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Abstract

A realistic circulation model of the North Atlantic ocean at 1/4◦ resolution (NATL025
NEMO configuration) has been adapted to explicitly simulate model uncertainties. This
is achieved by introducing stochastic perturbations in the equation of state to represent
the effect of unresolved scales on the model dynamics. The main motivation for this5

work is to develop ensemble data assimilation methods, assimilating altimetric data
from past missions JASON-1 and ENVISAT. The assimilation experiment is designed
to better control the Gulf Stream circulation for years 2005/06, focusing on frontal re-
gions which are predominantly affected by unresolved dynamical scales. An ensemble
based on such stochastic perturbations is first produced and evaluated using along-10

track altimetry observations. The Incremental Analysis Update (IAU) scheme is applied
in order to obtain an ensemble of continuous trajectories all over the 2005/06 assimila-
tion period. These three elements – stochastic parameterization, ensemble simulation
and 4-D observation operator – are then used together to perform a 4-D analysis of
along-track altimetry over 10 day windows. Finally, the results of this experiment are15

objectively evaluated using the standard probabilistic approach developed for meteo-
rological applications (Toth et al., 2003; Candille et al., 2007).

The results show that the free ensemble – before starting the assimilation process
– correctly reproduces the statistical variability over the Gulf Stream area: the system
is then pretty reliable but not informative (null probabilistic resolution). Updating the20

free ensemble with altimetric data leads to a better reliability with an information gain
around 30 % (for 10 day forecasts of the SSH variable). Diagnoses on fully independent
data (i.e. data that are not assimilated, like temperature and salinity profiles) provide
more contrasted results when the free and updated ensembles are compared.
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1 Introduction

One of the challenges in ocean data assimilation is to faithfully describe the uncer-
tainty of the ocean state estimates using observations and models. Another challenge
is to deal with a wide range of spatial and temporal scales (Haines, 2010). On the
one hand, the models cannot resolve all the small scales that may have a significant5

impact on the larger scales in the ocean circulation. On the other hand, this complex
system is sparsely constrained – in space and time – by the observations network, e.g.
the spatial observation only monitors the surface of the ocean. This situation results in
a very partial description of the chaotic processes characterizing the ocean circulation.
These conditions tend to invalidate the theoretical assumptions of linearity and gaus-10

sianity (Nichols, 2010) on which classic data assimilation methods (Talagrand, 2010;
Kalnay, 2010) are based on. To improve the efficiency of data assimilation in geo-
physics, ensemble based methods have been developed (e.g. Evensen, 1994; Burgers
et al., 1998; Evensen, 2003). Ensemble methods are designed to describe the evolu-
tion of the probability density function (pdf) of the ocean and thus provide a useful way15

to represent the uncertainties associated with complex systems. These uncertainties
mainly come from the unresolved scales by the model, and from the interactions be-
tween the model and the external forcings (e.g. the atmospheric forcing). To account
for these uncertainties, the model cannot be considered as deterministic and must be
transformed into a probabilistic model. To be more explicit, let us denote A the space20

of the scales resolved by the model and B the space of all the unresolved scales and
all the interactions between the model and the external forcings. The probabilistic ap-
proach allows objective comparisons between the model (in A) and the observations
(in A∪B) by providing sufficient conditions to invalidate the model. This approach also
considers the model as a weak constraint to data assimilation problems by including25

the explicit description of model uncertainties.
Stochastic parameterizations are one of the most convenient ways to explicitly in-

troduce the uncertainties in the models. This approach has been commonly used for
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15 years in weather ensemble forecasting (Buizza et al., 1999) as well as in other at-
mospheric fields (Palmer et al., 2005). In oceanography, the models are still usually
considered as deterministic and the stochastic/probabilistic approach is pretty new in
this domain (Sakov et al., 2012; Kitsios et al., 2013; Porta Mana and Zanna, 2014; Yan
et al., 2014). A previous study on a realistic model (Brankart, 2013) shows that the5

explicit stochastic parameterization of the unresolved scales in the computation of the
equation of state has a clear impact on the larger dynamical circulation scales.

