

Supplement of

Atmosphere–ocean interactions in the Greenland Sea during solar cycles 23–24, 2002–2011

P. E. Binns

Correspondence to: P. E. Binns (pebinns@btinternet.com)

CONTENTS

Cluster Analysis and measurement of day-to-day variability Example of the Results of a 'Monthly' Cluster Analysis Example of the Results of an 'Annual' Cluster Analysis Complete data sets available	p. 2
Day-to-day SST variability and Svalbard Lufthavn sea level pressure variability	p. 4
Tests of statistical significance Text Fig. 6 Test methodology Reference tests Figure	p. 4
Daily variability values July-December	p. 6
Symmetry of August SST fields about the Cycles 23-24 solar low Text Fig. 8 Cluster analysis spreadsheet Difference plots: comparison of August SST fields, 2008 and years before and after (differences) Difference plots: comparison between Augusts before and after August 2008 (similarities)	p. 7
Variability as a function of the North Atlantic Oscillation index Day-to-day variability and the NAO Cross plot NAO and day-to-day variability, monthly means, all months. Cross plot NAO and day-to-day variability, monthly means, July 2007 – November 2009 Cross plot NAO and day-to-day variability, monthly means, October 2007 – September 2008	p. 12
Interpretation of AVHRR Infra-red Images Key to Interpretation Example of Interpretation Sheet - AVHRR Infra-red Images Complete data set available	р. 14
Count of weather systems	p. 16

Example of the Results of a 'Monthly' Cluster Analysis (here all Januarys from 2003 to 2011) The first two columns in each month are the dates, the third is the sequence number, and the fourth and fifth are Euclidean Distance (day-to-day variability) and cluster number.

