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Abstract

This paper presents a multivariate general Pareto distribution (MGPD) method and
builds a method for solving MGPD through the use of a Monte Carlo simulation for
marine environmental extreme-value parameters. The simulation method has proven
to be feasible in the analysis of the joint probability of wave height and its concomi-5

tant wind from a hydrological station in the South China Sea (SCS). The MGPD is the
natural distribution of the multivariate peaks-over-threshold (MPOT) sampling method,
and is based on the extreme-value theory. The existing dependence functions can be
used in the MGPD, so it may describe more variables which have different dependence
relationships. The MGPD method improves the efficiency of the extremes in raw data.10

For the wave and the concomitant wind from a period of 23 years (1960–1982), the
number of the wave and wind selected is averaged to 19 per year. For the joint con-
ditional probability of the MGPD, the relative error is rather small in the Monte Carlo
simulation method.

1 Introduction15

Statistical modeling of extreme values (EV) plays a crucial role in design and risk eval-
uation in ocean engineering, and multivariate extreme-value distributions have been
extensively developed over the last decades. This has been shown by several studies
(Morton and Bowers, 1996; Sheng, 2001; Yang and Zhang, 2013). Problems concern-
ing ocean environmental extremes are often multivariate in character. An example of20

this is that ocean environments (including waves, wind and currents) all contribute to
the forces experienced by offshore systems during typhoons. Thus the severity of such
a typhoon event may be described by a function of both wind speed peak and con-
comitant wave height. When the force of a system is dominated by both wind and
concomitant wave, it may be sufficient to employ a 50-year return wave and 50-year25

return wind as a design criterion. However, the 50-year return wind and 50-year return
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wave do not occur at the same time. Therefore, any simple analysis assuming a per-
fect correlation between the wind and waves is likely to overestimate the design value
(Morton and Bowers, 1996). Therefore, analyzing the encounter probability among the
ocean environments by means of the multivariate distribution can offer useful reference
in evaluating a project’s safety and cost.5

In multivariate EV theory, two sampling methods – the block maxima method and the
peaks-over-thresholds (POT) method – have been developed. These methods respec-
tively correspond to two natural distributions: multivariate EV distribution (MEVD) and
multivariate general Pareto distribution (MGPD). MEVD is the natural distribution of the
block maxima of all components. A typical example is that a block is a year and the10

block maxima are the annual maxima. MGPD is the theoretical distribution of the multi-
variate peaks-over-threshold (MPOT) method, in which the sample includes all values
which are larger than a suitable threshold. Rootzén and Tajvidi (2006), based on the
research of Tajvidi (1996), suggest that MGPD should be characterized by the follow-
ing few properties: (i) exceedances (of suitably coordinated levels) asymptotically have15

a multivariate GP distribution if and only if componentwise maxima asymptotically are
EV distributed,(ii) the multivariate GP distribution is the only one which is preserved
under (a suitably coordinated) change in exceedance levels. The MPOT method has
a high utilization rate of raw data and a more stable calculation result; as a result it
has recently become widely used. The study of Morton and Bowers (1996) is based on20

the response function with wave and wind speed of anchoring semi-submersible plat-
forms, enabling analysis of extreme anchorage force and corresponding wave height
and wind speed through the use of logical extreme-value distribution. In that study, the
authors do not use the natural distribution of the MPOT method, MGPD, to fit samples
but instead bivariate extreme-value distribution to fit the POT samples. Coles and Tawn25

(1994) also follow the same idea. MGPD theory has improved greatly in recent years,
but the definition of MGPD still needs further research. Bivariate threshold methods
were developed by Joe et al. (1992) and Smith (1994) based on point process theory.
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MGPD has been the focus of certain studies, and further detail about it can be found in
Rootzén and Tajvidi (2005), Tajvidi (1996), Beirlant et al. (2005) and Falk et al. (2004).

