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Abstract

We present a method in which the optimal interpolation of multi-scale processes can be
untangled into a succession of simpler interpolations. First, we prove how the optimal
analysis of a superposition of two processes can be obtained by different mathematical
formulations involving iterations and analysis focusing on a single process. From the5

different mathematical equivalent formulations we then select the most efficient ones
by analyzing the behavior of the different possibilities in a simple and well controlled
test case. The clear guidelines deduced from this experiment are then applied in a real
situation in which we combine large-scale analysis of hourly SEVIRI satellite images
using DINEOF with a local optimal interpolation using a Gaussian covariance. It is10

shown that the optimal combination indeed provides the best reconstruction and can
therefore be exploited to extract the maximum amount of useful information from the
original data.

1 Introduction

Optimal interpolation (in the following noted OI) is well established (e.g. Gandin, 1965;15

Delhomme, 1978; Bretherton et al., 1976) and a reference tool when analyzing satellite
images. The method has therefore been applied in a large number of scientific stud-
ies (e.g. Kawai et al., 2006) and operational setups (e.g. Stark et al., 2007; Donlon
et al., 2012; Nardelli et al., 2013). To be optimal, the method requires the correct spec-
ification of covariance matrices, most of the time given by parametric functions (e.g.20

Reynolds and Smith, 1994). Another approach for analyzing a set of satellite images
(DINEOF) uses the data to create a truncated Empirical Orthogonal Function (EOF)
representation of the data set to fill in missing data (e.g. Beckers and Rixen, 2003;
Alvera-Azcárate et al., 2005, 2007). The latter method has been favorably compared
to OI and been exploited in a series of applications (e.g. Sheng et al., 2009; Ganzedo25

et al., 2011; Nikolaidis et al., 2013; Wang and Liu, 2014) including operational setups
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(e.g. Volpe et al., 2012). In some situations it appears however that the truncation of
the EOfs series rejects some interesting small-scale features by interpreting them as
noise (Sirjacobs et al., 2008). This is due to the fact that under clouds the method is
not able to recreate those small-scale features using EOfs only and therefore globally
rejects small scales by the EOf truncation. Hence there might remain small-scale in-5

formation not fully exploited. One natural approach would be to first analyze the large
scales with DINEOf and then add an analysis of the residuals using a local optimal
interpolation. We will show that this simple approach provides good results but is still
suboptimal. The purpose of the present paper is thus to recover additional pieces of
information in the reconstruction process by optimally combining the DINEOf approach10

with a local small-scale optimal interpolation approach. The method we will propose is
however more general in the sense that we will show how to deal with a situation in
which a combination of processes at different scales needs to be analyzed, possibly
using different softwares optimized to analyze a specific process. We will then illustrate
the approach in the particular situation with DINEOf analyses for larger scales and OI15

for smaller scales.
Section 2 will present the theory of optimally combining the analyses of two pro-

cesses. Then a synthetic example in Sect. 3 will serve as a testbed to provide guide-
lines in selecting an analysis order among a series of possible options identified. The
algorithm is then spelled out for the combination of DINEOF and OI in Sect. 4. Finally20

the application of the method to real data with a validation exercise will be presented in
Sect. 5.

2 Multi-scale optimal interpolation

We will present the method in an optimal interpolation framework and use the following
notations and assumptions. Without loss of generality, data are considered anomalies25

with respect to a reference field and are stored in vector d . The observations are
considered imperfect or including representativity errors, so that the observational error
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is characterized by covariance matrix R. The analysis will generally be performed on
regular grids, hence in locations not necessarily coinciding with the observation points.
The so-called observing operator H (e.g. Kalnay, 2002) allows to define how to retrieve
the analysis values at the observational points from the analysis grid. For filling pixels
in satellite images, the application of this matrix to the analysis containing all pixels5

would simply retrieve the pixels where originally data were present.
The field we try to recover is considered to be created by different independent

processes with each process characterized by a specific covariance. On the analy-
sis grid, each process therefore defines a different background covariance matrix. We
note these matrices Bs for a specific process s. Since we are in the presence of differ-10

ent independent processes, each one leading to a different covariance matrix Bs, the
covariance of the total field is B =

∑
s Bs and includes the contribution of processes at

all scales (e.g. Wackernagel, 2003). In this case, the best analysis φ of data d includ-
ing all scales in the sense of optimal interpolation (e.g. Cushman-Roisin and Beckers,
2011) would be given by φ = K̄d with15

K̄ = BHT(HBHT +R
)−1

=
∑
s

BsH
T
(∑

i

HBiH
T +R

)−1
=
∑
s

K̄s (1)

and

K̄s = BsH
T
(∑

i

HBiH
T +R

)−1
. (2)

20

At this stage we observe that the optimal interpolation demands the inversion of(∑
i HBiH

T +R
)
. If this can be achieved for the chosen representation of the different

Bs, then the problem of the multi-scale analysis is solved since the optimal interpolation
is provided by Eq. (1).

However, sometimes some of the individual matrices Bs are not explicitly calculated25

(for example in spline methods, e.g. Brasseur et al., 1996, or 3DVar-NMC implemen-
tations, e.g. Parrish and Derber, 1992; Fisher, 2003) and cannot be added to other
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matrices before inversion. In other cases, using a single Bs can lead to very efficient
inversions (for example when reduced rank approaches are possible, e.g. Kaplan et al.,
2000; Beckers et al., 2006, or localization is used, e.g. Reynolds and Smith, 1994) while
when trying the inversion with the sum of Bs, one cannot exploit anymore the particular
structure of the individual Bs. In such situations we can therefore only suppose that5

we have efficient tools to calculate Ksx, i.e. we are able to apply an analysis tool with
a single specific background covariance Bs to any data array x. Formally the Kalman
gain matrix for the sole process s is1

Ks = BsH
T(HBsH

T +R
)−1

. (3)
10

Hence the problem is to find a way to calculate K̄sx when we can only calculate Ksx.
Here we present the solution for two processes, but by recursion more scales can

be taken into consideration. If we have only two processes, we can provide the optimal
analysis for each one of them as K̄1d and K̄2d , and also the overall optimal interpola-
tion K̄1d + K̄2d exploiting the following matrix identities (proof in Appendix A):15

K̄1 = K1 −K1H(I−K2HK1H)−1K2 (I−HK1) (4)

= K1 −K1HK2(I−HK1HK2)−1 (I−HK1) Method P1a (5)

