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Abstract： 13 

The paper presents a MGPD (Multivariate General Pareto Distribution) method 14 

and builds the solving method of MGPD by a Monte Carlo simulation for the marine 15 

environmental extreme value parameters. The simulation method is proved to be 16 

feasible by analyzing the joint probability of wave weight and its concomitant wind 17 

from a hydrological station in SCS (South China Sea). The MGPD is the natural 18 

distribution of the MPOT (Multivariate Peaks Over Threshold) sampling method, and 19 

has the extreme value theory background. The existing dependence function can be 20 

used in the MGPD, so it may describe more variables which have different dependence 21 

relationships. The MGPD method improves the efficiency of the extremes in raw data. 22 

For the wind and the concomitant wave in 23 years (1960-1982), the number of the 23 

wind and wave selected is averaged 19 each year. Finally, by using the CP (Conditional  24 

Probability), a Monte Carlo Simulation method based on the MGPD is adopted in case 25 

of the return period of base shear. 26 

Key Words： MPOT, extreme wave, extreme value theory, Monte Carlo 27 

1. Introduction 28 

Statistical modeling of extreme values (EV) plays a crucial role in the design and 29 
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risk evaluation of ocean engineering. Problems concerning ocean environmental 1 

extremes are often multivariate in character. An example is the ocean environments 2 

(including waves, wind and currents) are all contributing to the forces experienced by 3 

offshore systems during the typhoon. So the severity of such a typhoon event may be 4 

described by a function of wind speed peak and concomitant wave height, currents, etc.  5 

(or switch their order). When the force of a system is dominated by both wind and 6 

concomitant wave it may be sufficient to employ the 50-year return wave and 50-year 7 

return wind as a design criterion. However, the 50-year return wind and 50-year return 8 

wave are frequently not occurred at the same time. Therefore, any simple analysis 9 

assuming a perfect correlation between the wind and waves is likely to overestimate the 10 

design value (Morton and Bowers, 1996). So, analyzing the encounter probability 11 

among the ocean environments by the multivariate distribution can offer useful 12 

reference to evaluate project′s safety and cost.  13 

In Multivariate EV theory, two sampling methods, the Block Maxima method and 14 

the POT (Peaks Over Thresholds) method have been developed. They correspond 15 

respectively to two natural distributions, MGEVD (Multivariate Generalized Extreme 16 

Value Distribution) and MGPD. MGEVD is the natural distribution of the block 17 

maxima of all components. A typical example is that block is a year and the block 18 

maxima are the Annual Maxima Series (AMS). And MGEVD have developed 19 

extensively during the last decades too. This is witnessed by several literatures (Morton 20 

and Bowers, 1996; Sheng, 2001; YANG and ZHANG, 2013); MGPD should be the 21 

theoretical distribution of MPOT method, in which the sample includes all extreme 22 

values which are larger than a suitable threshold. MPOT improves the efficiency of the 23 

extremes in raw data, and is superior to other methods (such as the annual maximum, 24 

Luo and Zhu, 2014). Rootzén and Tajvidi (2006) suggest, based on the research by 25 

Tajvidi (1996), that MGPD should be characterized by the following couple properties: 26 

(i) exceedances (of suitably coordinated levels) asymptotically have a MGPD if and 27 

only if componentwise maxima asymptotically are EVD, (ii) the MGPD is the only one 28 



 

 

which is preserved under (a suitably coordinated) change of exceedance levels. MPOT 1 

method has a high utilization rate of raw data. Besides, Luo et al. (2012) selected 20 or 2 