However, due to difficulties regarding MGPD in the solving procedure, (in general,
with the dimension increased, the calculated quantity and complexity also rapidly in-
crease), the application of MGPD in ocean engineering has been restricted. The use of5

Monte Carlo simulation is feasible to solve these problems because it only changes in-
ner product operation and the complexity of the algorithm does not increase as dimen-
sion decreases. Liu et al. (1990) use the Monte Carlo simulation for the design of off-
shore platforms, and practical examples prove its fast calculation speed and high pre-
cision in compound extreme-value distribution. Philippe (2000) presents a new param-10

eter estimation method of bivariate extreme-value distribution that uses Monte Carlo
simulation. Shi (1999) presents a Monte Carlo method from a simple trivariate nested
logistic model. Stephenson (2003) gives methods for simulating from symmetric and
asymmetric versions of the multivariate logistic distribution, and compares many of the
Monte Carlo simulation methods of multidimensional extreme distribution.15

We have developed a procedure to handle the application of MGPD in marine engi-
neering design. This paper uses the Monte Carlo simulation to solve the MGPD equa-
tion, and is structured as follows. The Monte Carlo method is introduced in Sect. 2.
Fundamental to the application of MGPD is the choice of the optimal joint threshold
and the estimation of the joint density: these aspects, including a case study, are dis-20

cussed in Sect. 3. Finally, in Sect. 4, the advantages of MGPD and its Monte Carlo
simulation are outlined.

2 Monte Carlo simulation of MGPD

2.1 MGPD theory

The MGPD method is based on the extreme-value theory, and has been widely used25

around the world. Generalized extreme value distribution (GEVD) is the theoretical
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distribution of all variation block maxima. GPD describes the properties of extremes of
all variations over threshold after declustering, the so-called POT distribution. Based on
the relationship of GPD and GEVD, H(x) = 1+log(G(x)), log(G(x)) > −1, the distribution
function of MGPD can be deduced:

W (X ) = 1+ log(H(x1, . . .,xd ))5

= 1+

(
d∑

i=1

xi

)
D

(
xi∑d
i=1xi

, . . .,
xd−1
∑d
i=1xi

)
log(G(x1, . . .,xd )) > −1, (1)

where (x1, . . .,xd ) = x ∈ U , U is a neighborhood of zero in the negative quadrant

(−∞,0)d , D is the Pickands dependence function in the unit simplex Rd−1 on the do-

main of definition, and Rd = {x ∈ [0,∞)d |∑d
i=1xi = 1} ; H(x1, . . .,xn) is a multivariate

extreme-value distribution function whose marginal distribution is a negative exponen-10

tial distribution (detail in René, 2007). Thus MGPD has a variety of different types of
distribution functions (Coles et al., 1991) because of different Pickands’ dependence
functions. The logistic dependence function is simple to use and has favorable statisti-
cal properties, and it is widely used in hydrology, finance and other fields. The bivariate
logistic GPD is15

Dr
(
t1, . . .,td−1

)
=



d−1∑

i=1

tri +

(
1−

d−1∑

i=1

ti

)r


1/r

, (2)

Wr (x) = 1−
(

d∑

i=1

(−xi )r
)1/r

= 1−‖x‖r , (3)

where r is the correlation parameter of dependence function and r > 1. x and y , in the
interval (−1, 0), are variables of standardization. The density function is

w(x,y) =
∂W
∂x∂y

= (r −1)(xy)r−1[(−x)r + (−y)r
]1/r−2 x < 0,y < 0. (4)20
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In this paper, we will always consider MGPD W with uniform margins. The marginal
distributions of x and y are always transformed into a GPD with uniform margins by a
suitable marginal transformation (René, 2007). Before the transformation, the distribu-
tions of x and y are F (x; r 1) and F (x; r 2), where the parameter r 1 and r 2 will also be
evaluated. These parameters r , r 1 and r 2 can be evaluated by means of the following5

method: first, r 1 and r 2 are evaluated, and then they are introduced into the MGPD
W for estimation of r . Alternatively, it can be evaluated by means of a global method:
estimation of the parameters by using the maximum likelihood for the density function
w(x, y ; r , r 1, r 2). The global method evaluated results as more reliable due to the
final function form concerned, but the processes of evaluation are more complex. The10

maximum-likelihood function is

L(r) =
n∑

i=1

ln (wr (xi ,yi )) . (5)

2.2 Simulation method

Using polar coordinates to better demonstrate the simulated method of MGPD,

Tp(x1, . . .,xd ) = (
x1

x1 + . . .+xd
, . . .,

xd−1

x1 + . . .+xd
,x1 + . . .+xd ) = (z1, . . .,zd−1,c), (6)15

where Tp is the change of the vector (x1, . . .,xd ) into a polar coordinates. C = x1+ . . .xd
and Z = (x1/C, . . .,xd−1/C) are radial component and angular components, respec-
tively; these are referred to as the Pickands polar coordinate.