Euclidean	(Cluster

Distance $\bigvee \bigvee$ Number

JANUAR	Ys AL	L 2003	-201	10.1.1	DAT	Α.																															
2003	1 1		6	2004	1	32		8	200)5 1	63		20	2006	1 94		16	2007	1 12	5 1	5 2008	1 1	156	21	2009	1 187	1	6	2010	1	218		16	2011	1 249	3	2
2003	2 2	11	6	2004	2	33	24	22	200)5 2	64	15	20	2006	2 95	16	16	2007	2 12	6 16 1	5 2008	2 1	157	16 21	2009	2 188	16 1	6	2010	2	219	21	23	2011	2 250) 13	2
2003	3 3	12	6	2004	3	34	16	22	200)5 3	65	17	20	2006	3 96	26	16	2007	3 12	7 25 1	5 2008	3 1	158	23 21	2009	3 189	14 1	6	2010	3	220	10	23	2011	3 25	1 10	2
2003	4 4	12	6	2004	4	35	12	22	200)5 4	66	12	20	2006	4 97	28	21	2007	4 12	8 91	5 2008	4 1	159	14 21	2009	4 190	13 1	6	2010	4	221	16	23	2011	4 253	2 24	10
2003	5 5	15	6	2004	5	36	11	22	200)5 5	67	14	20	2006	5 98	13	21	2007	5 12	9 15 1	5 2008	5 1	160	16 21	2009	5 191	13 1	6	2010	5	222	18	16	2011	5 25	3 16	10
2003	6 6	21	6	2004	6	37	14	22	200	5 6	68	15	20	2006	6 99	19	21	2007	6 13	0 10 1	5 2008	6 1	161	10 21	2009	6 192	20	2	2010	6	223	8	16	2011	6 25/	11	10
2003	7 7	12	6	2004	7	38	9	22	200)5 7	69	8	20	2006	7 100	18	21	2007	7 13	1 11 1	5 2008	7 1	162	14 21	2009	7 193	26 1	2	2010	7	224	14	16	2011	7 25!	i 13	10
2003	8 8	27	6	2004	8	39	19	22	200	5 8	70	11	20	2006	8 101	16	21	2007	8 13	2 18 1	5 2008	8 1	163	9 21	2009	8 194	17	2	2010	8	225	14	16	2011	8 25(i 13	10
2003	9 9	15	6	2004	9	40	13	22	200)5 9	71	11	20	2006	9 102	16	21	2007	9 13	3 13 1	5 2008	9 1	164	14 19	2009	9 195	12	2	2010	9	226	13	16	2011	9 25	/ 22	14
2003 1	0 10	18	6	2004	10	41	20	3	200	5 10	72	21	20	2006 1	0 103	18	21	2007 1	0 13	4 21 1	5 2008	10 1	165	9 19	2009 1	0 196	17	2	2010	10	227	20	16	2011	10 25/	3 9	14
2003 1	1 11	12	6	2004	11	42	17	3	200)5 11	73	16	20	2006 1	1 104	38	4	2007 1	1 13	5 15 1	5 2008	11 1	166	8 19	2009 1	1 197	13	2	2010	11	228	13	16	2011	11 25	3 8	14
2003 1	2 12	13	6	2004	12	43	16	3	200)5 12	74	13	20	2006 1	2 105	19	4	2007 1	2 13	6 14 1	5 2008	12 1	167	19 19	2009 1	2 198	16	2	2010	12	229	14	2	2011	12 260) 9	14
2003 1	3 13	12	6	2004	13	44	18	3	200)5 13	75	9	20	2006 1	3 106	33	7	2007 1	3 13	7 14 1	5 2008	13 1	168	16 19	2009 1	3 199	13	2	2010	13	230	10	2	2011	13 26:	1 12	14
2003 1	4 14	24	6	2004	14	45	8	3	200	5 14	76	11	20	2006 1	4 107	25	21	2007 1	4 13	8 17 1	5 2008	14 1	169	21 19	2009 1	4 200	19	5	2010	14	231	7	2	2011	14 26	2 10	14
2003 1	5 15	17	17	2004	15	46	25	17	200)5 15	77	19	20	2006 1	5 108	20	21	2007 1	5 13	9 9 1	5 2008	15 1	170	17 19	2009 1	5 201	11	5	2010	15	232	8	2	2011	15 26	3 14	14
2003 1	6 16	11	17	2004	16	47	14	17	200)5 16	78	17	20	2006 1	6 109	17	21	2007 1	6 14	0 10 1	5 2008	16 1	171	12 19	2009 1	6 202	24	5	2010	16	233	10	2	2011	16 26/	15	14
2003 1	7 17	13	17	2004	17	48	14	17	200)5 17	79	18	20	2006 1	7 110	17	21	2007 1	7 14	1 11 1	5 2008	17 1	172	16 2	2009 1	7 203	32 1	2	2010	17	234	10	2	2011	17 26!	i 15	14
2003 1	8 18	12	17	2004	18	49	25	17	200)5 18	80	18	13	2006 1	8 111	12	21	2007 1	8 14	2 9 1	5 2008	18 1	173	18 2	2009 1	8 204	27 1	2	2010	18	235	7	2	2011	18 26	i 19	14
2003 1	9 19	15	17	2004	19	50	19	17	200)5 19	81	20	13	2006 1	9 112	16	18	2007 1	9 14	3 13 1	5 2008	19 1	174	11 2	2009 1	9 205	8 1	2	2010	19	236	19	2	2011	19 26	/ 13	14
2003 2	0 20	16	17	2004	20	51	14	17	200	05 20	82	27	20	2006 2	0 113	14	18	2007 2	0 14	4 7 1	5 2008	20 1	175	11 2	2009 2	0 206	10 1	2	2010	20	237	11	2	2011	20 268	3 13	14
2003 2	1 21	. 10	17	2004	21	52	11	17	200)5 21	83	18	20	2006 2	1 114	29	21	2007 2	1 14	5 18 1	5 2008	21 1	176	13 2	2009 2	1 207	8 1	2	2010	21	238	13	2	2011	21 26	16	14
2003 2	2 22	15	17	2004	22	53	20	17	200	05 22	84	15	20	2006 2	2 115	13	21	2007 2	2 14	6 13 1	5 2008	22 1	177	9 2	2009 2	2 208	8 1	2	2010	22	239	7	2	2011	22 270	26	14
2003 2	3 23	18	17	2004	23	54	21	17	200)5 23	85	14	20	2006 2	3 116	23	18	2007 2	3 14	7 18 1	5 2008	23 1	178	11 2	2009 2	3 209	12 1	2	2010	23	240	11	2	2011	23 27	1 16	14
2003 2	4 24	19	17	2004	24	55	29	17	200	05 24	86	24	20	2006 2	4 117	20	18	2007 2	4 14	8 11 1	5 2008	24 1	179	17 2	2009 2	4 210	7 1	2	2010	24	241	11	2	2011	24 272	2 10	14
2003 2	5 25	14	17	2004	25	56	21	17	200)5 25	87	31	9	2006 2	5 118	17	18	2007 2	5 14	9 15 1	5 2008	25 1	180	12 2	2009 2	5 211	8 1	2	2010	25	242	12	2	2011	25 273	3 11	14
2003 2	6 26	13	17	2004	26	57	26	17	200	05 26	88	18	9	2006 2	6 119	12	18	2007 2	6 15	0 22 1	1 2008	26 1	181	17 2	2009 2	6 212	12 1	2	2010	26	243	14	2	2011	26 274	11	14
2003 2	7 27	6	17	2004	27	58	13	17	200)5 27	89	16	9	2006 2	7 120	21	18	2007 2	7 15	1 22 1	1 2008	27 1	182	12 2	2009 2	7 213	15 1	2	2010	27	244	20	16	2011	27 27!	i 12	14
2003 2	8 28	13	17	2004	28	59	12	17	200	5 28	90	11	9	2006 2	8 121	22	18	2007 2	8 15	2 22 1	1 2008	28 1	183	13 23	2009 2	8 214	13 1	2	2010	28	245	12	16	2011	28 276	i 11	14
2003 2	9 29	17	17	2004	29	60	8	17	200)5 29	91	21	9	2006 2	9 122	17	18	2007 2	9 15	3 24 1	5 2008	29 1	184	14 23	2009 2	9 215	8 1	2	2010	29	246	14	16	2011	29 277	/ 15	14
2003 3	0 30	14	17	2004	30	61	13	17	200	5 30	92	19	9	2006 3	0 123	31	21	2007 3	0 15	4 16 1	5 2008	30 1	185	19 23	2009 3	0 216	91	2	2010	30	247	16	2	2011	30 278	3 19	14
2003 3	1 31	23	17	2004	31	62	12	17	200	5 31	93	14	9	2006 3	1 124	20	21	2007 3	1 15	5 22	1 2008	31 1	186	19 23	2009 3	1 217	19 1	2	2010	31	248	17	2	2011	31 279	15	14
Sum		451					496					493				605				458				430			442					389				419	
Avg.		15.0					16.5					16.4				20.2				15.3			:	14.3			14.7					13.0				14.0	
No. Clus	ters		2					4					3				5				3			4				4					з				3
No. Tran	s.		1					3					3				8		_		3			3				5					4				2
KEY TO C	OLUN	INS							-																												
1	Yea	ar						-	+										_																		
2	Da	y date						_	+										_				_													+	
3	Da	y sequ	ence	e numb	er	-11													_																		
4	DIS	simila	rity (Hierar	chic	al)		-						╘──╏	_				_				_			_										+	\vdash
2	AVE	age.	.iust	ernun	iber			-							_				_				-														\vdash

Example of the Results of an 'Annual' Cluster Analysis (here all June 2005 to May 2006) Column format as above