Following the results from Brankart (2013), the current study relies on the stochas-
tic parameterization of the equation of state to perform an ensemble simulation and
to design a data assimilation system based on altimetric observations. The main goal10

of this experiment is to better control the eddy-dynamics observed in the Gulf Stream
area (North Atlantic basin). The use of altimetric data for that purpose is motivated
by the positive impact on the description of the oceanic circulation obtained by inte-
grating altimetric data (like JASON-1 along-track data) into a deterministic assimilation
process with the SEEK filter (e.g. Verron et al., 1999; Testut et al., 2003). However,15

the new feature here is the probabilistic aspect of the experiment, which is central to
this paper. As already mentioned, considering an ensemble can be an efficient way to
describe uncertainties related to the ocean circulation. But to extract useful information
from this ensemble, validation must also be performed in a probabilistic way. For that
purpose the reliability and resolution properties are introduced, following the approach20

developed in the meteorological community (e.g. Toth et al., 2003). This will enable
objective comparisons between the ensemble simulation and observations.

Section 2 describes the realistic oceanic model configuration as well as the design
of the stochastic perturbations used to build the ensemble. Preliminary qualitative di-
agnostics of the ensemble are also presented in this section. Section 3 introduces25

probabilistic validation concepts and probabilistic measures – also called scores. At
this stage, first objective comparisons are performed between the model and the ob-
servations, and the uncertainty is quantified. Section 4 presents the ensemble 4-D-
assimilation scheme using the altimetric along-track data from JASON-1 and ENVISAT
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satellites, and shows probabilistic evaluation of the assimilation process. Finally, some
concluding remarks and discussions are presented in Sect. 5.

2 Model configuration and ensemble simulation

2.1 Model configuration

For this study, we need a model able to reproduce the eddy-dynamics in a realistic5

context that can be observed by the altimetric measurements. Moreover, the model
computer cost must be tractable to enable ensemble experiments.

The realistic model used for this experiment is the North Atlantic DRAKKAR config-
uration of NEMO version 3.4 (called NATL025, Barnier et al., 2006). This model has
a free surface formulation and the prognostic variables are the three-dimensional veloc-10

ity fields and the thermohaline variables. The model domain covers the North Atlantic
basin from 20◦ S to 80◦N and from 98◦W to 23◦ E. The horizontal resolution is 1/4◦,
which is considered as eddy-permitting in the mid-latitudes where the Rossby radius
of deformation is about 50 km. Lateral mixing of momentum and tracers is modelled
with a biharmonic operator. Vertical mixing is modelled by the TKE turbulence closure15

scheme, and convection is parameterized with enhanced diffusivity and viscosity. The
forcing fluxes are calculated through bulk formulations, using the ERA40 atmospheric
forcing fields (Uppala et al., 2005). Buffer zones are defined at the Southern, North-
ern and Eastern boundaries (which are closed), with restoring to Levitus climatology
(Levitus et al., 1998).20

The presented study covers years 2005/06 (when two altimetric satellites, in situ ob-
servations and external forcings are simultaneously available) and is mainly focused on
the control of the Gulf Stream dynamics. For comparisons against observations and for
assimilation process, the NEMO_OBS module (Bouttier et al., 2012; Lea et al., 2012)
is used to compute the model-equivalent at observation time and location. Actually,25

NEMO_OBS projects – by linear interpolations – the model outputs into the observation

2651

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/11/2647/2014/osd-11-2647-2014-print.pdf
http://www.ocean-sci-discuss.net/11/2647/2014/osd-11-2647-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
11, 2647–2690, 2014

Stochastic
assimilation

G. Candille et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

space at the exact observation time and location. The observations are the ARGO pro-
files (temperature and salinity variables, hereafter denoted T/S) provided by the UK-
MetOffice and the along-track altimetric data from JASON-1 and ENVISAT satellites
(provided by AVISO-CNES). In order to get comparable data between the SLA (Sea
Level Anomalies) observations provided by the satellites and the SSH (Sea Surface5

Height) model output, NEMO_OBS removes the 7 year mean sea surface – averaged
from 2002 to 2008 – computed using the stochastic version of the model simulation
(see next Sect. 2.2). In the following, SSH denotes both SLA observations and SSH
model outputs.