In the Pickands polar coordinate, W (X ) presents different properties. Let us assume
that (X1, . . .,Xd ) follows MGPD W (X ) and that its Pickands dependence function D20

exists as a d -order differential. We define the Pickands density of H(X ) as

φ(z,c) = |c|d−1

(
∂d

∂x1, . . .,∂xd
H

)
T−1
p (z,c) . (7)
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If we assume that µ =
∫
Rd−1

ϕ(z)dz > 0 and constant c0 < 0 exist in a neighborhood of
zero, then the simulation method of MGPD is as follows: (1) generate uniform random
numbers on unit simplex Rd−1; (2) generate random vector (z1, . . .,zd ) based on the
density function f (z) = ϕ(z)

µ of Z = (z1, . . .,zd−1) in the Pickands polar coordinate com-
bined with the acceptance–rejection method; (3) generate uniform random numbers5

on (c0,0); and (4) calculate vector
(
cz1, . . .,czd−1,c−c∑d−1

i=1 zi
)

, which is a random

vector for satisfying the multivariate over-threshold distribution.
The c0 above is the joint threshold in the MGPD method. This paper determines the

threshold following the principle of Coles and Tawn (1994).

2.3 Joint probability distribution10

With the development of offshore engineering, joint probability study for extreme sea
environments such as wind, waves, tides and streams is beginning to receive much
more attention. API (American Petroleum Institute), DNV (DET NORSKE VERITAS)
and so on were not proposed an explicit method as design criteria for marine structures
although they made some relevant rules. API (1995) suggests three options, one of15

which is “Any ‘reasonable’ combination of wind speed, wave height, and current speed
that results in the 100-year return period combined platform load”. The joint return
period of two variables needs to be considered for the probability of encounter between
variables. Conditional probability can represent the probability of encounter between
the extreme value of main marine environmental elements and the extreme value of its20

simultaneous marine environmental elements. For example, the probability of a 50-year
return wave and a 50-year return wind speed occurring simultaneously at the same
place is very small. Therefore, it is critical to use conditional probability to describe
the probability of their joining together and analyze the effect of all kinds of marine
environmental elements with regard to engineering.25
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The joint distribution of bivariate Pareto distribution function W (x,y) is

W (x,y) = Pr(X < x,Y < y).

Wx(x) and Wy (y) are marginal distributions of x and y , respectively. Conditional
extreme-value distribution can be as follows:

Conditional probability 1:5

Pr(X ≥ x|Y ≥ y) =
Pr(X ≥ x,Y ≥ y)

Pr(Y ≥ y)
=

1−WX (x)−WY (y)+W (x,y)

1−WY (y)
; (8)

conditional probability 2:

Pr(X ≤ x|Y ≥ y) =
Pr(X ≤ x,Y ≥ y)

Pr(Y ≥ y)
=
WX (x)−W (x,y)

1−WY (y)
; (9)

conditional probability 3:

Pr(X ≥ x|Y ≤ y) =
Pr(X ≥ x,Y ≤ y)

Pr(Y ≤ y)
=
WY (y)−W (x,y)

WY (y)
; (10)10

conditional probability 4:

Pr(X ≤ x|Y ≤ y) =
Pr(X ≤ x,Y ≤ y)

Pr(Y ≤ y)
=
W (x,y)

WY (y)
. (11)

Another four conditional probability distributions can be deduced by swapping two vari-
ables.

