Supplement of Ocean Sci. Discuss., 11, 2979-3002, 2014

http://www.ocean-sci-discuss.net/11/2979/2014/ Ocean Science
doi:10.5194/0sd-11-2979-2014-supplement . .
© Author(s) 2014. CC Attribution 3.0 License. Discussions

Supplement of

Technical Note: A fully automated purge and trap-GC-MS system for
guantification of volatile organic compound (VOC) fluxes between the
ocean and atmosphere

S. J. Andrews et al.

Correspondence td. J. Andrews (stephen.andrews@york.ac.uk)



//Arduino code for auto purge and trap system.
This code reads a relay trigger from the Unity2 and
controls

//two valves which fill and empty the purge tube.
Outputs to an LCD screen.

//it also runs isothermal heating control of the purge
tube in the background.

//author Stephen J. Andrews

const int TDrelaypin =
TD sample valve relay
const int SolenoidApin = 13; // Pin attached to
solenoid via a transistor and relay

const int SolenoidBpin = 8; //same as above

const int LM35Pin = A3; //analog in with LM35
temp senor attached

const int heaterPin = 10; //PWM output to SSR to
control heating tape

const int tempsetpoint = 50; //what temp do you
want the tube to be?

const int manualtriggerpin = 6;

const int omegaSSRout = 9;

const int peristaltic = 0;

const int floatswitch = Ab;

const int omegatempvalue = 2;

7, // Pin attatched to

float tempC;

float tempdiff;

int extrapower = 1;

boolean Running = false;

boolean linespurged = false;

boolean tubefilled = false;

boolean tubepurged = false;

boolean tubeflushed = false;

long countdownitem = 0;

long countdown = 0;

long count = 0;

long triggertime = 0;

long currenttime = 0;

long previoustemptime = 0;

int dataupdatespeed = 1000;

long filterpurgeinterval = 280000; //105000

long linepurgeinterval = 305000; //125000

long fillinterval = 351500; //156500 adjust this to
set the time in ms for the tube to fill for. 46.5sec
=30mL

long flushinterval = 2146500; //1325000 time(ms)
from triggertime until the water is emptied to waste
long flushtime = 2166500; //1345000 time(ms) that
it empties the water for (from triggertime)

int LM35value = 0; //value read from temp sensor
int heatervalue = 0; //PWM value to trim heater by
long POS = 0; //percentage of setpoint

int mappedLM35 = 0;

LiquidCrystal led(12, 11, 5, 4, 3, 2);

void setup() {

// set up the LCD’s number of columns and rows:
led.begin(20, 4);

// initialize serial communications at 9600 bps:
analogReference(INTERNAL); //analog scale to
1.1V for better resolution!

pinMode(TDrelaypin, INPUT); //specify the pin
modes

pinMode(SolenoidApin, OUTPUT);
pinMode(SolenoidBpin, OUTPUT);
pinMode(omegaSSRout, OUTPUT);
pinMode(peristaltic, OUTPUT);
pinMode(floatswitch, INPUT);
pinMode(manualtriggerpin, INPUT);
digitalWrite(Solenoid Apin, LOW);
digitalWrite(Solenoid Bpin, LOW);
digitalWrite(peristaltic, HIGH);

void loop() {

int floatswitchstate = digitalRead(floatswitch);

if (floatswitchstate LOW)
{digitalWrite(peristaltic, LOW);

led.setCursor(0,0);

}
if (floatswitchstate == HIGH) {

led.setCursor(0,0);

if (tempC < (tempsetpoint-1)){

led.print(” Tube is below templ!!”);}

else led.print(” Automated Purge&Trap”);}
LM35value = analogRead(LM35Pin); //read the
value from the temp sensor

tempC = LM35value / 9.31;

tempdiff = tempsetpoint - tempC;

float temppercent = tempdiff * 2.5 * extrapower;



//mappedLM35 = map(LM35value, 0, 1023, 0, 255);
//scale 1024 analoge bits to 256 digital

//POS = mappedLM35 / tempsetpoint *100;

// if (POS < 80) {

if (tempC >= tempsetpoint) {
heatervalue = 0;

}

if (tempC < tempsetpoint) {

heatervalue = temppercent * 2.55;

Y

// if (POS > 80) {

// heatervalue = (255/100)*(100 - POS);
//}

analogWrite(omegaSSRout, heatervalue);
the PWM value to the heater pin
analogWrite(heaterPin, omegatempvalue);

/ /write

int TDtrigger = digitalRead(TDrelaypin);

int manualtrigger = digitalRead(manualtriggerpin);
if ((manualtrigger == LOW) && (Running
false)) {TDtrigger = HIGH;}

if (TDtrigger == HIGH) {

count = count + 1;

if ((count == 1) && (Running == false)){
triggertime = millis();
led.setCursor(0,1);

led.print (" Purging sample lines”);
countdownitem = linepurgeinterval;
linespurged = false;

tubefilled = false;

tubepurged = false;

tubeflushed = false;

Running = true;

1}

else {count = 0 ;}

currenttime = millis();
if (Running == true){

if ((currenttime - triggertime > filterpurgeinter-
val) && (linespurged == false)) {
digitalWrite(Solenoid Apin, HIGH);
led.setCursor(0,1);

led.print (" Purging lines&filter”);}

if ((currenttime - triggertime > linepurgeinter-
val) && (linespurged == false)) {
digitalWrite(Solenoid Apin, HIGH);
digitalWrite(Solenoid Bpin, HIGH);

//extrapower = 4;

led.setCursor(0,1);

led.print(” Filling purge tube 7);

countdownitem = fillinterval;

linespurged = true;

}

// if ((currenttime - triggertime > linepurgeinterval)
&& (linespurged == false)) { // }

if ((currenttime - triggertime > fillinterval) &&
(tubefilled == false)) {

digitalWrite(Solenoid Apin, LOW);
digitalWrite(Solenoid Bpin, LOW);
led.setCursor(0,1);

led.print(” Purging tube ”);

countdownitem = flushinterval;

tubefilled = true;

//extrapower = 4;

¥

// if ((currenttime - triggertime > linepurgeinterval)
&& (linespurged == false)) {

/]}

if ((currenttime - triggertime ; flushinterval) &&
(tubepurged == false)) {
digitalWrite(Solenoid Apin, LOW);
digitalWrite(Solenoid Bpin, HIGH);
led.setCursor(0,1);

led.print(” Evacuating tube 7);

countdownitem = flushtime;

tubepurged = true;

}

// if ((currenttime - triggertime > linepurgeinterval)
&& (linespurged == false)) {

/]}

if ((currenttime - triggertime > flushtime) &&
(tubeflushed == false)){

digitalWrite(Solenoid Apin, LOW);
digitalWrite(Solenoid Bpin, LOW);

Running = false;

led.setCursor(0,1);

led.print(” Waiting for sample ”);

tubeflushed = true;

Hi



if (currenttime - previoustemptime > dataupdate-
speed) {

previoustemptime = currenttime;
led.setCursor(0, 3);

led.print(” Tube = );

led.print (tempC,1);
led.print((char)223);

led.print(”C 7);
led.setCursor(14,3);

led.print(” P=");
led.print(temppercent,0);
led.print("% ”);

if (Running == true) {
countdown = countdownitem - (currenttime - trig-
gertime);
led.setCursor(8,2);
led.print (countdown /1000);
led.print(sec 7);

// led.setCursor(15,3);

// led.print(” TRUE ”);

}

else {led.setCursor(8,2);
led.print(” 7);

// led.setCursor(15,3);

// led.print("FALSE”);

H}