= (I−K1HK2H)−1K1 (I−HK2) (6)

= K1(I−HK2HK1)−1 (I−HK2) Method P1b (7)
20

Similar relationships hold for K̄2 (as we can just interchange indices 1 and 2). We
therefore have now a way to calculate the optimal interpolation exploiting the individ-
ual analysis tools K1 and K2. All formulations are mathematically equivalent but they
have the problem that (I−K2HK1H)−1 or similar inversions are needed. These are not
accessible or lead to an expensive inversion for the same reasons we did not want to25

1Carefully note the absence of ¯ to distinguish it from Eq. (2).
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invert a matrix involving the sum of Bs. So it seems we have only displaced the prob-
lem. However, the important point to observe is that gains KsH or HKs are “smaller than
one”2 and the matrix inversion can therefore be implemented by a series expansion:
For Ξ “smaller than one” we have the convergent series (e.g. Young, 1981)

(I−Ξ)−1 = (I+Ξ (I+Ξ (I+Ξ(. . .) . . .))) . (8)5

When applied to a vector x, this immediately provides the algorithm to calculate
y = (I−Ξ)−1

x as follows

(9)

which will converge to the desired vector y. In our case, the calculation of Ξy only10

involves successive analyses using K1 and K2, which by hypothesis can be done
efficiently. Then of course, if we limit the number of iterations, the four formulations
(4)–(7) might lead to different results. In fact, it is easy to show that n iterations used in
Eqs. (4) and (5) will yield the same results since(
I+Ξ1 +Ξ2

1 + . . .+Ξn
1

)
K2 = K2

(
I+Ξ2 +Ξ2

2 + . . .+Ξn
2

)
(10)15

with Ξ1 = K2HK1H and Ξ2 = HK1HK2. Similarly, iterative versions of Eqs. (6) and (7) will
also lead to the same analysis. The only difference is possible in terms of computational

2A formal definition of “smaller than one” for the matrices demands the module of their
eigenvalues being all smaller than one; see Daley (1993) page 127 for a prove that HK, which
is also sometimes called the hat matrix or influence matrix has eigenvalues between zero and
one.
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load. Since generally the number of observations is much smaller than the number of
points on the output grid of the analysis, using Eqs. (5) and (7) during iterations will work
on smaller files/arrays and also could benefit from quicker analysis if the analysis tool
is faster when asked to output values only at data locations. Hence Eqs. (5) and (7) are
two formulations which we will retain and which will differ if iterations on the inversion of5

(I−HK1HK2) or (I−HK2HK1) are not pursued until convergence. For K̄2 we now write
out the two equivalent relevant versions:

K̄2 = K2 −K2HK1(I−HK2HK1)−1 (I−HK2) Method P2a (11)

= K2(I−HK1HK2)−1 (I−HK1) Method P2b (12)
10

The cost for calculating an analysis with K̄1 or K̄2 using n iterations is 3+2n analyses
using K1 and K2 in Eqs. (5) or (11) whereas the use of Eqs. (7) or (12) demands 2+2n
standard analyses. In the following P1a and P2a will refer respectively to the application
of Eqs. (5) and (11) with iterations, and P1b and P2b refer respectively to the use of
Eqs. (7) or (12).15

We also note that even when using iterated versions, using Eqs. (5) and (12) leads
to

K̄1 = K1
(
I−HK̄2

)
(13)

which will be exploited in our final algorithm.20

K̄1 and K̄2 allow us to calculate the best analysis for each of the processes. A natural
but suboptimal estimate for each process would of course be obtained when using K1
for process 1 and K2 and for process 2. A slightly more elaborated idea would rather be
to use K1 (I−HK2) and K2 (I−HK1) so as to get the analysis of one process only using
data from which we tried to subtract the information from the other process. Therefore25

we can also design several simple ways to sub-optimally estimate the overall analysis
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using the following gain matrices

K̃00 = K1 +K2 (14)

K̃01 = K1 +K2 (I−HK1) (15)

K̃10 = K1 (I−HK2)+K2 (16)

K̃11 = K1 (I−HK2)+K2 (I−HK1) (17)5

These simple versions can also be compared later to the iterated versions.

2.1 Error fields

The analysis error covariance matrix Pa when using any gain matrix K is given by (e.g.
Cushman-Roisin and Beckers, 2011)10

Pa = B−BHTZ−1HB+
(
BHT −KZ

)
Z−1(HB−ZKT) (18)

Z =
(
HBHT +R

)
(19)

When the gain is optimal, the last term vanishes and we get the minimal error of the
optimal interpolation approach. Hence we can also assess the errors of the different15

analyses we propose.
For example, if we are interested in the analysis of process 1 and use the exact form

of K̄1, the expected error covariance on the analysis of process 1 reads

Pa
1 = B1 − K̄1HB1. (20)

20

Similarly, the error of the analysis of process 2 alone when using the exact form of K̄2
reads

Pa
2 = B2 − K̄2HB2. (21)
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If we are interested in the overall analysis including both processes, the error on the
sum of the two analyses is

Pa = B1 +B2 −
(
K̄1 + K̄2

)
(HB1 +HB2) (22)

since we used K = K̄1 + K̄2; we note that the error on the full analysis is not the sum of5

the errors on each process but will be lower.
In all cases, since we have a way to replace K̄1 and K̄2 as functions of K1 and K2,

the error fields can also be assessed.

3 Synthetic example

We now have to see which formulations are the most interesting and we will do so by10

using a Monte-Carlo approach. We will generate two random fields of different covari-
ances (“true states”) on a domain 100 grid points wide, sample the fields, sum them
up, add noise and then analyze these pseudo-data with the different formulations. Then
we can calculate the squared norm of the difference between the analysis and the true
fields (each field individually and the overall field). This exercise is repeated a large15

number of times (100 000) to have a statistically significant estimate and also an er-
ror distribution. To simplify the interpretation, the error estimates are scaled by the
expected analysis errors Eqs. (20)–(22), so that if the analysis is indeed optimal, the
average scaled error should be one.