30-year 6 samples from about 60-year wave raw data arbitrarily. The 6 samples were 3 

analyzed by POT and AMS respectively, and the result shows that the return levels with 4 

the POT method are closer to the return levels from 60-year wave raw data and have 5 

smaller fluctuations than AMS. Because the POT method can get as much extreme 6 

information as possible from raw data, its result may be more stable. MGPD is widely 7 

used recently, Morton and Bowers (1996) are based on the response function with wave 8 

and wind speed of anchoring semi-submersible platforms enabling to analyze extreme 9 

anchorage force and corresponding wave height and wind speed by using logical 10 

extreme value distribution. They didn’t use the natural distribution of the MPOT 11 

method - MGPD, to fitting samples but bivariate extreme value distribution to fitting 12 

the MPOT samples. Coles and Tawn (1994) using the same mind. MGPD theory has 13 

improved greatly in recent years, but the definition of MGPD still needs further 14 

research. Bivariate threshold methods were developed by Joe et al. (1992) and Smith 15 

(1994) based on point process theory. MGPD has been the focus of research and the 16 

detail about MGPD can be found in Rootzén and Tajvidi (2005), Tajvidi (1996), 17 

Beirlant et al. (2005) and Falk et al. (2004).  18 

However, due to difficulties of MGPD in solving procedure, (in general, with the 19 

dimension increased, the calculated quantity and complexity rapidly do), the 20 

application of MGPD in ocean engineering has been restricted. Monte Carlo simulation 21 

is feasible to solve these problems because it only changes inner product operation and 22 

the complexity of algorithm doesn't increase with dimension decreases. Liu et al. (1990) 23 

use the Monte Carlo simulation for the design of offshore platforms, and practical 24 

examples prove its fast calculation speed and high precision in Compound Extreme 25 

Value Distribution. Philippe (2000) presented a new parameter estimation method of 26 

bivariate extreme value distribution by using Monte Carlo simulation. Shi (1999) 27 

presents a Monte Carlo method from a simple trivariate nested logistic model. 28 



 

 

Stephenson (2003) gives methods for simulating from symmetric and asymmetric 1 

versions of the multivariate logistic distribution, and compares many the Monte Carlo 2 

simulation methods of multi-dimensional extreme distribution. 3 

We develop a procedure to handle the application of MGPD in marine engineering 4 

design. The paper uses the Monte Carlo simulation to solve the MGPD equation. The 5 

Monte Carlo method is introduced in section 2. Fundamental to the application of 6 

MGPD is the choice of the optimal joint threshold and the estimation of the joint density. 7 

These aspects included in an example are discussed in section 3. Finally, the advantage 8 

of MGPD and its Monte Carlo simulation are outlined. 9 

2. MONTE CARLO SIMULATION OF MGPD 10 

2.1  MGPD THEORY 11 

It is well known that MGEVD (Multivariate Generalized Extreme Value 12 

Distributions) arise, like in the univariate case, as the limiting distributions of suitably 13 

scaled componentwise maxima of independent and identically distributed random 14 

vectors. If for independent 1,..., nX X  following F , there exist vectors , na ,15 

, 0d

n nb a R , such that 16 

1,...,max ( )
( ) ( )

i n i n nn

n n

n

X b
P F a x b G x

a

 
 

   
 

                     (1) 17 

where ( )G x  is a MGEVD, and F  is in the domain of attraction of G . We note 18 

this by ( )F D G . 19 

The MGPD is based on the extreme value theory and has been widely used in 20 

many fields. In one dimension, Generalized Extreme Value distribution (GEVD) is the 21 

theoretical distribution of all variation block maxima. GPD describes the properties of 22 

extreme of all variation over threshold after declustering, so called POT distribution. 23 

Based on the relationship of GPD and GEVD: ( ) 1 log( ( )), log( ( )) 1H x G x G x    , 24 

the distribution function of MGPD can be deduced: 25 
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where 1( ,..., )dx x x U  , U is a neighborhood of zero in the negative quadrant3 

( ,0)d , D is the Pickands dependence function in the unit simplex 
1dR 

 on the 4 

domain of definition, 
1

{ [0, ) | 1}
d

d

d i

i

R x x


    ; 1( , , )nG x x  is a MGEVD 5 

function which marginal distribution is negative exponential distribution (detail in 6 

