βmax)): the variation of maximum
entropy E (βmax) which contain oil spill footprint boundaries i.e. E (βmax) =5

max {E (β1, β2, . . ., βk)}. Where E (βi j ) denotes the entropy of oil spill boundaries
in i and j directions i , j ,∀i , j = 1,2, . . .,k.

2. Total of entropy of oil spill footprint boundaries is (
∑
E (βi j )): the sum of entropy

of the surrounding oil spill environment in SAR data. Then the Pareto optimal
solutions are applied to retain the discrimination of oil spills entropy diversity and10

surrounding entropy environment.

Let E (β0, β1, β2) ∈ E (βSAR), and E (βSAR) is a feasible entropy in whole SAR image.
And β0 is called the Pareto optimal solution in the minimization problem for identification
of oil spill pixels. if the following conditions are satisfied (Marghany, 2014b).

1. If f (E (β1)) is said to be partially greater than f (E (β2)), i.e. fi (E (β1) ≥15

fi (E (β2)), ∀ i = 1, 2, . . ., n and fi (E (β1)) > fi (E (β2)), ∃ i = 1, 2, . . ., n. Then E (β1)
is said to be dominated by (E (β2).

2. If there is no E (β) ∈ E (βSAR) s.t. E (β) dominates E (β0), then E (β0) is the Pareto
optimal solutions for identifying entropy of oil spill footprint boundaries E (βmax).

Following Marghany (2014b), the optimization of oil spill detection from SAR data using20

entropy based MOEA E-MOEA, the entropy of oil spill footprint boundaries must be
coded into a Genetic Algorithm syntax form i.e. the chromosome form. In this problem,
the chromosome consists of a number of genes where every gene corresponds to
a coefficient in the nth-order surface fitting polynomial as given by

f (i , j ) = E (β0 +β1i +β2j +β3i
2 +β4i j +β5j

2 + . . .+βmj
n) (13)25
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where E (β)[0,1. . .m] are the entropy parameter coefficients that will be estimated by
the genetic algorithm to approximate the minimum error for entropy of oil spill discrim-
ination from surrounding environment. i and j are indices of the pixel location in the
image respectively, m is the number of coefficients (Fig. 1).

Then the weighted sum to combine entropy of multiple objectives into single objective5

is given by Zhou et al. (2006).

f (E (β)) = w1f1(E (β))+w2f2(E (β))+ · · ·+wnfn((Eβ)) (14)

where f1(E (β)), f2(E (β)), . . ., fn(E (β)) are the objective functions and w1,w2, . . .,wn are
the weights of corresponding objectives that satisfy the following conditions.

wi ≥ 0 ∀i = 1,2, . . .,n
w1 +w2 + . . .+wn = 1

(15)10

Once the weights are determined, the searching direction is fixed. To search Pareto
optimal solutions as much as possible, the searching directions should be changed
again and again to sweep over the whole solution space. Therefore the weights have
to be changed again and again. The weights consist of random numbers and they are
generated as the following way (Marghany, 2014b):15

wi =
ri

r1 + r2 + . . .+ rn
, ∀i = 1,2, . . .,n (16)

where r1,r2, . . .,rn are random numbers within (0, 1). Solutions searched through
changing directions are collected in a set. Then the definition of Pareto optimal so-
lution is applied to determine which solutions in the set are Pareto optimal. The step
repeats in every generation in E-MOGA.20

To determine the diversity of entropy of multi-objectives which is mostly more than
two objectives for instance, oil spill, look-alikes, rough sea, and low wind zone, compute
the distance from a given footprint centre to its nearest neighbour boundaries. This
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can be computed by following equation adopted from Zhou et al. (2006) and Zhang
et al. (2013).

Ψ=
m∑
k=1

d (E (βi j )Ω)+
∑
I∈Ω

∣∣∣d (I ,Ω)−d
∣∣∣×[ m∑

k=1

d (E (βi j ),Ω)+ (|Ω−m|)d
]−1

(17)

There are m solutions E (β1), . . .,E (βm) sorted by an objective in SAR space data,
d1, . . .,dm−1 are the edge distances between adjacent different oil spill and look-alike5

footprint boundaries and Ω is set of solutions regarding oil spill or look-alikes footprint
boundaries, and

d (E (β1),Ω) = minE (βj )∈Ω,E (βj )6=E (βi )

∥∥F (E (βi ))− F (E (βj ))
∥∥ (18)

d = |Ω|−1
∑

E (β)∈Ω
d (E (β),Ω). (19)

E-MMGA is run until there is no further improvement in the entropy value (i.e., entropy10

is maximum), and then it is stopped. The solution of the overall problem is obtained by
taking the nondominated frontier of the points in the grand pool of the last E-MMGA
(Marghany, 2014b) iteration (Zhang et al., 2013).