JUNE 20	005 TO N	MAY 2006	ALL O	I. DATA																																									
JUNE:	1 1	14	JULY	1 31	11	18	AUG	1 62	19 24	4 SEPT	1 /	93 :	19 8	B OCT	1 12	3 17	16	NOV	1 154	13	15	DEC	1 184	18	9 JA	N	1 215	9	25	FEB	1 246	5 13 1	9 MAR	1	274	21 23	2 APF	: 1	305	8	4	MAY	1 33	5 12	21
JUNE:	2 2	8 14	JULY	2 32	11	18	AUG	2 63	11 24	4 SEPT	2 /	94	15 8	B OCT	2 124	4 18	16	NOV	2 155	32	28	DEC	2 185	17	9 JA	N :	2 216	16	25	FEB	2 247	22 1	1 MAR	2	275	14 23	2 APP	έ 2	306	10	4	MAY	2 33	6 11	21
JUNE:	3 3	10 14	JULY	3 33	13	18	AUG	3 64	14 24	4 SEPT	3 /	95	13 8	B OCT	3 12	i 10	16	NOV	3 156	26	15	DEC	3 186	13	9 JA	N .	3 217	26	21	FEB	3 248	8 9 1	1 MAR	3	276	14 23	2 APP	ŧ З	307	13	4	MAY	3 33	7 9	21
JUNE:	4 4	13 14	JULY	4 34	12	18	AUG	4 65	11 24	4 SEPT	4 /	96	13 8	B OCT	4 12	á 11	16	NOV	4 157	14	15	DEC	4 187	11	9 JA	N -	4 218	28	19	FEB	4 249	21 1	1 MAR	4	277	21 2	2 APP	: 4	308	13	4	MAY	4 33	8 10	21
JUNE:	5 5	13 14	JULY	5 35	5 15	20	AUG	5 66	11 24	4 SEPT	5 /	97 :	21 8	B OCT	5 12	/ 14	16	NOV	5 158	12	15	DEC	5 188	11	9 J/	N	5 219	13	19	FEB	5 250	14 1	1 MAR	5	278	14 23	2 APP	{ 5	309	13	4	MAY	5 33	9 14	21
JUNE:	6 6	10 14	JULY	6 36	5 20	20	AUG	6 67	15 24	4 SEPT	6	98 :	11 8	B OCT	6 12	3 15	16	NOV	6 159	16	28	DEC	6 189	25	9 J/	N	6 220	19	19	FEB	6 25	26 1	1 MAR	6	279	13 23	2 APP	1 6	310	11	4	MAY	6 34	0 10	21
JUNE:	7 7	15 27	JULY	7 37	14	20	AUG	7 68	9 24	4 SEPT	7 !	99 :	14 8	в ост	7 12) 17	16	NOV	7 160	11	28	DEC	7 190	14	9 J.A	N T	7 221	18	19	FEB	7 253	15 1	1 MAR	7	280	14 23	2 APF	1 7	311	8	4	MAY	7 34	1 21	25
JUNE:	8 8	11 27	JULY	8 38	3 14	20	AUG	8 69	12 24	4 SEPT	8 1	.00	8 8	B OCT	8 130	26	15	NOV	8 161	15	28	DEC	8 191	14	9 J/	N	8 222	16	19	FEB	8 25	13 1	1 MAR	8	281	14 23	2 APP	8	312	11	4	MAY	8 34	2 16	25
JUNE:	99	16 27	JULY	9 39	20	2	AUG	9 70	13 24	4 SEPT	9 1	.01 :	12 8	B OCT	9 13:	1 14	15	NOV	9 162	8	28	DEC	9 192	10	9 J/	N	9 223	16	19	FEB	9 254	14 1	1 MAR	9	282	11 2	2 APR	1 9	313	11	4	MAY	9 34	3 13	25
JUNE: 1	10 10	11 27	JULY	10 40	14	2	AUG 1	10 71	10 24	4 SEPT	10 1/	.02	11 8	B OCT	10 13	2 14	15	NOV 1	0 163	13	28	DEC 1	193	19	25 J/	N 1	0 224	18	19	FEB	10 25	5 17 1	1 MAR	10	283	10 23	2 APP	10	314	13	4	MAY	10 34	4 9	25
JUNE: 1	11 11	10 27	JULY	11 41	17	2	AUG 1	11 72	13 24	4 SEPT	11 1/	.03	12 E	B OCT	11 13	3 22	16	NOV 1	1 164	11	28	DEC 1	1 194	12	25 J/	N 1	1 225	38	5	FEB	11 256	5 19 1	1 MAR	11	284	26	3 APP	11	315	18	4	MAY	11 34	,5 9	25
JUNE: 1	12 12	20 27	JULY	12 42	16	2	AUG 1	12 73	12 24	4 SEPT	12 1	.04 :	14 8	B OCT	12 13	4 18	16	NOV 1	2 165	17	28	DEC 1	195	17	25 J/	N 1	2 226	19	5	FEB	12 257	17 1	1 MAR	12	285	25 23	2 APP	12	316	21	4	MAY	12 34	6 11	25
JUNE: 1	13 13	18 12	JULY	13 43	3 14	2	AUG 1	13 74	17 24	4 SEPT	13 1/	.05	11 8	B OCT	13 13	i 21	15	NOV 1	.3 166	14	28	DEC 1	13 196	10	25 JA	N 1	3 227	33	1	FEB	13 258	3 12 1	1 MAR	13	286	23 23	2 APP	(13	317	19	21	MAY	13 34	7 8	25
JUNE: 1	14 14	16 12	JULY	14 44	17	2	AUG 1	14 75	16 24	4 SEPT	14 1/	.06	16 8	B OCT	14 13	á 10	15	NOV 1	4 167	24	28	DEC 1	197	13	25 JA	N 1	4 228	25	19	FEB	14 259	20 1	1 MAR	14	287	25 23	2 APP	14	318	13	21	MAY	14 34	8 10	25
JUNE: 1	15 15	14 12	JULY	15 45	15	2	AUG 1	15 76	13 24	4 SEPT	15 1/	.07 1	18 6	5 OCT	15 13	/ 11	15	NOV 1	5 168	12	28	DEC 1	198	20	25 JA	N 1	5 229	20	19	FEB	15 260	18 1	1 MAR	15	288	14 23	2 APP	15	319	10	21	MAY	15 34	9 13	25
JUNE: 1	16 16	13 12	JULY	16 46	5 11	2	AUG 1	16 77	15 24	4 SEPT	16 1/	.08 _ /	13 6	5 OCT	16 13	3 25	15	NOV 1	6 169	9	28	DEC 1	199	18	25 JA	N 1	6 230	17	19	FEB	16 26	18 1	1 MAR	16	289	24 23	2 APR	16	320	11	21	MAY	16 35	.0 12	25
JUNE: 1	17 17	11 26	JULY	17 47	12	10	AUG 1	17 78	13 24	4 SEPT	17 1/	.09	9 6	5 OCT	17 139	23	15	NOV 1	7 170	14	28	DEC 1	17 200	14	25 JA	N 1	7 231	17	19	FEB	17 263	2 22 1	1 MAR	17	290	13 23	2 APR	i 17	321	11	21	MAY	17 35	1 10	25