René Michel, 2007). The MGPD can simply use existing multivariate extreme 7 

dependence function due to it is deduced from MGEV, greatly enriched the expression 8 

of correlation of MGPD. MGPD has a variety of different types of distribution 9 

functions (Coles et al., 1991) varying from Pickands dependence function eq. (3). 10 

Logistic dependence function is ease to use and has the favorable statistical properties, 11 

and widely used to hydrology, financial and other fields.
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where r is the correlation parameter of dependence function and r>1. ix  in the interval 15 

(-1, 0), are variables of standardization. The Bivariate Logistic GPD density function is 16 

1 1/ 2( , ) ( 1)( ) [( ) ( ) ] 0, 0r r r rW
w x y r xy x y x y

x y

 
       
 

               (5) 17 

The correlation parameter r can be evaluated by step by step method: evaluate by 18 

using bivariate extreme value distribution firstly then introduce to distribution 19 

function; or be evaluated by global method, estimate the parameter by using the 20 

maximum likelihood for the density function w . The global method evaluated results 21 

more reliable due to the final function form are to be concerned, but the processes of 22 

evaluate are more complex. The maximum-likelihood function is 23 
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2.2  SIMULATION METHOD 2 

The Monte Carlo Simulation method of multivariate distribution is relatively 3 

complex, because of generating multivariate random and relevant vectors involved. By 4 

a transformation method, the variables become independence. And then, every variable 5 

is generated a random vector. Finally by the inverse transformation, the random 6 

vectors of the multivariate distribution are obtained. The simulation method was 7 

suggested by René (2007). 8 

Using polar coordinate to demonstrate the simulated method of MGPD better: 9 

11
1 1 1 1

1 1

( ,..., ) ( ,..., , ... ) ( ,..., , )
... ...

d
p d d d

d d

xx
T x x x x z z c

x x x x


   

   
,   (7) 10 

where Tp change vector 1( ,..., )dx x  into polar coordinate. 1 dx x C  and 11 

1 1( / , , / )dx x  Z C C  are radial component and angular component, respectively. 12 

They called Pickands polar coordinate. 13 

In the Pickands polar coordinate, ( )W X presents different properties. Presume 14 

that 1( ,..., )dX X  follow multivariate generalized Pareto distribution ( )W X  and its 15 

Pickands dependence function D  exists d order differential, define the Pickands 16 

density of H(X) 17 
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                                  (8) 18 

Presume  
1

0
dR

z dz 


   and constant 0 0c   existing in a neighborhood of 19 

zero, then the simulation method of MGPD is: 1) generate uniform random numbers on 20 

unit simplex 1dR  ; 2) generate random vector  1, dz z  based on the density function 21 

( )
( )

z
f z




  of 1 1( , , )dz z  Z  in the Pickands polar coordinate combined with 22 

Acceptance-Rejection Method; 3) generate uniform random numbers on  0 ,0c ; and 4) 23 



 

 

calculate vector  1

1 1 1
, , ,

d

d ii
cz cz c c z



 
    which is random vector of satisfy the 1 

multivariate over threshold distribution. 2 

The 0c  above is the joint threshold in MGPD method. This paper determines the 3 

threshold by using the principle on Coles and Tawn (1994). 4 

2.3  JOINT PROBABILITY DISTRIBUTION 5 

With the development of offshore engineering, joint probability study for extreme 6 

sea environments such as wind, waves, tides and streams is beginning to receive much 7 

more attention. But for the selection of design criteria for marine structures, a clear 8 

standard about the joint probability has not been found. API (American Petroleum 9 

Institute), DNV (Det Norske Veritas) and so on didn’t propose an explicit method for 10 

joint variables although they made some relevant rules. API RP2A-LRFD (1995) 11 

suggests three options, one of which is “Any ‘reasonable’ combination of wind speed, 12 

wave height, and current speed that results in the 100-year return period combined 13 

platform load, e.g. base shear or base overturning moment”, but does not provide 14 

details of how to determine the appropriate extreme conditions in a multivariate 15 

environment. 16 

The joint the return period of two variables need to consider the probability of 17 

encounter between variables. In other word, 50-years return wave may not counter 18 