3 Results and discussion

In this study, COSMO-SkyMed image is acquired on 29 July 2010 at 11:23:33 UTC15

which is implemented for oil spill detection in the Koh Samet island, Thailand. This data
covered 12◦31′48′′ to 12◦37′48′′N latitude and 101◦2′24′′ to 101◦33′37′′ E longitude
(Fig. 2). According to Marghany (2014b), the oil spill has moved away from the main-
land and has started to disperse to an extent. However, what is worrying now is that
it seems to have reached a group of islands dominated by Koh Kudee. The stag-horn20

and giant clam coral reef is dominated natural features of Koh Samet island (Fig. 2b)
with water depth less than 20 m depth.
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The Satellite has a Synthetic Aperture Radar (SAR) with multiple polarization modes,
including a fully polarimetric mode in which HH, HV, VV and VH polarized data are
acquired. Its meduim resolution is 5 m in Stripmap with the maximum coverage is
40km×40km, geometric resolution is 25 m2, pixel spacing is 0.5m×0.5m, and the
incident angle is between 20 to 59◦ with VV polarization (Table 1). Figure 3 shows5

the COSMO-SkyMed data where the oil spill is heading by 16.5◦ towards inland within
6.59 km length of the island to inland (Fig. 3).

Figure 4 shows the variation in the average backscatter intensity along the oil slick
footprint. The average backscatter intensity was damped by −20 to −9 dB and de-
creased over time as the oil slick footprint gradually increased (Fig. 4). Besides, the10

sea surface roughness has highest backscatter values of −10 dB than oil spill foot-
print pixels. Consistent with and Trivero et al. (2007) and Marghany (2014b), oil spill
changes the roughness of the ocean surface to smoothness surface in which appears
as dark footprint as compared to the surrounding ocean (Lombardini et al., 1989;
Trivero et al., 1998; Nirchio et al., 2005; Zhang et al., 2011). Consequently, the15

speckle caused obstacles in dark footprint identifications in SAR data (Marghany, 2001;
Skrunes et al., 2012). Additional, the wind speed is recorded in 29 July 2013 was
ranged between 1 to 7 ms−1. Besides, the measured reductions of backscattered radar
power at X-band could be impacted by instrumental limitations, i.e. by the fact that the
backscattered radar power reaches the noise floor (Trivero et al., 2007; Marghany,20

2014b).
Figure 5 shows the entropy algorithm result. Clearly, the oil spill footprint has lower

entropy value of 1.5 as compared to sea roughness and land. The land has highest
entropy value of 3.5 entropy and sea roughness has entropy value of 2.7. Indeed,
non-Bragg scattering is existing on land as backscatter becomes depolarized (Shi25

et al., 2008; Skrunes et al., 2012). Additionally, entropy algorithm has identified oil
spill footprint boundaries by entropy value of 3.3. However, land entropy and oil spill
footprint boundary having close entropy. In fact, entropy represents the randomness
of scattering mechanism (Shi et al., 2008). According to Marghany (2001); Fukunaga
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(2013); and Marghany and van Genderen (2014) entropy is measure of uniformity in
SAR image. In general, the entropy is a measure of variability or randomness because
the concentration of the backscatter changes in relatively few locations would be non-
random essentially. This confirms the study done by Shi et al. (2008).

Figure 6 shows the output result of E-MMGA. Clearly, E-MMGA is able to produce5

four different segmentation boundaries. Besides Fig. 7 shows that the thick oil spill
footprint has highest E-MMGA value of 2 than medium and light oil spill. This is mainly
because each multi-objective function in E-MMGA tends to bias its population towards
the extreme edges of the Pareto frontier. This is confirms the work was done by Gu-
nawan et al. (2004). Compared to entropy algorithm, E-MMGA is able to identify the10

look-alike footprint boundaries and discriminate accurately between, oil spill and look-
alike, and surrounding sea surface. E-MMGA can accurately identify the morphological
boundary of oil spill and assigned by different segmentation layer in COSMO-SkyMed
satellite data. In fact, the Entropy-Multi-Objective Evolutionary Genetic Algorithm (E-
MMGA) provides a set of compromised solutions called Pareto optimal solution since15