We can now look at the quality of the analysis for each individual process and the20

overall analysis for a series of different values of the parameters describing the covari-
ance structures of each process. These parameters will characterize the correlation
length of the processes and the signal-to-noise ratio (e.g. Troupin et al., 2010): the
signal-to-noise ratio for process 1 is defined as λ1 = trace(B1)/trace(R) and similar
definitions hold for the signal-to-noise ratio for process 2 and the total signal-to-noise25

ratio.
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Case 1: In a first case, we use two processes with unit signal-to-noise ratios but
very different correlation length. For process 1 a length scale of 33 grid points was
taken whereas for process 2 a length scale of 4.5 grid points was used. The data
cover the original grid entirely and the analysis is therefore only checking the filtering
properties of the different formulations. Hence we will only look at average behaviors,5

but distinguish errors in reconstructing process 1, process 2 and the overall field, as
detailed in Tables 1–4. For process 1 (Table 1), we note that it is not beneficial to try to
subtract the small scale information before the analysis by a simple residual approach
(column 3) and that the iterative version P1a even without iterations yields the best
results. When performing iterations, Table 1 shows convergence and the superiority of10

P1a. For small scale process 2 (Table 2), the simple version of first subtracting the large
scale analysis from the data performs best and is equivalent to a non-iterated version
of P2b. All iterative versions converge and iterative version P2b shows its superiority
for small scales.

For the overall analysis, the simple approaches in Table 3 exhibit interesting facts.15

The best approach is to combine the analysis of one process with the analysis of the
residual for the other process. Furthermore, even if we showed that process 1 is best
captured by K1 and process 2 by analyzing residuals via K2(I−HK1), the overall anal-
ysis performs as well when doing the inverse and add the results up. For the iterated
version (Table 4), we see a similar pattern, adding up formulations of the same type20

(P1a+P2a or P1b+P2b) do not perform as well as adding up formulations of different
type (P1a+P2b or P1b+P2a), but convergence is observed in all cases. The natural
choice for this case is therefore clearly P1a for the larger scales, equation P2b for the
shorter scales and their sum for the overall analysis.

For case 2, we use the same parameters but look to the behavior when the scales25

are less well separated and use a correlation length of 16 grid points instead of 4.5 for
process 2. Compared to case 1, conclusions remain mostly unchanged, but we observe
that more iterations are needed to reach the same quality in the iterated version.
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For case 3 and the following, we only use observations in parts of the domain. In one
region sampling is done with grid resolution and in other regions with larger parts void
of data (up to 20 grid points). This mimics the situation we will encounter with satellite
images. Otherwise the case is identical to case 13. Conclusions for case 3 are similar
to case 1 and we see that even with few iterations we capture the maximum information5

from the data available.
In case 4 we take the same parameters as in case 3 (partial observation, very differ-

ent scales), but assume that process 1 has a much higher signal-to-noise ratio: we use
a value of 20 instead of 1. In this case, P1a provides again the best analysis for process
1 and P2b for process 2 alone. For the simple approaches for the total field (Table 3),10

now the selection of the field used to create residuals is important, and as one might
have guessed, one has first to analyze the large-scale process with the high signal-to-
noise ratio and then add the small-scale analysis of the residuals (it means K̃01 is used
for the global analysis). For the iterated version it is now clearly the combination P1a
and P2b which outperforms the others.15

Since this case is also similar to our original question, we can now also have a look
at the error distribution of the 100 000 realizations (Figs. 1 and 2). They confirm that
when the average error of the formulations is close to the error of the truly optimal
solution, also the histogram of errors almost coincide, providing evidence that we are
indeed very close to the optimal interpolation.20

To complete the analysis, some additional cases have been looked at:
In case 5 we use the same parameters as in case 4 but use the short correlation

length for process 1 and the larger one for process 2. Despite this inversion, the same
conclusions as in case 4 remain. This means that it is the process with the highest

3Note that when comparing the results of case 1 and case 3, the error has been scaled
by the best analysis possible with the data available. Hence a better score in case 3 does not
mean the analysis itself is better than the analysis in case 1 (which uses more data) but that
we are closer to the best we can get from the data.
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signal-to-noise ratio which should be labeled as process 1 so that P1a and P2b remain
optimal.

For case 6 we use the same situation as in case 3, but now both processes have
the same high signal-to-noise ratio of 20. Similar conclusions still hold, but the simpler
approaches are now degrading.5

Finally case 7 uses the same situation as case 6 (two high signal-to-noise ratio),
but in addition the correlation scales are now closer to each other (30 grid points for
process 1 and 16 grid points for process 2). This is the most difficult situation and
requires more iterations to converge. In this case one could anyway question whether
a scale separation approach is meaningful or if a single correlation length scale should10

be used.

3.1 Resulting guidelines

From what we saw, the best we can do is to label the process with the highest signal-to-
noise ratio as 1 and the other process as 2 and apply P1a+P2b if we want to achieve
the best analysis.15

If both processes have a similar signal-to-noise ratio, we should label the larger scale
process as process 1 so that the same formulas are still the best.

For simpler analyses Eq. (15) defining K̃01 remains a good option with this choice of
numbering.

For individual processes, P1a should be used for the iterated versions, whereas K120

is the best choice for a simple analysis for process 1; for process 2 version P2b and
K2(I−HK1) are indicated respectively for the iterated approach or a simple approach.

For iterative methods, if scales are well separated or at least one of the processes
has a small signal-to-noise ratio, only very few iterations are needed. In this case the
simple formulation can also be competitive.25

On the other hand, in difficult situations with overlapping scales and strong signals,
the iterated versions can always be made convergent by using more iterations and the
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optimal interpolation will result. Alternatively if scales are very similar, a single analysis
with average correlation length could be used.

4 DINEOF+OI

We now come to the application of our ideas to the better reconstruction of satellite im-
ages. DINEOF has proven to be efficient, particularly when looking at larger scales5

since the interpolation exploits dominant large-scale EOF structures to reconstruct
missing data under clouds. Those EOF generally capture a very high percentage of
the data variance and in this sense we can assume that the signal-to-noise ratio is
high.

If we try to add a local covariance structure with an optimal interpolation approach,10

the signal-to-noise ratio for this additional process we want to extract is probably much
lower. Hence we are in the situation similar to the synthetic case 3 and 4 of the previous
section and the iterative version of P1a+P2b is the natural choice, where K1 stands
for the DINEOF-based analysis and K2 for the local OI application. The analyzed field
φ can be easily obtained from P1a+P2b, called hereafter DINEOFOI, programmed as15
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which shows that the simple application of existing analysis tools to data arrays and
a few working arrays/files (w 1,w 2,ω1) will solve our problem and provide the analysis
φ. This demands 2+n applications of K1 and 1+n applications of K2.