3 Case study15

3.1 Sample selection of over-threshold values and marginal distribution

The raw data of the paper are wave height and synchronous wind speed observed four
times a day over 23 years from an ocean hydrological station in the South China Sea
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(SCS). In the sample, the maximum winds reached 40 ms−1 and the maximum wave
height was 8.50 m. The extreme wind speed and its corresponding wave height are
selected as research samples. The sample of the over-threshold method is from the
extreme value of blocks, and the principle behind declustering is to maintain sample
independence. In the SCS, typhoons occur frequently and are the cause of almost all5

extreme wind speeds and wave heights. Generally, a typhoon may last several days or
1 week in the SCS, and so this paper declusters by 5-day intervals, taking the maximum
value of a block. If the interval between two extremes is less than 2 days, then we need
to delete smaller values from the samples in order to keep independence. Except for
some individual processes of the storm which last a long time, most of the data meet10

the requirements of independence.
After the sample has been fixed and completed according to the requirements of

independence, 1436 groups of extreme wind speed and corresponding wave height
are selected. Their marginal distributions can be described by means of GEVD. GEVD
includes three types of extreme-value distribution, and both marginal distributions use15

three variables for GEVD in this paper.

F (x) = P (X < x) = exp
{
−
[
1− ξ

(x−µ
σ

)]1/ξ}
,ξ 6= 0, (12)

where ξ,σ and µ are the three variables of GEVD; these are estimated by means of
a maximum-likelihood estimate. Figure 1 shows the probability plot of marginal distri-
bution. For the annual maximum of wind speed and wave height, a Pearson type III20

distribution is used to obtain return period values of wind speed and wave height in
one dimension (see Fig. 2). The Pearson type III distribution is

F (x) = P (X < x) =
βα

Γ(α)

x∫

−∞

(x−µ)α−1 exp[−β(x−µ)]dx. (13)
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3.2 The joint probability distribution

The bivariate logistic generalized Pareto distribution was selected, and the data were
converted to negative exponential distribution in the interval (−1,0) due to the active
interval of the method being (−∞,0). The MGPD model of the paper is based on
multivariate extreme-value distribution; the joint threshold can be calculated using the5

method developed by Coles and Tawn (1994). The joint threshold is c0 = −0.7, and
there are 450 groups of the combination of wind speed and wave height over c0. Fig-
ure 3a shows the samples of over-threshold values. In the left-hand panel of Fig. 3a,
c0 = −0.7 is a curve, and the right side of the curve shows values over the threshold. In
the right-hand panel of the Fig. 3a, c0 = −0.7 is a line, and the area to the top right of10

the line represents over-threshold values the converted data in polar coordinates. The
joint distribution is shown in Fig. 3b.

3.3 Comparison of stochastic simulation results

Figure 4 shows the over-threshold values and the data of stochastic simulation by
N = 50 000 and N = 100 000, respectively.15

The simulation results are in agreement with the actual situation, showing that the
MGPD method was successful. The scatter diagrams show the results directly, but
they require further quantitative analysis in order to show the differences of them ob-
jectively. A couple of the conditional probabilities mentioned above are used in this
paper: (1) P (H > h|V > v) and (4) P (H < h|V < v), which mean (1) the probability of the20

wave height over h under the wind speed over v and (4) the probability of the wave
height less than h under the wind speed less than v , respectively. Both of these actu-
ally respond to the probability of extreme-value wave height and its corresponding wind
speed joint occurrence.

Figure 5 shows the calculation of the conditional probability P (H > h|V > v) by group25

h = 7.99m and v = 37ms−1. The Monte Carlo method is used to calculate its condi-
tional probability through the result of the simulation based on the definition of con-
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ditional distribution. As is shown in Fig. 5, the difference values of the simulation and
the model are related to the simulation times N. A relative difference value has been
reduced with the increase in simulation times. When the simulation times are up to
2×106, the relative error value of simulation results and calculation results is 0.1 %,
which shows that the error of simulation results is acceptable.5

Based on the results with simulation times 2×106, Tables 2 and 3 represent the
calculation results of two different conditional probabilities.