JUNE: 1	18 18	11 26	JULY	18 48	3 11	10	AUG 1	18 79	19 24	4 SEPT	18 1	.10 1	18 23	B OCT	18 14) 12	15	NOV 1	.8 171	11	28	DEC 1	18 201	22	9 JA	N 1	8 232	12	19	FEB	18 263	21 1	1 MAR	18	291	24 23	2 APR	18	322	14	21	MAY	18 35	2 9	25
JUNE: 1	19 19	12 26	JULY	19 49	17	10	AUG 1	19 80	11 24	4 SEPT	19 1	.11	8 23	OCT 3	19 14:	1 18	15	NOV 1	9 172	12	28	DEC 1	19 202	12	9 JA	N 1	9 233	16	21	FEB	19 264	91	1 MAR	19	292	11 23	2 APR	i 19	323	15	21	MAY	19 35	.3 9	25
JUNE: 2	20 20	16 26	JULY	20 50	13	10	AUG 2	20 81	11 24	4 SEPT	20 1	.12 :	13 23	B OCT	20 14	2 15	15	NOV 2	0 173	15	28	DEC 2	20 203	17	9 JA	N 2	0 234	14	21	FEB	20 26	5 15 1	1 MAR	20	293	19 23	2 APR	1 20	324	14	21	MAY	20 35	4 11	25
JUNE: 2	21 21	16 26	JULY	21 51	18	10	AUG 2	21 82	24	3 SEPT	21 1	.13 :	15 23	OCT	21 14	3 12	15	NOV 2	1 174	9	28	DEC 2	21 204	17	25 JA	N 2	1 235	29	19	FEB	21 26	14 1	1 MAR	21	294	20 23	2 APR	1 21	325	10	21	MAY	21 35	5 7	25
JUNE: 2	22 22	18 26	JULY	22 52	11	10	AUG 2	22 83	16 8	3 SEPT	22 1	.14	11 23	B OCT	22 14	1 9	15	NOV 2	2 175	11	28	DEC 2	22 205	16	25 JA	N 2	2 236	13	19	FEB	22 26	20 2	2 MAR	22	295	14 23	2 APR	1 22	326	14	21	MAY	22 35	6 12	25
JUNE: 2	23 23	18 26	JULY	23 53	14	10	AUG 2	23 84	12	3 SEPT	23 1	.15 _ :	10 23	B OCT	23 14	i 10	15	NOV 2	3 176	14	28	DEC 2	23 206	16	25 JA	N 2	3 237	23	7	FEB	23 268	3 14 2	2 MAR	23	296	22 23	2 APR	1 23	327	19	21	MAY	23 35	7 16	25
JUNE: 2	24 24	11 26	JULY	24 54	10	10	AUG 2	24 85	11 (3 SEPT	24 1	.16 1	18 23	3 OCT	24 14	i 14	15	NOV 2	4 177	16	28	DEC 2	24 207	14	25 JA	N 2	4 238	20	7	FEB	24 269	9 19 2	2 MAR	24	297	15 23	2 APR	: 24	328	16	21	MAY	24 35	8 20	25
JUNE: 2	25 25	13 26	JULY	25 55	17	10	AUG 2	25 86	11 8	3 SEPT	25 1	.17 1	18 23	3 OCT	25 14	/ 12	15	NOV 2	5 178	22	28	DEC 2	25 208	16	25 JA	N 2	5 239	17	7	FEB	25 270	23 1	7 MAR	25	298	16 1	3 APR	: 25	329	14	21	MAY	25 35	9 17	25
JUNE: 2	26 26	12 26	JULY	26 56	16	10	AUG 2	26 87	15 8	3 SEPT	26 1	.18 2	20 23	B OCT	26 14	3 15	15	NOV 2	6 179	16	28	DEC 2	26 209	11	25 J/	N 2	6 240	12	7	FEB	26 27:	18 1	7 MAR	26	299	17 1	3 APR	: 26	330	10	21	MAY	26 36	0 11	25
JUNE: 2	27 27	11 26	JULY	27 57	17	10	AUG 2	27 88	18 8	3 SEPT	27 1	.19 2	21 23	B OCT	27 14	8	15	NOV 2	7 180	17	28	DEC 2	27 210	16	25 JA	N 2	7 241	21	7	FEB	27 273	2 16 2	2 MAR	27	300	19 4	4 APR	: 27	331	9	21	MAY	27 36	1 15	28
JUNE: 2	28 28	16 18	JULY	28 58	3 11	10	AUG 2	28 89	16 8	3 SEPT	28 1	.20 1	11 23	B OCT	28 150) 19	15	NOV 2	8 181	18	28	DEC 2	28 211	20	25 J/	N 2	8 242	22	7	FEB	28 27	3 11 2	2 MAR	28	301	15 4	4 APR	1 28	332	14	21	MAY	28 36	2 10	28
JUNE: 2	29 29	15 18	JULY	29 59	21	24	AUG 2	29 90	20	3 SEPT	29 1	.21 1	19 16	OCT	29 15:	1 22	15	NOV 2	9 182	18	9	DEC 2	29 212	8	25 JA	N 2	9 243	17	7				MAR	29	302	11 4	4 APR	1 29	333	10	21	MAY	29 36	3 10	28
JUNE	30 30	15 18	JULY	30 60	16	24	AUG :	30 91	9 8	3 SEPT	30 1	22 1	12 16	OCT	30 15	20	15	NOV	0 183	12	9	DEC 3	30 213	11	25 JA	N 3	0 244	31	19			+ $+$	MAR	30	303	11 4	+ APR	30	334	12	21	MAY	30 36	4 10	28
		202	JULY	31 61	15	24	AUG :	31 92	15 3	5		<u> </u>	_	OCI	31 15:	16	15			452		DEC 3	31 214	9	25 JA	IN 3	1 245	20	19		_	470	MAR	31	304	10 4	<u>4</u>	+		205		MAY	31 36	5 10	28
Sum		393			452				431			42	24			486				453				461				614				4/2				519				386				364	
No Clu	etare	15.1			15.1				14.4			14				16.2				15.1				15.4				20.5				15.7				.7.5				12.9				12.1	
No Tra	ns .																																												
KEY TO	COLUM	NS																																											
1	Year					_																																							
2	Day	date																																											
3	Day	sequence	e numb	er																																									
4	Diss	imilarity	(Hierar	chical)																																									
5	Aver	age' clust	ter nun	nber																																									