For the calibration of OI parameters it is probably safe to work on residuals after5

step 3 (available in intermediate results w 1) for fitting or verification of the correlation
length and signal-to-noise ratio since we showed earlier that if scale separation is good,
K2(I−HK1)d is a good proxy of the analysis for process 2.

There remains to formulate how K1 and K2 are defined. If during step 1 of the al-
gorithm φ could be interpreted as the DINEOF result (and hence K1 the DINEOF tool10

applied to the data), in the subsequent part of the algorithm we cannot just replace
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K1 by “apply DINEOF”, since the EOFs calculated are data dependent. Hence when
working with residuals in the later steps, we would not use the same covariances as
in the first step. So instead of “applying DINEOF”, we can use the EOFs calculated by
DINEOF on the raw data to specify covariance matrices as in Beckers et al. (2006).
For such an optimal interpolation using EOFs from DINEOF, we recall that DINEOF5

provides the Singular Value Decomposition (SVD) of the data4 stored in a m×n matrix
X with m pixels for each cloud-free image and n images as

X = UΣVT (23)

The N spatial EOFs (stored in the m×N matrix U) and temporal EOFs (stored in the n×10

N matrix V) can be used together with the singular values (stored in the diagonal matrix
Σ) to estimate the spatial covariances so that we can spatially interpolate/analyze each
of the n images exploiting covariance matrix

B(s) =
1
n

UΣ2UT (24)
15

For a spatial analysis of image j , the gain matrix reads

K(s)j = B(s)HT(HB(s)HT +R
)−1

. (25)

Note that for each image j , another observation operator H is used as the cloud cover-
age changes. In order not to overload notations we do not add an index but remember20

that H is image dependent.
The computational efficiency of this method stems from the fact that the application

of the Woodbury matrix identity (e.g. Golub and Van Loan, 2012) translates this into
a least square fitting of N modes (e.g. Beckers et al., 2006). Assuming independent
and identical observational errors of variance ε2, this leads to25

K(s)j = L
(
ε2I+LT

pLp

)−1
LT
p (26)

4We stress again that averages have been subtracted to work with anomalies.
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with L = UΣ/
√
n and the corresponding version for the data present in each image

Lp = HL (note that here H still changes for each image). The computational efficiency
is now understood as for each image the matrix to invert is of size N ×N when using
Eq. (26) instead of p×p when using Eq. (25), with the number N of retained EOFs
much smaller then the number p of pixels in an image.5

By symmetry we can also choose to perform a temporal interpolation of each of the
m pixels by using for pixel i the time interpolation from covariance

B(t) =
1
m

VΣ2VT (27)

and use the computationally efficiently calculated gain matrix10

K(t)i = T
(
ε2I+TT

pTp

)−1
TT
p (28)

with T = VΣ/
√
m and Tp = HT (here H changes for each of the pixels and selects the

images in which the pixel is not clouded).
So we can choose to spatially interpolate each image to get an overall analysis or15

to temporally interpolate each pixel to get the overall analysis. Instead of choosing one
or the other method we can again apply the basic idea of the present paper allowing
to combine two analysis tools. We can indeed use as a covariance the combination
of the spatial and temporal covariances and for a pixel i of image j the covariance
with a pixel i ′ of image j ′ is modeled as B(s)

i i ′ δjj ′ +B(t)
jj ′δi i ′ with the standard Kronecker5

20

symbol δi i ′ . In other words, as we are in the presence of the combination of two co-
variances, without actually creating the sum and full gain matrix, we can use again
the iterated versions P1a+P2b where process 1 is now provided by the spatial in-
terpolation tool and process 2 by the temporal interpolation tool. This “inner” iterative
combination provides then our EOF based analysis tool K1 for the “outer” combination25

method with a local OI.
5δi i ′ is one when i = i ′, zero otherwise.
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So if it is clear that in the later steps of our Algorithm 2 we use K1 as just described
(the combination of spatial and temporal EOF-based covariances), the first step could
still be taken as the DINEOF analysis as it could be regarded as some kind of best first
guess. This option will be looked at later.

For K2, a standard optimal interpolation tool is used. In practice, the OI application5

for satellite images repeated at the same locations can be strongly optimized since it
is easy to collect the data points which are within reach of the covariance function at
any given point in which the analysis is demanded. As the correlation length will be
small, the number of data points involved will be small also and the matrix inversion
very quick for each analysis point. The typical parametric correlation function c used in10

optimal interpolation is a Gaussian

c = e
−
(

δx
Lx

)2

e
−
(

δy
Ly

)2

e
−
(
δt
T

)2

(29)

where δx, δy and δt are the difference in space and time coordinates between the two
points for which we want to calculate the covariance. Lx and Ly are then the correla-15

tion length-scale in x and y direction and T the correlation timescale. The correlation
function has to be multiplied by variance σ2

2 to provide B2. For the implementation of
this optimal interpolation we used the open-source code optiminterp available at
http://octave.sourceforge.net/optiminterp/overview.html6. Its use was computationally
optimized by exploiting the fact that for each point in which the analysis is demanded20

the gridded nature of the data points allows a direct selection of possibly involved data
points and a rejection of all others. So in means one can feed the analysis only with
data in a box of size 4Lx ×4Ly ×4T centered around the analysis point, which greatly
reduces sorting and selecting time and also allows for a parallel execution.

6Or http://modb.oce.ulg.ac.be/mediawiki/index.php/Optimal_interpolation_Fortran_module_
with_Octave_interface
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5 Test case

For the real case application, we use an interesting SST hourly dataset derived from
Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second
Generation (MSG) geostationary satellite and produced operationally by the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and5

Sea Ice Satellite Application Facility (OSI-SAF) at Meteo-France/Centre de Meteorolo-
gie Spatial (CMS) in Lannion (EUMETSAT, 2011; Le Borgne et al., 2011). Because
of its geostationarity, high-frequency sampling is available and analyses resolving the
daily cycle appeared (e.g. Marullo et al., 2010, 2013). Some high frequency content is
expected to be filtered by standard DINEOF applications and therefore the data should10

provide a good testbed for our new method. Furthermore, capturing the diurnal cycle in
using satellite-derived sea surface temperature is considered an important challenge
(Stuart-Menteth et al., 2003) and several studies have been performed recently using
hourly data (Karagali et al., 2012; Le Borgne et al., 2012; Eastwood et al., 2011).