50-year return wind speed. CP can represent the probability of encounter between 19 

extreme value of main marine environmental elements and extreme value of its 20 

accompanied marine environmental elements. So, it is critical to use CP to describe the 21 

probability of their joint together and analyze the effect of all kinds of marine 22 

environmental elements to the engineering. 23 

The joint distribution of bivariate Pareto distribution function W(x, y) is 24 

( , ) ( , )W x y Pr X x Y y   . 25 

And ( )xW x  and ( )yW y are marginal distribution of x and y respectively. Conditional 26 

extreme value distribution can be 27 
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CP 2: 
( ) ( , )( , )

( | )
( ) 1 ( )

X

Y

W x W x yPr X x Y y
Pr X x Y y

Pr Y y W y

 
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 
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CP 3: 
( ) ( , )( , )

( | )
( ) ( )

Y

Y

W y W x yPr X x Y y
Pr X x Y y

Pr Y y W y

 
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
           (11) 3 

CP 4: 
( , ) ( , )

( | )
( ) ( )Y

Pr X x Y y W x y
Pr X x Y y

Pr Y y W y

 
   


                  (12) 4 

Other four CP distributions can be deduced by swapping two variables. 5 

3. CASE 6 

The ocean environment is multivariate with waves, wind and currents all 7 

contributing to the forces experienced by marine structures. Any simple assumes that 8 

there is either perfect dependence or independence among them are unreasonable for a 9 

design criterion. The section combined with CP for analysis of the design criteria 10 

(taking the 50-year return value as an example) about base shear of a plat. Assume the 11 

function of base shear and wind velocity and wave height for a certain type of 12 

structure is  13 

2 2, 0.44 20.18Z(x y)= x y                                         (13) 14 

where x and y are wind speed and wave height, with their units m/s and m 15 

respectively. Z represents base shear and the unit is KN . 16 

3.1  THE DATA 17 

The data are a sequence of 23 (1960-1982) years of wave height records and 18 

synchronous wind speed records, which was recorded four times a day from an ocean 19 

hydrological station (ZL) near 22.6
o
N, 115.5

o
E (fig. 1) in SCS, which is a typical 20 

typhoon sea area. In the raw data, the maximum winds reached 40m/s and the 21 

maximum wave height is 8.50m. Due to restrictions with observation technologies at 22 

the time, the wind speed and the wave height were kept only the integer and one 23 

decimal place respectively. This will influence the level of precision of extreme value, 24 

so in fig. 2 (a), the all the wind values in the range 0.4 and 0.6 (standard unit) show the 25 



 

 

same probability.  1 

3.2  DECLUSTERING  2 

The sample of MPOT method is from the extreme value of blocks, so the first 3 

stage in a multivariate extreme value analysis is to identify a set of declustered events. 4 

For satisfying independent random distribution assumption, the principle of 5 

declustering is keeping samples independence. In SCS, typhoon occurs frequently and 6 

causes almost all extreme wind speed and wave height. Generally the influence of 7 

typhoon for one point may last several days or one week. Exploratory analysis 8 

suggested that a window corresponding to five days is appropriate. But, if the interval 9 

between the adjacent extremes is less than 2 days, then we need to delete smaller values 10 

from the adjacent extremes in order to keep independence.  11 

After declustering, the block maxima should be extracted as extreme values. 12 

Generally, in a bivariate analysis of wave heights and wind speeds, there are four 13 

definitions of “maximum” data set in a certain block: (1) maximum wave height and 14 

maximum wind speed in a block; (2) maximum wave height and its “concomitant” 15 

wind speed in a block; (3) maximum wind velocity and its “concomitant” wave height 16 