DAY-TO-DAY SST VARIABILITY AND SVALBARD LUFTHAVN SEA LEVEL PRESSURE VARIABILITY

Comparison of the day-to-day variability of the sea surface temperature field with the day-to-day variability of sea level pressure at the onshore meteorological station at Svalbard Lufthavn (eklima@met.no). Taking the seasons individually to avoid seasonal influence on correlation, the correlation coefficients are: MAM: 0.65; JJA: 0.07; SON: 0.49; DJF: 0.56. With the exception of the summer, the correlations are a further indication that day-to-day variability of the sea surface temperature field is real and due to the passage of weather systems.

TESTS OF STATISTICAL SIGNIFICANCE

Frequency distributions, day-to-day variability of the SST fields. The two populations comprise 2525 and 884 values. (a) All days. (b) Days separated into two groups, according to months with sunspot numbers below and above 10.

Two test methods have been applied, both using MATLAB's statistical toolbox:

 (a) t-test: (MATLAB ttest2, unequal means) "Returns a test decision for the null hypothesis that the data in two vectors come from independent random samples from normal distributions with equal means and equal but unknown variance, using the two-sample t-test. The alternative hypothesis is that the data [in the two groups] come from populations with unequal means. The result h is 1 if the test rejects the null hypothesis at the 5% significance level". (b) Kolmogorov-Smirnov Test: (MATLAB kstest2) "Returns a test decision for the null hypothesis that the data in two vectors [here groups 1 & 2] are from the same continuous distribution, using the two-sample Kolmogorov-Smirnov test. The alternative hypothesis is that the data [in the two groups] are from different continuous distributions. The result h is 1 if the test rejects the null hypothesis at the 5% significance level and 0 otherwise".

REFERENCE TESTS – Before testing for a difference between these two groups, a set of ten reference tests was made. In each of the ten tests (table below), two groups were randomly selected from the total population of day-to-day variabilities (Fig. SI-4a); a t-test and a non-parametric, Kolmogorov-Smirnov test were run. Of these ten tests, nine supported the null hypothesis that there was no significant difference between the two, randomly-selected groups. In contrast, when the standard t-test and the Kolmogorov-Smirnov tests were made on groups taken from periods with SSNs above and below 10 a statistically significant difference was established at the 5% level (Fig. SI-4b, Fig. SI-5). The same tests were also made to compare variability during the period with SSNs less than 20, and the remaining periods. Again the differences were statistically significant.

RUN	G	ROUP	1	GF	ROUP 2	2	T	FEST2	K-9	S TEST
	No.	μ	σ	No.	μ	σ	h=	p =	h=	p =
1	1689	13.0	4.5	1716	13.2	4.9	0	0.92	0	0.60
2	1690	13.0	4.5	1738	13.2	4.5	0	0.90	0	0.69
3	1712	12.2	4.7	1694	13.0	4.7	0	0.12	0	0.67
4	1711	12.3	4.8	1695	12.9	4.6	1	0.0064	1	0.04
5	1693	13.1	4.8	1714	13.1	4.6	0	0.64	0	0.33
6	1728	13.1	4.9	1701	13.1	4.5	0	0.49	0	0.29
7	1681	13.2	4.9	1725	13.0	4.6	0	0.11	0	0.28
8	1689	13.2	4.7	1717	13.0	4.7	0	0.15	0	0.29
9	1661	13.1	4.6	1745	13.0	4.8	0	0.37	0	0.37
10	1742	12.9	4.6	1664	13.3	4.8	0	0.98	0	0.14

Two groups were selected at random from the total population of day-to-day variabilities

Kolmogorov-Smirnov Test. Result K-S Statistic = 0.1357, h = 1 at the 95% level.