Excellent results when using SEVIRI data have been obtained (Marullo et al., 2013):15

by combining a dynamical model resolving the daily cycle with the SEVIRI data, their
reconstruction of hourly data covering the whole Mediterranean Sea during the three
month summer period of 2011 showed rms (root mean square) errors compared to
in-situ data of 0.64K with off-shore moorings and 0.47K with drifter data, with a well
resolved daily cycle. A synthetic cloud cross validation exercise also provided a rms20

difference of only 0.16K between the artificially clouded SEVIRI points and their recon-
struction. In their case the artificial clouds were constructed by moving a 200 km wide
meridional band of “clouds” westward across the domain in around 24 h, so that no
persistent artificial clouds were included.

For our study focusing on the methodology rather the reconstruction itself, we se-25

lected a smaller data set, covering the period of 1–16 August 2013. This data set has
some clear images with daily cycles on which artificial clouds can be added for valida-
tion purposes. The spatial resolution of the data is 0.05 ◦, available at hourly frequency,
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leading to n = 16×24 = 384 images. In all cases we used all data with quality flags 4
or 5 (acceptable and best quality). In order to assess the robustness of the method and
the conclusions of this experiment we look at four different cases.

Two different spatial coverages were considered, one looking only at the Western
Mediterranean Sea, the other to the whole Mediterranean Sea. This approach allows to5

check the robustness of the statistical results and the effect of different EOF structures,
and also shows the effect of a larger data variability. For the Western Mediterranean
Sea we retrieve images of 327×217=70 959 pixels from which 29 380 fall on land, so
that the maximum number of pixels in each image useful for analyses is m = 41579.
Without additional artificial clouds this data set presents an average cloud coverage of10

29.70%. For the whole Mediterranean Sea, images have 850×320 pixels, from which
120 343 fall onto the sea so that m = 151566 (see Fig. 3). The average cloud coverage
is 23.53% in this case. We also note that for the setup over the whole Mediterranean
Sea, data from the Black Sea and the Atlantic Sea are included, making the test more
challenging as the EOF structures will need to cope with different, mostly unconnected,15

variabilities.
For cross validation purposes, additional clouds will be added to the original data.

The so clouded cross-validation data are never used in the calculations (neither in the
DINEOF decomposition nor the different optimal interpolations) but allow the compu-
tation of metrics characterizing the quality of the analysis under clouds. The rms error20

δD of the DINEOF reconstruction under these additional clouds can be used as a ref-
erence error which we want to improve. We can then define a skill-score S as

S = 1− δ2

δ2
D

(30)

which measures the relative increase in precision (a zero skill-score value indicates25

no better results than DINEOF whereas a value of 1 means a perfect reconstruction).
A second standard metric for the validation is the correlation coefficient between the
analysis and the cross-validation points noted r .
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Two different kinds of artificial cloud sets allow to check the effect of more or less
persistent cloud coverage on the reconstruction quality and the improvements brought
by our new method. In one situation, clouds from the last two weeks of July 2013 are
superimposed to the already present clouds and the pixels masked in this way taken
aside as cross-validation data. In the other situation we generate artificial clouds as in5

Marullo et al. (2013): the slab of clouds moves from east to west across the domain
in about one day and then starts again from the east. The fraction of overlap between
successive images was taken similar to the one in Marullo et al. (2013).

From these two different spatial coverages and two different cloud coverages we
create our four test cases:10

Setup 1: Western Mediterranean Sea, added July clouds

For cross validation purposes, clouds from the last two weeks of July were super-
imposed, resulting in total average cloud coverage which increases from 29.70% to
42.06% The data set is then analyzed with DINEOF, providing N = 38 EOFs, the singu-
lar values and the DINEOF reconstruction explaining 91% of the variance. As expected15

DINEOF, captures a large part of the variability. A first diagnostic can be performed by
calculating the root mean square difference between this reconstruction and the artifi-
cially clouded pixels (the cross-validation points, here we have 1973 438 of them) and
we obtain an associated standard deviation δD = 0.496 K close to the noise level in the
data, as the SEVIRI SST standard deviation is around 0.5 K (Brisson et al., 2002). For20

DINEOF we obtain r = 0.9371, which is therefore the baseline to improve in this case.
For this case and the following, the metrics of the standard DINEOF application just

mentioned are summarized in Table 5 and for the following cases we only describe the
cross-validation approach.
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Setup 2: Western Mediterranean Sea, added banded clouds

In the first setup, analyses under persistent large scale clouds can of course not be
improved by the local optimal interpolation. To check if we can reconstruct data under
fast moving clouds, we take a band of westward moving “clouds”.

Setup 3: Whole Mediterranean Sea, added July clouds5

To check how the reconstructions behave when a larger range of observations are
present, we look at the whole Mediterranean Sea. The full Mediterranean Sea case
exhibits generally less clouds (23.53%) and with the July clouds added to the original
data the cloud coverage increases to 35.29%.

Setup 4: Whole Mediterranean Sea, added banded clouds10

Finally we complete the comparisons by using the whole Mediterranean Sea, but with
a fast moving westward band of “clouds”.

To proceed, we now need to specify the observational error variance and the vari-
ance σ2

2 for the local optimal interpolation in each case. As we will show later, the con-
clusions remain robust in all cases and we will only detail results of the most challenging15

Setup 3. The parameter optimization of the other cases was performed in a similar way
with similar results.

To specify the covariance function to be used with the local optimal interpolation, we
can take advantage of two particularities of the data we will analyze: we expect them
to contain mainly small scales (as we work on residuals) and we have a rather large20

amount of data available on a regular grid to fit the parametric covariance function. The
following approach exploits these two particularities.

For the longitude correlation length, we can randomly select a point in the dataset
and verify if a prescribed number of consecutive data is present in the longitudinal
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direction. Since we are looking at small scales, typically 20–50 points of consecutive
data would be enough to capture signals and the probability to find such a chunk of
complete data is high enough. Once found such a chunk, we can apply a Fast Fourier
Transform to it and calculate the squared Fourier amplitude. This is repeated a large
number of times (10 000 in our case) and an average squared amplitude spectrum5

can be assessed. The autocovariance function can then be calculated as the inverse
Fourier transform of this square of the amplitude spectrum of the signal (e.g. Bracewell,
1986). This autocovariance from the data can then finally be used to fit the analytical
function and estimate the signal-to-noise ratio. In practice, the fitting is done by trying to

fit the Gaussian function αexp
(
−βδ2

x

)
to the points of the data-based autocorrelation10

function up to the zero-crossing but eliminating the zero-lag point. The signal-to-noise
ratio can finally be estimated by (see Fig. 4)

λ2 =
α

1−α
(31)

where α is the fitted value representing the signal and 1−α the part not explained by15

the correlation function, hence the noise.
The same approach is then also applied to latitude and time, and since the fitting

is not perfect, the estimated overall signal-to-noise ratio is conservatively taken as the
lowest one found from the three directions.