in a block; Liu et al. (2002) suggests that definition (1) is the simplest one, but it may 17 

lead to over-conservative results for they are not observed at the same time; for 18 

definitions (2) and (3), only one of the extreme observations is selected, so we have to 19 

consider which has a major influence for offshore structures. For example, if wave load 20 

has a major influence on a certain structure, definition (2) would be a good choice. In 21 

case that we do not know which load has a dominating influence on a structure, we 22 

usually make extreme value analysis on definitions (2) and (3) respectively, and finally 23 

choose the more dangerous one. 24 

In the present study, the case is used solely for testing the validity of the simulation 25 

method of MGPD and giving an example of its application. So definition (3) is an 26 

arbitrary choice. That is wind speed is the “dominating” variable. After declustering 27 

according to the requirements of independence, 1436 groups of extreme wind speed 28 



 

 

and corresponding wave height are selected. 1 

3.3  MARGINAL TRANSFORMATION AND JOINT 2 

THRESHOLD 3 

In section 2.1, the variables of MGPD must be in a neighborhood of zero in the 4 

negative quadrant. By a suitable marginal transformation, we can transfer a margin into 5 

a uniform margin in a neighborhood of zero.  6 

After many experiments, it is found that marginal distributions of extreme wind 7 

speeds and wave heights in 1436 data sets can be described by GEVD:  8 

1x -
F(x)= P(X < x)= exp -[1- ( )] , 0

 


 
 

 
                            (14), 9 

where ,  and  are three variables of GEVD. They are estimated by using maximum 10 

likelihood estimate. This is an approach of estimation suggested in Section 5.1 of 11 

Beirlant et al. (2005) and Section 3.3 of Coles (2001). Fig. 2 shows the probability plot 12 

and probability plots (including the 95% confidence intervals) of marginal distribution 13 

before fitting MGPD.  14 

    To standardize the margins, the marginal distribution of MGPD is negative 15 

exponential distribution. According to Taylor expansion, we get 16 

( ) (1 ( ) 1) ( ) 1i i ilogF x log F x F x                                             (15), 17 

where ( )iF x  is GEVD of variable ( 1,2)i i  ,which represent wind and wave 18 

respectively (detail in René Michel, 2007). 19 

The dependence models between extreme variables have been suggested: Logistic, 20 

Bilogistic and Dirichlet. However, it appears that the choice of dependence model is not 21 

usually critical to the accuracy of the final model (Morton and Bowers, 1996). So the 22 

simple bivariate Logistic GPD was selected. The MGPD model of the paper is based on 23 

multivariate extreme value distribution, the joint threshold can be calculated by the 24 

method in section 2.2. The joint threshold is 0 0.7c   , and there are 450 groups of 25 

combination of wind speed and wave height over 𝑐0. Fig. 3 (a) shows that the samples 26 



 

 

of over threshold value. In the left subfigure, 0 0.7c    is a curve, and the right side of 1 

the curve are over threshold value. In the right subfigure 0 0.7c    is a line, the 2 

top-right side of the line are over threshold value of the data converted.  3 

The correlation parameter r of dependence function is estimated by the 4 

maximum-likelihood method, and the joint distribution is showed in Fig. 3 (b). 5 

3.4  COMPARISON OF STOCHASTIC SIMULATION RESULTS  6 

For the annual maximum of wind speed and wave height, Pearson type Ⅲ 7 

distribution is used to obtain return period values of wind speed and wave height in 8 

one-dimensional (Fig. 4). The Pearson type Ⅲ distribution is 9 

1( ) [ ( )]
( )

x

F(x)= P(X < x)= x exp x dx



  






  