Symmetry of August sea surface temperature fields about the years of lowest solar activity, 2007-2009. (a) Dendrogram with clusters, which indicate symmetry in colour, together with the years in which they have been detected. (b) Symmetry about 2007-2009. Clusters represented in blue shades have only been detected in these years. The mauve, yellow, green and brown clusters have only been detected in the years before and after. (c) Comparison of an August 2008 sea surface temperature field (left) with an August 2004 field (right). The difference field (centre) indicates higher 2004 temperatures in the northwest. View from north. Horizontal axes are latitude and longitude.

The spreadsheet below shows the clusters into which all daily sea surface temperature fields in Augusts from 2002 to 2011 have been assigned (right hand column in each year). It is an alternative display to the dendrogram in Fig. 5 and the clusters have been colour coded as in Fig. 5. Augusts 2007, 2008 and 2009 (blues) are unique to these years, with the light blue clusters appearing either side of the 2008 clusters (dark blue). Other clusters appear only in the years before and after. For example, a single SST field was present thoughout the first 28 days of August 2008 (the deepest part of the solar low). This field was not detected in the August of any other year. Two similar SST fields were detected in both August 2007 and August 2009; again these were not detected in any other year. At the same time, other pairs of clusters were detected before and after 2007-2009. This pattern is consistent with the changes in the precursor described above.

A similar comparison has been made for the September 2008 SST fields. The mean temperature of the 2008 field is the lowest of all, and both 2007 and 2008 fields again show the eddy terminations further to the southeast. As in August, comparison of mean SST fields between the same clusters before and after the central years shows little difference.

COMPARISON OF AUGUST SST FIELDS 2008 AND YEARS BEFORE AND AFTER – EXAMPLES OF DIFFERENCES IN THE MARGINAL ICE ZONE

August 2008 (Cluster 22) compared with other years

COMPARISON BETWEEN AUGUSTS BEFORE AND AFTER AUGUST 2008 – EXAMPLES OF SIMILARITY

VARIABILITY AS A FUNCTION OF THE NAO

Day-to-day variability and the NAO.

Cross plot NAO and Day-to Day variability. Monthly means, all months.

Cross plot NAO and day-to day variability. Monthly means over the period of low solar activity, July 2007 – November 2009. R = 42%.

Cross plot NAO and Day-to Day variability. Monthly means, October 2007 – September 2008. R = 89%.

Key to Interpretation of AVHRR Infra-red Images

Each s	heet re	cords the observations	of cloud m	orphology for the month, to	gether with	n other dat	a in this fo	rmat:								
YEAR	DATE	EUCLIDEAN DISTANCE	CLUSTER	SATELLITE OBSERVATIONS	METE	OROLOGIC	AL DATA F	ROM	FEATURES	ON DAILY T	EMPERA	TURES	DIFFERENCE	PRESENCE O	F WEATH	ER SYSTEM
		BETWEEN DAYS	NUMBER	(AVHRR Channel 4)	ONSHORE	SPITSBERG	θ <mark>ΕΝ (</mark> NY-Ã.	LESUND,			PLOTS			WITHIN ARE	A (with d	irection of
		(a measure of day-to-			99910). V	Vind direc	tion at 06.0	00, 12.00,							origin)	
		day variability)			18.00	0, & Mean	Velocity (I	m/s)								
					DD06	DD12	DD18	FFM	REGIONAL	REGIONAL	LOCAL	LOCAL	ANOMALY	SYSTEM &	CLOUD	SYSTEM &
									HIGH	LOW	HIGH	LOW	IN	VARIABILITY	STREETS	VARIABILITY
				^									MARGINAL	HIGH		LOW
				l'									ICE ZONE			
				Ą												
			Description	of observations of cloud me	orphology											
			made from	AVHRR data (www.sat.dund	lee.ac.uk).											
			Brown text	indicates a counted weathe	r system;											
			blue text in	ndicates a feature, such a clo	ud streets											
			indicating	a northerly airflow.												
				ABBREVIATIONS												
			Spl	Spiral cloud												
_			Com	Comma cloud												
_			СМ	Extensive cloud mass witho	ut structure											
_			F	Featureless cloud												
_			Anv	Anvil-shaped cloud												
_			CS	Cloud streets												
_				LOCATIONS												
			Denoted by	y Lat & Long without degree	sign											
				ALTITUDE												
			Indicat	tion of two cloud levels in <mark>re</mark>	d text											
				SVALBARD = SPITSBERGEN												

NEXT

Example of Interpretation Sheet - AVHRR Infra-red Images

The results of examination of these images are recorded on sheets such as the one below. An Excel file is available, which contains one sheet per month for July 2004 to February 2005 and July 2008 to February 2009. The coloured plots at the base are in threes and represent two successive days and the difference field. The days selected are shaded in the dates column and represent days with significant cyclone activity.