We note on Fig. 4 that the time autocorrelation spectrum exhibits an anti-correlation20

at 6 h and maximum autocorrelation at 12 h. This reflects in fact the asymmetry of the
diurnal cycle. When analyzing the raw data instead of residuals, the spectrum and
autocorrelation (not reproduced here) indeed shows an anti-correlation at 12 h and
correlation at 24 h. Thus the residuals will allow to follow the higher frequency content.

The observational noise variance was fixed as 0.25K 2. A sensitivity analysis was25

performed, changing this value in the range of 0.1K 2 to 10K 2. In all cases, the conclu-
sion in terms of ranking of the different methods remained the same, only the relative
part of the solution picked up by the EOF-based covariances or local optimal interpo-
lation was affected. As the value of 0.25K 2 is the typical value associated with SEVIRI
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data (Brisson et al., 2002), we kept this value even if better skill scores were obtained
for other values used in sensitivity analyses.

With all parameters defined, we proceed to the optimal interpolation and compare
the different techniques to the standard DINEOF solution for the four different setups.
As seen from Table 5, robust conclusions can be drawn:5

– In all cases our new iterated method provides the best skill scores and correlation
coefficient. Using zero iterations instead of 10 iterations only slightly degrades
results and keeps the non-iterated method ranked second in terms of skill scores
and correlation coefficient.

– The simple method of using DINEOF followed by a local optimal interpolation10

of residuals (DINEOF+K2) provides also good skill scores. In cases with fast
moving artificial clouds, the skill score is close to the one of our new version,
but when real clouds are added using the new method clearly increases the skill
further.

– Starting from DINEOF and then applying iterations with K1 based on the DINEOF15

EOFs is not a good idea since in all cases negative skills and lower correlations
are observed. Hence in this case the inconsistency of the first step in our algorithm
with the rest of the steps deteriorates results.

– Finally the simple method K̃01 yields also better results than DINEOF+K2.

The higher correlation found with the banded fast moving clouds is also seen on20

the correlation plots of Figs. 5 and 6. When July clouds are used, some persistent
large scale clouds do not allow to improve DINEOF reconstructions in these regions.
This leads to larger dispersion. When fast moving clouds are used, the local optimal
interpolation can infer missing information from the surrounding pixels and correlations
are much higher. We also notice that even in the July cloud case, the new method25

filters less the extreme values than the original DINEOF reconstruction (the S shaped
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tendency of DINEOF reconstructions dampening the extreme variations is reduced with
the new method).

Since the computational load of the new method is a fraction of the computational
cost of the DINEOF decomposition (typically 10% for the iterated version) it is the
natural choice to improve DINEOF results when good skill scores and correlations5

are sought. If one does not want to program K1 and iterations7, the simple approach
of using DINEOF followed by the local optimal interpolation of residuals is a simple
alternative.

Skill scores and correlation coefficients are not the only criteria to select a method
and we can further check if the new method also leads to better feature reconstruction.10

Figure 7 shows the analysis, residuals and the y-autocorrelation for the standard
DINEOF approach and our new iterated solution DINEOFOI. While DINEOF residu-
als exhibit patterns identified in the autocorrelation function, the residuals of the new
method are almost pure spatially uncorrelated noise. For the other methods, not shown
here, K1 and DINEOF+iterations both contain a similarly autocorrelated signal as DI-15

NEOF. All other methods are able to retrieve this structure and leave mostly spatially
uncorrelated residuals. We also see that the amplitude of the daily cycle is now closely
following the data (Fig. 3).

Looking into the North Western Mediterranean Sea (Fig. 8), the typical lower tem-
perature structures are also used in model validations (e.g. Millot, 1987; Beckers et al.,20

2002). Here the comparison of the reconstructions with the cross-validation data not
used also reveals that some features are now better visible in the reconstruction with
the new method, in particular the form of the cold patch in the center of the domain.

Instead of looking at the full analysis, we can also focus on individual processes 1
and 2. For example, the time evolution at latitude 34.375 ◦N in the Eastern Mediter-25

ranean Sea (Fig. 9) shows clearly how scale 1 solution is dominated by the daily cycle
(we even see the earlier heating in the eastern part during the day). Scale 2 on the

7To avoid reprogramming K1 and iterations, the code will be made available at http://modb.
oce.ulg.ac.be/mediawiki/index.php/DINEOF
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other hand has a 12 h period component and whose structure could lead to interesting
interpretations.

Satellite images are also often used to track features and fronts. To do so, Sobel edge
detector methods are typically applied (e.g. Simpson, 1990). If we do so, even when
first applying a median filter, raw data do not allow front detection (upper left panel of5

Fig. 10). With DINEOF we clearly see, among others, structures related to the Algerian
current instability (e.g. Millot, 1987; Beckers and Nihoul, 1992). With our new method,
the overall analysis includes short scale signals and therefore gradient detectors are
slightly more noisy. However if we look at results for scale 1 process alone (upper
right panel) we recover more robust results. Hence for front detection DINEOF remains10

a natural choice as it dampens out higher frequency signals and shows that DINEOF
effectively resolves the larger scales. Only if smaller scales are important, adding the
local optimal interpolation (either in simple or iterated version) is recommended, but
one must be aware that in regions with large scale persistent clouds no improvement
over DINEOF can be expected.15

6 Conclusions

We presented a general framework for multi-scale analysis using optimal combinations
of analysis tools focusing on different scales or processes. The approach allows to
combine analyses obtained with different tools as well as focusing on individual scales.