2.2 Model uncertainties10

Before building a NATL025-based ensemble required for data assimilation, we have
to wonder how to represent the uncertainties in the model, and how to simulate the
impacts of the unresolved small scales on the larger scale circulation. Brankart (2013)
has shown that the unresolved scales in the nonlinear seawater equation of state rep-
resent a major source of uncertainties in the computation of the large scale horizontal15

density gradient (from T/S large scale fields), and the impact of these uncertainties
can be simulated by random processes representing unresolved T/S fluctuations.

Following these conclusions, the NATL025-based ensemble is built by introducing
stochastic perturbations in the equation of state. In practice, a single non-perturbed
integration is first performed from Levitus (1989) to 1 January 2005 to spin up the20

model state. Then a 96-member ensemble of perturbed simulations is run for 6 months
with the following stochastic formulation of the equation of state:

ρ =
1
2

{
ρ
[
T +∆T ,S +∆S,po(z)

]
+ρ[T −∆T ,S −∆S,po(z)]

}
(1)

where po(z) is the reference pressure depending on the depth, and ∆T and ∆S are
a set of T/S perturbations defined as the scalar product of the respective local T/S25
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gradients with random walks ξ:

∆T = ξ · ∇T and ∆S = ξ · ∇S (2)

ξ are produced by first-order autoregressive processes (AR-1) with a 10 day decorre-
lation time scale, and horizontal and vertical standard deviations σs equal to 1.4 and
0.7 grid points respectively. ξ are uncorrelated over the horizontal and fully correlated5

along the vertical. These stochastic parameters are chosen to produce an ensemble
spread that is large enough for our purpose while keeping the model numerically stable.
Nevertheless, in order to avoid numerical instabilities, limiting factors are introduced
(1.5σs) on the perturbations and the time step of the stochastic model is divided by 4
compared to the time step of the classical model (600 s instead of 2400 s). Such an10

ensemble is thus built to spread mostly over areas with strong gradients and where the
equation of state is strongly nonlinear, for instance in the Gulf Stream area. In practice,
the ensemble simulation is performed on a massively-parallel computer, which enables
to produce a relatively large ensemble within a reasonable clock time. The size of the
ensemble (96 members) is chosen in order to satisfy several factors. Without consid-15

ering the numerical cost, the larger the size of the ensemble, the more accurate the
descriptions of the probability density functions (pdfs) and the covariance matrices.
The ensemble size is then a compromise between the numerical constraints and the
accuracy of the pdfs and covariances matrices associated with the ensemble. More-
over, we also have to take into account the saturation – depending on the ensemble20

size – of the probabilistic measures (see Sect. 3) with which the ensemble is evaluated.
These perturbations are designed to represent the major part of the uncertainties on

the large scale horizontal density gradient. We thus expect an impact on the mesoscale
circulation that is observable by altimetric data. But we cannot reasonably expect that
these perturbations can simulate all kinds of uncertainties that significantly influence25

the thermohaline circulation of the North Atlantic. This ensemble is designed to allow
an effective control of the mesoscale circulation by altimetric data, not to compensate
for any model deficiencies in the description of the thermohaline strcuture of the ocean.
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We now present a qualitative description of the 96-member ensemble running for 6
months (without any assimilation process). Figure 1 shows the variability of the dynami-
cal fields (SSH) depending on the stochastic perturbations (only 6 members are shown
here). This figure illustrates that the large scale patterns are similar in all members, but
every member presents different eddy-pattern: as expected, the largest variability of5

the ensemble is mostly located around the Gulf Stream front. Figure 2 summarizes
the ensemble spread observed in Fig. 1 by showing the SD after 6 months of growing
stochastic perturbations: as expected, the ensemble spread is larger in the most active
areas, especially around the Gulf Stream front.