                        (16) 10 

Fig. 5 shows the data of stochastic simulation by N=50000 and N=100000. Due to 11 

the accuracy of the raw data, the 40m/s wind event is so much that they can’t be fitted 12 

by MGPD well. So the simulation results and the measurement points are not overlap 13 

completely for the 40m/s wind event in Fig. 5. But the simulation results are in basic 14 

conformity with the actual situation, and this represents that the MGPD simulation 15 

method is worked. The scatter diagrams show the results directly, they need further 16 

quantitative analysis to show the differences of them objectively. A couple of CP are to 17 

be used to the paper: 1) ( | )P H h V v   and 4) ( | )P H h V v   which means 1) the 18 

probability of the wave height over a stander h  under the wind speed over the stander 19 

v  and 4) the probability of the wave height less than a stander h  under the wind speed 20 

less than the stander v , respectively. Both of them are actually responding the 21 

probability of extreme value wave height and its corresponding wind speed joint occur. 22 

Fig. 6 represent calculating the CP ( | )P H h V v   by group 7.99h m and23 

37 /v m s . Using the Monte Carlo method calculate its CP by the result of simulation 24 

based on the definition of conditional distribution. As it’s showed in Fig. 6, the 25 

difference value of the simulation and the model are related to the simulation times N. 26 



 

 

Relative difference value has been reduced with the increase of simulation times. When 1 

the simulation times up to 62 10 , the relative error value of simulation results and 2 

calculation results is 0.1%, shows that the simulation results error is acceptable. 3 

Based on the results by simulation times 2e6, Tab. 2 and Tab. 3 show the 4 

calculation results of two different CP. The tables represent 5 groups’ calculation and 5 

stochastic simulation results of CP 1 and 4 on different combination of wave height and 6 

wind speed. The two results are closely. For instance, the calculated result of the 7 

probability of wave height of the design frequency more than 10% encounter wind 8 

speed of the design frequency more than 10% is 94.67% where stochastic simulation 9 

result is 94.44%, the relate error only 0.24%. The calculated result of the probability of 10 

wave height of the design frequency more than 2% encounter wind speed of the design 11 

frequency more than 10% is 40.05% where stochastic simulation result is 38.25%, the 12 

relate error only 4.49%. Synthesizing the appearing probability of extreme sea 13 

environment is to the benefit of find a balance between the engineering investment and 14 

risk, and can provide the scientific basis for the risk pre-estimates. 15 

3.5  ANALYSIS OF RETURN VALUE 16 

For ‘reasonable’ combination of wind speed and wave height, the method of 17 

analyzing the multivariate extreme environment is offered by CP. Because wind speed 18 

is the “dominating” variable in the paper, we use CP 1: ( | )P H h V v   as a standard. 19 

The return value of the base shear follows the couple principles: (1) if 20 

50 50( | )P H h V v  >98%, the 50-year base shear is the combination of 50-year wind 21 

speed and 50-year wave height; (2) if 50 50( | )P H h V v  <98%, the 50-year base 22 

shear is the combination of 50-year wind speed and the wave height corresponding to 23 

50 50( | )P H h V v  =98%. The value 98% was selected only to show how to 24 

determine design criterion by the CP, and the paper do not analyze whether the value 25 

is appropriate for the marine structure. In the method, it can be avoided that the 26 

encounter probability of wind speed and wave height is smaller. 27 



 

 

The result of CP 1: ( | )P H h V v   is in tab. 2. We can know that the estimates 1 

of 50-year wind speed and wave height are 43.41m/s and 9.13m respectively, and 2 

their CP1 is 91.58. According to the above principles, this is meeting the principle (2). 3 

Using the Monte Carlo method, we can get 50( 9.01| )P H V v  =98%. So the 4 

50-year base shear is 43.41,9.01Z( )=2467.4KN. 5 

4. Discussion and Conclusions 6 

4.1 NEW POSSIBILITIES BASED ON MONTE CARLO SIMULATION  7 

The design sea states for a particular location are often used in design and 8 

assessment of coastal and ocean engineering. These design sea states might be jointly 9 

decided by multivariate ocean environment factors, such as combinations of wave 10 

conditions and water levels with given joint return periods. A potentially better 11 

approach is possible based on Monte Carlo simulation of a wide range of ocean 12 

environment factors, from which the structure variables in different return periods can 13 

be determined directly. Once the long-term (such as thousands of years) sea state data 14 

has been simulated, several structure variables or ocean environment factors can be 15 

assessed quite quickly by the law of large numbers. If the raw data is enough, the 16 