With a synthetic test-case we were able to provide guidelines on which formulations20

to choose among a series of possible algorithms. In particular, we showed that naming
process 1 the process which has the highest signal-to-noise ratio (or largest correlation
length when the other process has a similar signal-to-noise ratio), then process 1 can
be efficiently analyzed by an iterative method P1a. The other process then is optimally
reconstructed with another formula P2b and the combination of the two provides an25

analysis which is close to the theoretical optimal interpolation even with a reduced
number of iterations.
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This was then implemented in a real application where it was shown that with the
new approach we can indeed retrieve fine-scale features previously filtered out. The
iterative version with a combination of DINEOF-based EOF covariances and local opti-
mal interpolation called DINEOFOI behaved best, but an alternative cheaper version is
to use the DINEOF analysis itself augmented by the analysis of residuals. But we have5

shown that the latter, quite natural approach, was suboptimal in all situations.
Further fine-tuning of the real application could be performed but is out of the scope

of the present paper, focusing on how to combine two or more analysis tools each one
exploiting different covariance specifications. To provide the best possible SST prod-
ucts, the following improvements could be included: we can adopt more complicated10

expressions of the observational error covariances, exploiting the preliminary outliers
detection offered by DINEOF and the quality-flag value of the original data. In this case,
suspect pixels (near clouds or with statistically too large residuals) can be flagged and
see their observational error increased. This should lead to further improvement in the
noise filtering. The temporal covariance functions used in the local optimal interpolation15

could be modulated by a cosine function to take into account the 12 h cycle identified
in the residuals and provide better estimates for clouds present during several hours.

Appendix A

Proof of scale-selective analysis formula

With two processes, if we want to isolate the best analysis for process 1, it can be20

obtained with the gain matrix Eq. (2) in the presence of two scales:

K̄1 = B1HT
(

HB1HT +HB2HT +R
)−1

(A1)
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We will now prove Eq. (6) rewritten as

B1HT
(

HB1HT +HB2HT +R
)−1

= G−1K1 (I−HK2) (A2)

with G = I−K1HK2H supposed to be invertible and K1 and K2 defined by Eq. (3).

Multiplying each side to the left by G and to the right by
(

HB1HT +HB2HT +R
)

, we5

need to prove that

GB1HT = K1 (I−HK2)
(

HB1HT +HB2HT +R
)

(A3)

which, by using the definitions of G and K1 is true if

I−
(

HB1HT +R
)

HK2HB1HT =
(

HB1HT +R
)−1

(I−HK2)
(

HB1HT +HB2HT +R
)

(A4)10

which, multiplying each side by
(

HB1HT +R
)

is true if

HB1HT +R−HK2HB1HT = (I−HK2)
(

HB1HT +HB2HT +R
)

(A5)

which is true if15

−HK2HB1HT = HB2HT −HK2

(
HB1HT +HB2HT +R

)
(A6)

which in turn is true if

0 = HB2HT −HK2

(
HB2HT +R

)
(A7)

20

Since the latter is true by virtue of the definition of K2, we proved Eq. (6). Then, using
Eq. (B1) we also prove Eq. (7). From there, by interchanging indices 1 and 2 we also
prove Eq. (12).
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We can also prove that Eqs. (4) and (6) are equivalent. We need to show that with
F = I−K2HK1H

K1 −K1HF−1K2 (I−HK1) = G−1K1 (I−HK2) (A8)

which is true if5

GK1 −GK1HF−1K2 (I−HK1) = K1 (I−HK2) (A9)

itself true if

K1HK2 (I−HK1) = GK1HF−1K2 (I−HK1) (A10)
10

which is the case if

K1H = GK1HF−1 (A11)

or if

K1HF = GK1H (A12)15

which is true. Hence we proved Eq. (4). Then application of Eqs. (B2) to (4) proves
Eq. (5). From there, as before, interchanging indices 1 and 2 yields Eq. (11) and all our
identities are verified.

Appendix B20

Useful matrix identity

If the inverse matrices involved in the following expression exist, than the following
identity holds for any (size compatible) matrices H, K1 and K2

(I−K1HK2H)−1K1 = K1(I−HK2HK1)−1. (B1)
25
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This can be easily shown by an application of the Woodbury formula or a direct proof
obtained by multiplying to the right by (I−HK2HK1) and to the left by (I−K1HK2H).
A similar expression can be obtained by interchanging indices 1 and 2:

(I−K2HK1H)−1K2 = K2(I−HK1HK2)−1. (B2)
5
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Table 1. Average error for different analysis formulations of process 1. Column 5 of the upper
part shows the same result as column 3, since it can be shown that without iterations, the
formulations are equivalent. So column 5 of the upper part of the table is essentially giving
confidence that the implementation is correct.

Case K1 K1 (I−HK2) 0 it P1a 0 it P1b

1 1.3969 3.2775 1.2212 3.2775
2 1.8056 2.0853 1.6121 2.0853
3 1.1970 1.4024 1.0634 1.4024
4 1.0620 7.4532 1.0215 7.4532
5 1.0055 1.2405 1.0038 1.2405
6 1.9071 2.9159 1.6922 2.9159
7 1.9422 2.1873 1.8183 2.1873

Case 2 it P1a 2 it P1b 20 it P1a 20 it P1b

1 1.0916 2.2260 1.0007 1.0057
2 1.4012 1.8109 1.0281 1.0779
3 1.0205 1.1012 1.0024 1.0024
4 1.0044 2.6406 0.9982 1.0021
5 1.0021 1.1195 0.9997 1.0069
6 1.5009 2.5738 1.0894 1.4318
7 1.6686 2.0194 1.2510 1.3978
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Table 2. Average error for different analysis formulations of process 2. As in Table 1 column 5
of the upper part gives the same result as column 3 as it should.

Case K2 K2 (I−HK1) 0 it P2a 0 it P2b

1 2.5580 1.1923 2.1361 1.1923
2 2.0783 1.6684 1.9256 1.6684
3 1.1882 1.0355 1.0890 1.0355
4 6.0804 1.0225 3.7195 1.0225
5 6.1443 1.0814 4.0191 1.0814
6 1.5339 1.2145 1.4921 1.2145
7 2.0680 1.7672 1.9825 1.7672

Case 2 it P2a 2 it P2b 20 it P2a 20 it P2b

1 1.6118 1.0669 1.0016 0.9991
2 1.6931 1.4126 1.0672 1.0278
3 1.0321 1.0115 1.0024 1.0024
4 2.1335 1.0066 1.0037 1.0004
5 2.5873 1.0415 1.0946 1.0008
6 1.4230 1.1522 1.1580 1.0348
7 1.8451 1.6062 1.3362 1.2211
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Table 3. Average error for different simplified analysis formulations for the overall analysis.