DE	CEMB	ER 20	08			99910	NY-Ä	LESU	ND Dec 2	0									
YE	AR DA	ATE D	UC. DIST.	CLUS. NO.	SATELLITE OBSERVATIONS (AVHRR Channel 4)	DD06	DD12	DD18	FFM	REG. HIGH	REG. LOW	loc. High	LOC. LOW	MIZ	SYST.	c.s	SYST. LOW VAR		
20	. 800	1	13	15	04.34: F/Variable southeast of ice edge trend NE-SW; 118.53: F/Variable/Clr	283	280	152	3.4										
20	008 3	2	15	15	02.43: Variable cloud; 04.23: Minor Anv in F 78N2W trend NW-SE; 09.10: Anv dispersed; 18.30: Variable cloud; 21.49: System(?) extending east from Greenland 78N	128	139	124	4.1						N			Same	
20	800	3	11	15	02.33: CM (?Anv) covers area; 12.27: ?Spl 78N0; 21.25: Variable cloud trend NE-SW	124	157	234	5.2									system	
20	008 4	4	18	15	04.03: CM Anv(?) 78N0, extends NW; 10.37: Variable cloud north of 78N, Clr to south	152	266	274	3.0						Ν				
20	. 800	5	10	15	02.11: F west of 0, Clr/F to east; 08.48: Minor Spl 77N0; 12.06: F/Clr	124	251	149	2.2										
20	008 0	6	10	15	02.01: F/Clr; 10.27: F/minor CS trend N-S; 11.56: Variable cloud; 18.37: Variable/Clr; ice edge 80N0 to 77N10W; 21.56: Maj system to 72N16W	153	293	104	2.9										
20	008 :	7	11	15	03.31: F and Clr along ice edge; 10.00: Variable cloud	157	131	108	1.6										
20	800	8	16	15	01.40: Variable cloud/Clr, maj. Spl 68N0 to 74N; 05.01 Spl 70N0 cloud to 75N; 09.40: Spl 70N1W cloud to 76N0; 19.30: Spl 70N2W cloud to 76N 10E	269	130	124	3.1						s				
20	908 9	9	12	15	01.29: Spl dispersing; mottled cloud to ice edge; 10.57: CS between Svalbard and ice edge; 20.46: Maj. Anv from south over Greenland assoc. cloud to 0	258	154	141	3.2						s			Same	
20	008 1	.0	12	15	01.18: assoc. cloud to 10E; 04.40: Any moved east 80N5W covers area; 11.14: Any moved east 78N 20E trend NE-SW; 20.23: mostly Clr	141	161	174	7.6						s			system	
20	008 1	.1	23	12	02.49: F/Clr; 09.25: Variable cloud to 75N; 11.04: System from south to 75N trend E-W, F further north; 12.44: System to 77N; 18.21:	183	257	292	5.8						s				
20	008 1	2	11	12	04.19:System dispersing over Svalbard, Spl in Arctic; 09.47: Variable cloud, ?assoc. with Anv 75N trend E-W; 19.37: Cloud band	136	230	120	2.0								?		
20	008 1	.3	8	12	02.28: moved north replaced by cloud stream Svalbard to south (Anv?), Clr over most of area; 10.43: Maj. Anv 80N40E extends to Svalbard: 12.23: Maj. Anvto 72N from couth	130	104	102	2.4								S/P		
20	008 1	4	6	12	02.18: Variable cloud to 75N/Clr/F to ice edge; 10.33: Anv 73N12W; 12.12:Anv to 75N/W of 1W, F over area at 76N, F/Clr to north;	288	254	248	6.2										
20	008 1	.5	11	12	22.10 system to west of low trend A-S 02.07: cloud assoc, with system now over area (Anv?)/Clr; 10.18: Variable cloud assoc. with system; 21.47: Variable cloud north of	126	130	107	6.0								S/P		
-		_			76N, maj Anv 70N5E to 74N 01.57: Mai. Anv moved north extends to N78N at 0 and south to Norway also second Anv 79N20W extends east to Svalbard: 06.34:													Cauth	
20	008 1	.6	13	12	First Anv 76N10W extends southeast over most of area; 11.51: First Anv rotated 76N0 tail to east 19.44:First Anv straddling 80N	122	94	103	11.0								S&W	dominant	
20	008 1	.7	10	12	01.40: Variable cloud/cit, Spi /SN14W; 12.50: AnV /SN2E, Cit of F to horth; 13.21:AnV/Spi to /SN 19.21: Spi assoc. with AnV /4N/W; 21.00: Spi cloud to 80N	167	323	134	3.4								S	Same	
20	008 1	.8	13	12	01.35:cloud pattern remains; 09.51: Spi over Svalbard assoc. with Anv to east (from south), second system west from Svalbard trend E- W; 20.37: Unchanged	124	287	115	4.8								s	system	Same
20	008 1	.9	21	12	03.06:System north of 77N remains trend E-W, CIr to south; 09.41: Systems dispersing, new Anv 74N0 trend E-W; 13.00: Variable cloud over whole area; 18.35: F/CS from Svalbard to ice edge trend N-S	123	271	112	5.3						N				system
20	08 2	0	18	15	02.55:F/CS, trend N-S; 06.38: minor Anv 78NSE; 11.41: Variable cloud; 21.31: Variable cloud, ?CS/CIr 02.45: CS trand N-S; 10.50: CC/Ir	110	123	132	8.2										
20	08 2	2	10	15	02.34: Variable C5; 19.05: F/Clr trend NW-SE; 22.25: Maj. Any with assoc. Spl over Iceland cloud to 73N20W	154	267	161	1.2										
	2	з	20	15	05.44: Maj. Anv remains to west; 10.32: Maj. Anv in area, F/CS in northeast; 12.11:Anv/System moved northeast over area trend NW-	125	119	132	2.6						s				
20	08 2	4	13	15	SE; 18.42: Any covers area 02.13: Any/system north of 80N 'tail' covers area; 10.28: New Any from south 73N5W, cloud to 76N, Clr to northeast; 11.46: Any cloud to 78N: 13.48: Any covers over most of area; 21.38: Any moved northeast to Svalbard	111	104	108	13.3								s	Same	
20	08 2	5	14	15	02.03: Spl assoc. with Anv 76N1W, Clr/F to southeast; 05.23: Spl to 78N6E; 11.25: Variable cloud, F/Clr south of 79N	177	249	220	7.4								s	system	
20	08 2	6	24	15	01.52: Variable cloud/F; 13.28: F; 19.12: F/CS trend NW-SE from ice edge	285	314	310	9.9										
20	08 2	7	13	15	01.41:C5; 12.18: System to 78N100W with assoc. cloud over area	314	6	120	7.0										
20	08 2	9	8	15	01.20; CS under band of cloud; 11.16; Mottled cloud under dispersing band of cloud south of 76N	-999	-999	-999	6.0				NW						
20	08 3	0	23	5	01.10: CS to ice edge trend N-S; 11.09: CS over whole area to ice edge trend N-S	20	148	330	4.8										
20	08 3	1	14	5	00.59:CS to ice edge trend N-S; 05.35: CS trend NW-SE	338	325	340	5.9										