Tables 2 and 3 show, for five groups, the calculation and stochastic simulation re-
sults of conditional probability 1 and 4 for different combinations of wave height and
wind speed. In the two tables, probability 20, 10, 5, 2 and 1 % represent 5, 10, 20, 5010

and 100-year return wave heights and wind speeds, respectively, which are obtained
by the annual maximum value and Pearson type III distribution. The results for the cal-
culation and the stochastic simulation are similar. For instance, the calculated result of
the probability of greater than the 10-year return value (7.08 m) for wave height when
wind speed is greater than the 10-year return value (37 m s−1) is 94.67 %, whereas the15

stochastic simulation result of the same conditional probability is 94.44 %. The relative
error is 0.24 %. For conditional probability 4, the calculated result of the probability of
less than the 5-year return value (4.65 m) for wave height when wind speed is less than
the 50-year return value (43.41 m s−1) is 98.78 %, whereas the stochastic simulation
result of the same conditional probability is 95.73 %. The relative error is 3.09 %. Syn-20

thesizing all conditional probabilities among the different extreme sea environments is
beneficial for finding a balance between investment and risk with regard to engineering,
and can provide a scientific basis for pre-estimates of risk.

4 Conclusions

1. This paper presents the theoretical method of MGPD, which is based on existing25

multivariate extreme-value distribution and can describe various dependence re-
lationships among different extreme-value variables. The model is based on the
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theory of extreme values, which is well founded, and the intrinsic properties of all
extreme variables are taken into consideration.

2. Through analysis of conditional probability, the Monte Carlo method of MPOT
has only small errors, and provides a solution for the analysis of multivariate and
complex cases, and thus the technique shows promise for future use.5

3. Conditional probability includes the probability of extreme events being encoun-
tered, and provides the theoretical basis for finding the best balance point be-
tween engineering cost and risk.

4. The model of MGPD has the ability to describe the probability of multivariate
extreme-event occurrence at the same time. A larger sample size than traditional10

annual extreme-value methods allows for the extreme features of the raw data to
be maintained as best as possible.
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Table 1. Parameters of marginal distribution.

ξ σ µ

Wind speed 0.108 2.807 13.488
Wave height 0.008 0.861 1.763
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Table 2. Comparison of the results of conditional probability 1.

P (%) 20 10 5 2 1
V (ms−1) 26.38 37 40.01 43.41 45.67

H (m) c s c s c s c s c s

20 4.65 85.71 85.59 99.89 100.00 99.97 100.00 99.99 100.00 100.00 100.00
10 7.08 11.38 11.41 94.67 94.44 98.72 99.03 99.75 98.95 99.92 97.62
5 7.99 4.05 4.14 80.10 80.02 94.93 95.79 99.02 98.95 99.68 97.62
2 9.13 1.13 1.11 40.05 38.25 75.42 73.14 94.75 91.58 98.26 97.62
1 9.98 0.45 0.49 17.83 18.91 45.36 48.22 83.08 80.00 94.15 92.86

c: calculation results by analytic solution; s: simulation results.
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Table 3. Comparison of the results of conditional probability 4.

P (%) 20 10 5 2 1
V (ms−1) 26.38 37 40.01 43.41 45.67

H (m) c s c s c s c s c s

20 4.65 99.24 97.29 98.79 95.77 98.78 95.74 98.78 95.73 98.78 95.73
10 7.08 100.00 99.99 99.95 99.82 99.94 99.79 99.94 99.78 99.94 99.78
5 7.99 100.00 100.00 99.99 99.96 99.98 99.94 99.98 99.93 99.98 99.92
2 9.13 100.00 100.00 100.00 100.00 100.00 99.99 100.00 99.98 99.99 99.98
1 9.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00 99.99

c: calculation results by analytic solution; s: simulation results.
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Figure 1. Fitting testing of marginal distribution: (a) wind speed and (b) wave height.
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Fig. 1 fitting testing of marginal distribution, (a) wind speed (b) wave height 3 

 4 

Fig. 2 calculation of wind speed samples and wave height return value 5 

 6 

Fig. 3 (a) over threshold value of wave height and wind speed  7 

(b) joint distribution of extreme value of wave height and wind speed 8 
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Figure 2. Calculation of wind speed samples and wave height return values.
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Fig. 1 fitting testing of marginal distribution, (a) wind speed (b) wave height 3 
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Fig. 2 calculation of wind speed samples and wave height return value 5 
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Figure 3. (a) Over-threshold values of wave height and wind speed. (b) Joint distribution of
extreme values of wave height and wind speed.
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Figure 4. Over-threshold values and data of stochastic simulation.
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Figure 5. The change in simulation accuracy.
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