Figure 2 also shows the verification areas and local points we used for the diagnos-10

tics in the rest of the paper. The main verification area (colour hexagon) focuses around
the Gulf Stream. Most of the subtropical gyre is removed from the verification area be-
cause ensembles have almost no spread there and very weak altimetric signals are
observed (compared to the signals in the Gulf Stream area). A smaller area is defined
in the Eastern Gulf Stream region (polygon Z) where the free run ensemble spread is15

the largest after 6 months integration. Finally, two points are selected to illustrate local
diagnostics: A = 68.5◦W 35.5◦N and B = 38.75◦W 45.5◦N.

Local examples (points A and B) of time series of the ensemble spreads are shown in
Fig. 6 (cyan curves) in next Section. On that figure we mainly see differences in ampli-
tudes and saturation-times between the two locations: large spread and fast saturation20

in A, and smaller spread and slower saturation in B. Globally, the ensemble spread
saturation over the whole Gulf Stream area is not really reached after 6 months. Never-
theless, the free run has been stopped because the global amplitude of the SD is suffi-
cient to explain the unbiased RMSE (not shown) between the ensemble mean and the
GLORYS2V1 reanalysis. The GLORYS2V1 reanalysis is produced for the 1992/200925

period with NEMO global configuration at 1/4◦, assimilating the T/S profiles, Sea Sur-
face Temperature (SST) and along-track SSH data (Ferry et al., 2012). This provides
an estimation of the true state of the oceanic circulation that can be directly compared
to the NATL025 outputs. In this way, we obtain a first estimation of the (stochastic)
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model error (ensemble mean against reanalysis) that is approximatively equal to the
ensemble SD after 6 months of simulation.

Now, the impact of the stochastic perturbations on 3-D-variables – T/S and velocity
profiles – is investigated. Figure 3 shows an example of ensemble profiles at locations
A and B. As expected, a larger spread is observed at location A, as compared to lo-5

cation B. In all cases, the spread decreases with depth and becomes negligible below
1000 m depth. Moreover, the spread on T and S mostly corresponds to a lifting and
lowering of the water column which is certainly appropriate to assimilate altimetric ob-
servations in eddy active regions (Cooper and Haines, 1996). As a result, we can also
anticipate that this ensemble is not appropriate to control other features of the vertical10

structure of the ocean.
To conclude this section, it is important to stress that such an ensemble simulation

contains a lot of useful information about the model dynamics. Many other diagnostics
could directly benefit from an ensemble point of view, as for instance the local fluxes
through the main straits, the local mixed layer depth, the meridional overturning circu-15

lation. This is however out of the scope of this overview which aims at introducing the
ensemble assimilation experiment. More important to us is the comparison between
this ensemble simulation and the real-world observations (as provided by JASON-1,
ENVISAT satellites and ARGO floats). The purpose of the next section is thus to pro-
vide a quantitative probabilistic evaluation of the ensemble against these observations.20

3 Ensemble validation

3.1 Probabilistic concepts

The ensemble evaluation issues are well-known and referenced in other communities
like atmospheric sciences and meteorology (e.g. Toth et al., 2003), but are quite new
in the field of oceanography. This subsection first introduces the basic concepts of25

probabilistic validation.
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The main concern here is to introduce the specific criteria for evaluating the quality of
a probabilistic system. Let us consider the following statement produced by an example
of probabilistic system: “there is 30 % probability that the Northern Sea Route is free
of ice”. Assuming the event “free of ice” is unambiguously defined, neither its observed
occurrence nor its non-occurrence can be legitimately used to validate or invalidate5

the produced ensemble. Unlike a deterministic system, the validation of a probabilistic
system cannot be performed over a single case (or realisation). One must use a statis-
tical approach, based on a sufficiently large set of realisations. Meaning this validation
requires an aggregation of a large set of independent realisations of the considered
process. After accumulating independent realisations of the probabilistic system, two10

probabilistic properties (attributes) can be measured: the reliability and the resolution.
In the example cited above, one has to wait until the 30 % probability is produced

by the system a number of times. Then one can first check the proportion of actual
observed occurrences of “free of ice”. If that proportion is equal or close to 30 %, the
probabilistic system can be considered as statistically consistent. If, on the contrary,15

that proportion is significantly different from 30 %, the system is statistically inconsis-
tent. One condition for the validy of a probabilistic system is therefore the statistical
consistency between produced probabilities and observed frequencies of occurrence
of the event under consideration. This property of statistical consistency is called relia-
bility. More generally, the reliability is the system ability in producing Probability Density20

Functions (pdf) in agreement with the associated observed pdf, i.e. the distribution of
the observed variable when a given pdf is produced.