Case K̃00 K̃10 K̃01 K̃11

1 6.2802 1.0088 1.0085 5.6440
2 21.6620 1.0165 1.0200 19.8658
3 1.4088 1.0371 1.0357 1.3120
4 4.7596 2.2262 1.0231 6.5037
5 1.5216 1.1202 1.0015 1.3122
6 2.5735 1.2828 1.1630 2.7218
7 19.8920 1.0089 1.0373 19.0295
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Table 4. Average error for iterative versions for the overall analysis. Zero, two and twenty itera-
tions.

Case 0 it P1a+P2a 0 it P1a+P2b 0 it P1b+P2a 0 it P1b+P2b

1 4.6928 1.0220 1.0385 5.6440
2 18.0134 1.0784 1.0119 19.8658
3 1.1679 1.0071 1.0559 1.3120
4 2.9738 1.0055 2.8756 6.5037
5 1.3133 1.0016 1.0656 1.3122
6 2.3563 1.1118 1.2926 2.7218
7 18.0300 1.0737 1.0139 19.0295

Case 2 it P1a+P2a 2 it P1a+P2b 2 it P1b+P2a 2 it P1b+P2b

1 2.9137 1.0017 1.0203 3.3676
2 13.1811 1.0130 1.0077 14.2558
3 1.0560 1.0014 1.0073 1.0823
4 1.8108 1.0015 1.2031 2.4070
5 1.1680 1.0005 1.0195 1.1583
6 2.0934 1.0696 1.2255 2.3798
7 15.3637 1.0211 1.0113 16.0365

Case 20 it P1a+P2a 20 it P1a+P2b 20 it P1b+P2a 20 it P1b+P2b

1 1.0086 0.9998 0.9999 1.0102
2 2.0564 0.9991 0.9996 2.1293
3 1.0006 1.0006 1.0006 1.0006
4 1.0034 1.0009 1.0010 1.0043
5 1.0101 1.0000 1.0006 1.0094
6 1.3308 1.0056 1.0290 1.3799
7 6.6037 1.0004 1.0024 6.7399
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Table 5. Skill scores and correlation coefficients for the four SEVIRI setups and the different
methods. DINEOF stands for the direct use of standard DINEOF results. DINEOF+K2 uses the
simple approach of adding a local optimal interpolation of residuals. DINEOF+10 iter stands
for the method in which we start from DINEOF results and then apply the iterative version
using K1 based on the EOFs. Version K1 uses only the EOF based covariances, K̃01 stands for
the simple approach when we add the local optimal interpolation of residuals to the previous
solution and finally the last two lines correspond to the full method with no iterations or 10
iterations (for inner iterations within K1 combining space- and time-EOF based interpolations,
iterations are maintained in all cases).

Setup 1 Setup 2 Setup 3 Setup 4
δD 0.496K 0.308K 0.492K 0.285K
Cloud fraction 42.06% 34.09% 35.29% 27.02%
N EOF modes 38 37 38 40

S r S r S r S r

DINEOF 0.00 0.9371 0.00 0.9699 0.00 0.9707 0.00 0.9824
DINEOF+K2 0.21 0.9507 0.45 0.9835 0.21 0.9769 0.40 0.9895
DINEOF+10 it −1.25 0.8476 −1.79 0.9149 −0.51 0.9559 −0.97 0.9650
K1 0.24 0.9516 0.22 0.9764 0.18 0.9760 0.18 0.9855
K̃01 0.33 0.9576 0.47 0.9839 0.28 0.9791 0.42 0.9899
DINEOFOI 0 it 0.34 0.9579 0.47 0.9840 0.29 0.9792 0.43 0.9899
DINEOFOI 10 it 0.37 0.9602 0.49 0.9845 0.31 0.9798 0.44 0.9901
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Fig. 1. Histogram of scaled errors for reconstruction of process 1 (left) and process 2 (right).
We see that for process 1 it is better to use the full data set, whereas for process 2 it is better
to work with residuals, i.e. data from which we subtract the analysis of the process 1.
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Fig. 2. Histogram of scaled errors for simple reconstructions of the total field (left) and with zero
iterations in the new formulations. For reference the distribution of the optimal solution is also
shown, proving that not only the average error of the new method combining P1a and P2b is
optimal, but also the error distribution falls onto the optimal one.
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Fig. 3. Mean spatial structure of standard DINEOF analysis (left panel) and spatially averaged
time evolution (right panel) of the analyzed field (solid blue line), the original data (dashed green
line) and the DINEOF analysis at pixels with data present (red line). The lower temperatures
in the DINEOF reconstruction are simply due to the fact that mostly cold regions were covered
by clouds and data average only used available (warmer) pixels. More importantly, we see
however that the DINEOF reconstruction has a lower-amplitude cycle than the data. With the
new methods DINEOFOI explained later, we recover the amplitudes found in the data (dotted
line coinciding with the dashed line).
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Fig. 4. Spectrum analysis leading to autocorrelation functions, for longitude, latitude and time
(from left to right). Autocorrelation is given as a function of distance expressed in number of
grid points or time-delay expressed in number of timesteps (hours). The continuous line corre-
sponds to the fitted Gaussian correlation function.
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Fig. 5. Correlation at cross-validation points using DINEOF alone and the new method DINE-
OFOI in Setup 1 (top) and Setup 2 (below).
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Fig. 6. Correlation at cross-validation points using DINEOF alone and the new method DINE-
OFOI in Setup 3 and Setup 4.

937

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/11/895/2014/osd-11-895-2014-print.pdf
http://www.ocean-sci-discuss.net/11/895/2014/osd-11-895-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
11, 895–941, 2014

Multiscale optimal
interpolation

J.-M. Beckers et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. DINEOF reconstruction, residual and autocorrelation of residuals. DINEOF (top) and
new method DINEOFOI (lower images).
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Fig. 8. Data used (upper left pannel), data including cross validation data (upper right), DINEOF
reconstruction (lower left) and new approach DINEOFOI with 10 iterations (lower right).
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Fig. 9. Hovmöller diagram in the Eastern Mediterranean at latitude 34.375 ◦N. Temperature as
a function of longitude (in degrees) and time (in days) for process 1 (left panel) and process (2)
(right panel).
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Fig. 10. Sobel-type edge gradient detector applied to raw data (upper left panel), DINEOF
(lower left panel), Scale 1 solution with the new method (upper right panel) and new method
including both scales (lower right panel). Focus on the African coast in the Western Mediter-
ranean.
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