JULY 2004					
VARIABILITY		WEATHER	R SYSTEMS		
9/1/	System	System	System	Cloud	No System
5/ 14	(South)	(North)	(Other)	Streets	NU System
>15	8	0	1	0	5
<=15	-1	-1	0	0	
AUGUST 2004					
ARIABILITY		WEATHER	SYSTEMS		
0/10	System	System	System	Cloud	No. C. Marcine
9/10	(South)	(North)	(Other)	Streets	No System
>15	7	0	1	3	1
<=15	-1	-1	-1	0	
SEPTEMBER 20	004				
ARIABILITY		WEATHER	SYSTEMS		
	System	System	System	Cloud	
4/4	(South)	(North)	(Other)	Streets	No System
>15	2	2	0	1	0
<=15	-1	0	0	0	
OCTOBER 200	4				
VARIABILITY	•	WFATHER	SYSTEMS		
	System	System	System	Cloud	
4/5	(South)	(North)	(Other)	Streets	No System
>15	4	1	0	0	1
<=15	-1	-3	0	0	_
		•	-	•	•
NOVEMBER 20	JU4	A (F A T) · · · · ·	CHETENAG		1
/ARIABILITY	6	WEATHER	SYSTEMS		
7/10	System	System	System	Cloud	No System
>15	(South)	(North)	(Other)	Streets	1
<=15	0	-1	-1	-13	1
	~	- <u>-</u>	×	15	
DECEMBER 20	04				1
/ARIABILITY		WEATHER	SYSTEMS	1	
	System	System	System	Cloud	No System
19/20	(South)	(North)	(Other)	Streets	,
>15	_1	2	4	8	1
×-12	-1	U	U	-1	
ANUARY 200	5				
VARIABILITY		WEATHER	SYSTEMS		
13/16	System	System	System	Cloud	No System
-0, 10	(South)	(North)	(Other)	Streets	ito system
>15	7	1	3	2	3
	-1	0	0	-4	
<=15					
<=15 FEBRUARY 200	05				
<=15 FEBRUARY 200 VARIABILITY	05	WEATHER	SYSTEMS		
<=15 FEBRUARY 200 VARIABILITY	05 System	WEATHEF System	SYSTEMS System	Cloud	
<=15 FEBRUARY 200 VARIABILITY 9/17	05 System (South)	WEATHER System (North)	SYSTEMS System (Other)	Cloud Streets	No System
<=15 FEBRUARY 200 VARIABILITY 9/17 >15	System (South) 3	WEATHER System (North) 1	SYSTEMS System (Other) 3	Cloud Streets 6	No System 8

JULY 2008					
VARIABILITY		WEATHER	R SYSTEMS		
0/0	System	System	System	Cloud	N.a. Custana
0/0	(South)	(North)	(Other)	Streets	No System
>15	0	0	0	0	0
<=15	-2	-1	0	0	
AUGUST 2008					
VARIABILITY		WEATHER	R SYSTEMS		
1/1	System	System	System	Cloud	No Sustem
1/1	(South)	(North)	(Other)	Streets	NO System
>15	0	1	0	0	0
<=15	-1	-4	0	0	
SEPTEMBER 20	008				
VARIABILITY		WEATHER	R SYSTEMS		
2/4	System	System	System	Cloud	N.a. Custana
3/4	(South)	(North)	(Other)	Streets	NO System
>15	1	0	2	1	0
<=15	-1	-2	2	0	
OCTOBER 2008	8				
VARIABILITY		WEATHER	R SYSTEMS		
F /7	System	System	System	Cloud	N.a. Custana
5/7	(South)	(North)	(Other)	Streets	No System
>15	5	0	0	2	2
<=15	-1	0	0	0	
NOVEMBER 20	008				
VARIABILITY		WEATHER	R SYSTEMS		
o./11	System	System	System	Cloud	
8/11	(South)	(North)	(Other)	Streets	No System
>15	2	4	1	5	3
<=15	-1	0	-1	-6	
DECEMBER 20	08				
VARIABILITY		WEATHER	R SYSTEMS		
E /0	System	System	System	Cloud	N.C.
5/8	, (South)	, (North)	, (Other)	Streets	No System
>15	4	2	0	5	3
<=15	-3	-1	-1	-6	
	9				
VARIABILITY		WEATHER	SYSTEMS		
- 1 -	System	System	System	Cloud	
7/12	(South)	(North)	(Other)	Streets	No System
>15	6	0	0	9	4
<=15	-2	-1	-3	-6	
	0				
	13	WEATHER	SYSTEMS		
	System	System	System	Cloud	-
	System	(North)	(Other)	Streets	No System
3/5	(South)				
<mark>3/5</mark> >15	(South) 0	2	1	3	2
3/5 >15 <=15	(South) 0 -1	2 0	1 -1	3 -11	2

TOTAL SYSTEM	/IS = 79			
>15 = 61	S	39	CS	27
	N	7		
	?	15		
=<15 = 18	S	10	CS	18
	N	6		
	?	2		

-				
TOTAL SYSTEM	/IS = 62			
>15 = 31	S	18	CS	22
	N	9		
	?	4		
=<15 = 29	S	12	CS	29
	N	9		
	?	8		