MGPD can be used in extreme analysis based on 3 or more-variables. In this case, 17 

Monte Carlo simulation becomes a must-have tool, because it is difficult to solve the 18 

high-dimension MGPD and get the structure variables in different return periods. 19 

4.2 CONCLUSIONS 20 

The MGPD is the nature distribution of MPOT method, which can dig up more 21 

extreme information from the raw data. The model based on the extreme value theory 22 

which is well-founded and the intrinsic properties of all extreme variables are into 23 

consideration. The MGPD is a useful basis for extreme value analysis of the offshore 24 

environment. The Monte Carlo simulation of MGPD provides estimates of the 25 

50-year base shear, taking into account the conditional probability, which represents 26 
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the encounter probability between variables such as wind speed and wave height. CP1 1 

includes the encounter probability of extreme events and provides the theory basis for 2 

finding the best balance point between engineering cost and risk. The analysis of the 3 

return mooring forces at SCS illustrates the practicalities of Monte Carlo simulation 4 

of MGPD.  5 
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 5 

Tab.1 parameters of marginal distribution 6 

       

Wind speed 0.362 2.868 15.403 

Wave height 0.008 0.861 1.857 

 7 

Tab. 2 comparision of the results of CP 1 8 

RP (year) 5 10 20 50 100 

RP 
    V(m/s)    

H(m) 

26.38 37 40.01 43.41 45.67 

c s c s c s c s c s 

5 4.65 85.71 85.59 99.89 100.0 99.97 100.0 99.99 100.0 100.0 100.0 

10 7.08 11.38 11.41 94.67 94.44 98.72 99.03 99.75 98.95 99.92 97.62 

20 7.99 4.05 4.14 80.10 80.02 94.93 95.79 99.02 98.95 99.68 97.62 

50 9.13 1.13 1.11 40.05 38.25 75.42 73.14 94.75 91.58 98.26 97.62 

100 9.98 0.45 0.49 17.83 18.91 45.36 48.22 83.08 80.00 94.15 92.86 

RP: return periods, a: calculation results by analytic solution, s: simulation results 9 

 10 

Tab. 3 comparision of the results of CP 4 11 

RP (year) 5 10 20 50 100 

RP 
    V(m/s)    

H(m) 

26.38 37 40.01 43.41 45.67 

c s c s c s c s c s 

5 4.65 99.24 97.29 98.79 95.77 98.78 95.74 98.78 95.73 98.78 95.73 

10 7.08 100 99.99 99.95 99.82 99.94 99.79 99.94 99.78 99.94 99.78 

20 7.99 100 100 99.99 99.96 99.98 99.94 99.98 99.93 99.98 99.92 

50 9.13 100 100 100 100 100 99.99 100 99.98 99.99 99.98 

100 9.98 100 100 100 100 100 100 100 99.99 100 99.99 

RP: return periods, a: calculation results by analytic solution, s: simulation results 12 
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 1 

Fig. 1 Location of ZL ocean hydrological station 2 
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 4 

 5 

Fig. 2 fitting testing of marginal distribution, (a) wind speed (b) wave height 6 
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 1 

Fig. 3 (a) over threshold value of wave height and wind speed  2 

(b) joint distribution of extreme value of wave height and wind speed 3 

 4 

Fig. 4 calculation of wind speed samples and wave height return value 5 
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        N=50000                             N=100000 8 

Fig. 5 value of over threshold and data of stochastic simulation 9 
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 1 

Fig. 6 The change of simulation accuracy 2 
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