The reliability attribute is a necessary condition to have a skillful probabilistic sys-
tem, but it is not a sufficient property. Actually, every system can be calibrated, i.e. it
can be transformed into a reliable system by replacing the produced pdfs by the as-25

sociated observed pdfs over a given verification set, and by applying this correction
to the pdfs produced by the system over the subsequent verification set (under sta-
tionnary assumption of the system). Also, if one knows the climatological distribution
of the observed variables over a given verification dataset, a system producing this
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distribution for each realisation of the verification dataset would be obviously reliable
. . . but it would provide no other useful information than the climatology (no need to
integrate a complex numerical model to obtain this result). Here, the term “climatology”
refers to either the distribution of the observations accumulated over a long past pe-
riod or the distribution of the observations associated with the considered verification5

dataset (in practice, the climatology often refers to the second option). For instance,
one knows the climatological frequency when the Northern Sea Route is free of ice
is 2 months a year (occurrence ≈ 16%). If a probabilistic system produce the 16 %
probability every day, it is reliable if one can evaluate its performance over a year, but
it cannot provide any information about the seasonal (for instance) variability of that10

probability of occurrence. In other words, a climatological system would be perfectly
reliable without providing any additional useful information. To determine if one has
a skillful probabilistic system, another attribute is then needed.

The resolution is the system ability to discriminate the disctinct observed situations;
this property is closely related to the information content and the entropy (e.g. Roul-15

ston and Smith, 2002). If the system is reliable, the resolution is also referred as the
sharpness which measures the spread of the produced pdfs. The resolution can then
be seen as the spread of the associated observed pdfs. The sharper the associated
observed pdfs compared to the climatological pdf, the better the resolution. In other
words, the resolution is the additional information, compared to the climatology, that20

can be potentially extracted from the probabilistic system.
In summary, a skillful probabilistic system must satisfied both reliability and resolution

criteria.

3.2 Practical probabilistic validation

Before introducing the different scores used to evaluate the reliability and the resolution,25

we briefly describe the way the probabilistic system are validated in practice.
As mentioned in the previous section, the validation of a probabilistic system must

be statistically performed by accumulating large enough independent realisations of
2657
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this system. For instance, in the following, the monthly diagnostics are computed by
aggregating the data – for each variable – over the whole month and the chosen area
for the same diagnosis. In this case, the climatology is the distribution of the available
observations over this month and this area. This could lead to a meaningless diagnosis
if the aggregated data are too heterogeneous over the chosen period and/or region. To5

evaluate the same probabilistic system, considering one verification dataset or two
separate sub-datasets could lead to very different conclusions in term of reliability due
to possible bias compensations, and in term of resolution due to different climatological
distributions (Hamill and Juras, 2006; Candille et al., 2007).

3.3 Probabilistic scores10

We first check the reliability of the ensemble described in Sect. 3.1 by introducing the
rank histogram (Anderson, 1996) and the Reduced Centered Random Variable (RCRV,
Candille et al., 2007). Let us consider that the simulated pdf is represented by an en-
semble of size N. For each realisation of the system, the N ensemble members are
ranked in increasing order, thereby defining N +1 intervals (or bins). Then we com-15

pute the rank of the verification (observation) within these bins, and the rank histogram
is built by accumulation over all availlable realisations – assumed independent – of
these ranks. The ensemble is reliable, i.e. the verification is statistically indistinguish-
able from the ensemble if it falls with equal probability in each of the N +1 intervals
and then shows a flat rank histogram (uniform distribution of the ranks). A non-uniform20

rank histogram characterizes a lack of reliability of the system. For instance, an ensem-
ble with many outliers, meaning that the verification values fall outside the ensemble,
presents a U-shape rank histogram and is called underdispersive. On the other hand,
an overdispersive ensemble, presenting a bell-shape rank histogram, means the verifi-
cation values too often fall inside the ensemble.25