no single solution can optimize each of the objectives separately. The decision maker
is provided with the set of Pareto optimal solutions in order to choose solution based on
the decision maker’s criteria. This sort of E-MMGA solution technique is called a poste-
riori method since decision is taken after searching is finished. This confirms the work
done by Coello et al. (2002). In this context, the Pareto-optimization approach does not20

require any a priori preference decisions between the conflicting of oil spill, look-alike,
land, and surrounding sea footprint boundaries. Further, Pareto-optimal points have
form Pareto-front as shown in Fig. 6 in the multi-objectives function of the COSMO-
SkyMed data space.

Entropy-Multi-Objectives Evaluation Genetic Algorithm (E-MMGA) which based on25

the Pareto optimal solutions provides excellent discrimination of oil spill footprint bound-
aries. This can be confirmed by the receiver-operator characteristics (ROC) curve
(Fig. 8). In this regard, the existing of weight sum of objective function converts a con-
flicting multiobjective problem of oil spill and surrounding sea feature objectives. This
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can be seen in ROC curve where oil spill has an area difference of 85 % which is larger
than look-alike and sea surface areas. Further, p probability of 0.0005 another proof
for excellent of E-MMGA for oil spill detection. This study shows a great performance
as compared to previous work done by Marghany (2001) Shi et al. (2008); Marghany
(2014a and b). This because of Pareto-front contains the Pareto-optimal solutions and5

in case of continuous front, it divides the pixels objective function space into two parts,
which are non-optimal solutions and infeasible solutions. In this regard, it improved
the robustness of pattern search and improved the convergence speed of MOEA. This
confirms the work of Zhang et al. (2013).

On the word of Gunawan et al.,(2004), E-MMGA is able to preserve diversity and10

converge as fast as most of the single-level approaches (which are expected to be more
efficient but less practical for large-scale problems of multidisciplinary nature). Besides,
it improves overall quality of solutions by explicitly optimizing the entropy index at every
system-level iteration, and then using this information to bias the search process toward
obtaining a solution set with maximum diversity.15

4 Conclusions

This study has demonstrated work to optimize the oil spill footprint detection in synthetic
aperture radar (SAR) data. Therefore, Entropy-based Multi-objective Evolutionary Al-
gorithm (E-MMGA) has implemented with COSMO-SkyMed data during the oil spill
event along the coastal water of along Koh Samet island, Thailand. Besides, Pareto20

optimal solution is implemented with E-MMGA to minimize the difficulties of oil spill
footprint boundary detection because of the existence of look-alike in SAR data. The
study shows that the implementation of Pareto optimal solution and weight sum in E-
MMGA generated accurate pattern of oil slick. Furthermore, thick oil spill has highest
value of 2 E-MMGA than thin and medium spills. The E-MMGA, is able to preserve25

the morphology of oil spill footprint boundaries i.e. thick, medium, and light. In addition,
the receive-operational characteristics (ROC) curve confirmed accurately performance
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of E-MMGA with 85 % oil spill detection, 10 % for look-alike and 5 % for surrounding
sea surface boundary identification. In conclusion, E-MMGA is considered as excellent
algorithm to discriminate oil spill from look-alikes and also to identify thick oil spill from
thin one.
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Table 1. Characteristics of COSMO-SkyMed used.

Mode Resolution (m) Polarization

Stripmap 5×5 VV
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Figure 1. Coding scheme of the coefficients of the nth-order surface fitting polynomial into the
chromosome syntax form.

1282

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/12/1263/2015/osd-12-1263-2015-print.pdf
http://www.ocean-sci-discuss.net/12/1263/2015/osd-12-1263-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
12, 1263–1289, 2015

Multi-objective
entropy evolutionary
algorithm for marine

oil spill detection

M. Marghany

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 2. Oil spill covers beach of (a) Koh Samet Island and (b) Google map of Koh Samet
Island.
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Figure 3. COSMO-SkyMed data along Koh Samet island, Thailand.
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Figure 4. Average backscatter variations in COSMO-SkyMed.
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Figure 5. Entropy result for oil spill footprint.
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Figure 6. E-MMGA solution for oil spill discrimination in COSMO-SkyMed.
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Figure 7. Oil spill footprint Category by E-MMGA.
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Figure 8. ROC for oil spill discrimination using E-MMGA.
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