In Fig. 4, the reliability of SSH is verified against along-track altimetric observations
from JASON-1 during the 10 day cycle from 29 June to 9 July 2005. The left panel
shows the observation ranks. Many outliers are observed, especially in the subtropical
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gyre. This is mainly due to the very small spread of the ensemble in this area (see
Fig. 2) combined to an important bias in the simulation (ensemble mean minus ob-
servation). Actually, the ensemble spread is so small in this area that the outliers only
reflects this local model bias. For the rank histogram construction (right panel), the
statistics are only accumulated over the Gulf Stream verification area (see Fig. 2) to5

avoid aggregating too heterogeneous data from the frontal region and the gyre. Graph-
ically, we observe a weak positive bias (asymmetric rank histogram to the left) and
a slight underdispersion. Note that observational error is taken into account in the rank
histogram construction by adding a Gaussian random noise to the ensemble mem-
bers (with SD consistent with the observation error used in the assimilation process,10

σo = 10cm, see next Sect. 4).
To numerically assess the lack of reliability graphically observed on the rank his-

togram, we introduce the Reduced Centered Random Variable (RCRV) as follows. For
each realisation of the system, the RCRV is defined as

y =
o−m
σ

(3)15

where m and σ are the mean and the SD of the simulated pdf and o the observed
value. Note that the observation error σo can be simply introduced in y by considering

σ =
√
σ2

ens +σ
2
o. The system is reliable, if the mean of y over all realisations of the prob-

abilistic system is null and its SD is equal to 1. In this way, the reliability is decomposed
into a (normalized) bias b = E [y ] and a dispersion d2 = E [y2]−b2. For the example in20

Fig. 4, the normalized bias and the dispersion from the RCRV are equal to b = −0.1
and d = 1.15 respectively, i.e. the system has a weak positive bias (10 %) and a slight
underdispersion (15 %).

These two diagnostics – the RCRV and the rank histogram – only measure the relia-
bility of the system. We need to use other scores evaluating the resolution to get a full25

probabilistic assessment of the skill of the ensemble.
The Continuous Rank Probability Score (CRPS, introduced by Stanski et al., 1989)

measures the global skill of a probabilistic system by evaluating both reliability and
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resolution. It is based on the square difference between the produced Cumulative Dis-
tribution Functions (cdf) of a univariate variable x and the corresponding cdf of the
observation:

CRPS = E
[∫
R

(
Fp(x)− Fo(x)

)2
dx
]

(4)

where Fp is the cdf associated with the produced pdf, Fo the cdf associated with the5

observation (a simple Heaviside distribution if no observation error is considered), and
E [·] is the average of the integrals over the whole verification dataset. Unlike the relia-
bility scores presented above, the CRPS has the dimension of the verification variables
(for instance expressed in meters for SSH, in Kelvin for temperature, etc.). The CRPS
can be decomposed into the reliability/resolution parts in many different ways. Here for10

practical and numerical reasons (see Candille and Talagrand, 2005), the decomposi-
tion described by Hersbach (2000) is chosen:

CRPS = Reli+Resol (5)

This decomposition is based on the same principle as the rank histogram construc-
tion. These scores are negatively oriented, i.e. the reliability part (Reli) is null for a re-15

liable system and the resolution part (Resol) goes from 0 for a perfect deterministic
system to Unc =

∫
RFc(x) (1− Fc(x))dx for a useless and non informative system. Fc is

the climatological cdf associated with the verification dataset, and Unc – called uncer-
tainty component of the CRPS – is the reference value of the CRPS only based on the
variability of the verification dataset. A value of Resol larger than Unc indicates that the20

system is poorer than climatology. Evaluated through the CRPS, a skillful probabilistic
system must satisfy two criteria: Reli = 0 and Resol� Unc. From the resolution crite-
rion, a measure of the potential gain compared to the climatology can be defined as
follows:

G = 1− Resol
Unc

(6)25
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Considering the case in Fig. 4, the uncertainty associated with the along-track SSH of
JASON-1 is Unc = 0.070, and the CRPS and its decomposition are equal to 0.076 =
0.005+0.071. This indicates that the system is poorly informative with G < 0 in this
example. We can then conclude that – after 6 months of stochastic perturbations inte-
gration – the ensemble produced by the sytem tends to the climatology of the verifica-5

tion dataset: pretty good reliability but poor resolution. In summary, we have here an
example of a full probabilistic diagnosis on the SSH produced by the system against
JASON-1 along-track observations. Of course, such SSH diagnostics can be performed
against ENVISAT or both satellites.

The goal of the assimilation (next section) is then to improve the information con-10

tained in the system (i.e. improvement of the resolution), while keeping the system as
reliable as possible (i.e. without deteriorating reliability).

Now, we evaluate the skill of the system for the T/S profiles against ARGO obser-
vations. In this case, the statistics are accumulated during 10 days (JASON-1 cycle),
over the Gulf Stream verification area and over the first 0–200 m layer of the ocean15

(observations from different depths are considered independent). The observation er-
ror is estimated from 0–200 m observations errors based on Ingleby and Huddleston
(2007) study about the quality control of T/S profile data: σo = 0.9 K for temperature
and σo = 0.17 psu for salinity.

Figure 5 shows the rank histograms for both temperature and salinity. Unlike the20

SSH rank histogram, a strong underdispersion is here observed for both variables and
a negative bias is noticeable for salinity (asymmetry to the right side of the rank his-
togram).

The diagnostics related to the RCRV, shown in Table 1, numerically confirm the
graphical diagnostics from the rank histograms. The system is strongly underdisper-25

sive for both profile variables and salinity is also strongly negatively biased.
Table 2 shows the global CRPS score, its reliability/resolution decomposition and

the uncertainty associated with each verification dataset. The potential gain compared
to the uncertainty is G = 76% and G = 78% for temperature and salinity respectively.
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These large values of the gain are mainly due to the large heterogeneity of these vari-
ables (horizontal and depth) over the verification domain. This leads to a very large
spread of the climatological pdf used to compute the uncertainty, while the ensem-
bles are able to capture this spatial variability, even with a very poor reliability. This
highlights one of the crucial points of the statistical verification (see Sect. 3.2): in or-5

der to get a verification dataset large enough, we sometimes need to aggregate many
heterogeneous data.

Even if the potential reduction of uncertainty seems important (verification sample
size issue), the system can hardly be considered as skillful for T/S profile variables
considering the strong lack of reliability, especially the large underdispersion.10

This kind of diagnostics for T/S profiles was expected since the stochastic perturba-
tions of the model were not designed to explore the major uncertainties of the vertical
structure of the ocean (see Sect. 2.2). On the other hand, it has been shown that the
perturbations nevertheless produce a good representation of the uncertainties in the
surface circulation, which is something that we can expect to control with altimetric15

observations.
Using the prior ensemble described in this section, an assimilation scheme was im-

plemented for the altimetric along-track observations from JASON-1 and ENVISAT mis-
sions. A significant improvement in the surface circulation (SSH) is expected, without
negative impact on the thermohaline structure of the ocean.20

4 4-D-ensemble data assimilation experiment

The prior ensemble built in the previous section tends to reflect the climatological SSH
variability of the flow over the Gulf Stream area. What could be the benefit from an
assimilation process with altimetric data?
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4.1 Methodology

In this study, only altimetric data are assimilated and the focus is on the eddy-dynamics
over the Gulf Stream. The observations are along-track data coming from two different
satellites: 10 day cycle JASON-1 mission (≈ 350 km inter-track distance at the equator)
and 35 day cycle ENVISAT mission (≈ 80 km inter-track distance at the equator). The5

assimilation cycles are defined to fit with the 10 day cycle of JASON-1 and are then per-
formed within 10 day assimilation windows [tk ,tk+10]. The update (see details below) is
performed at the middle of the assimilation window tk+5 with all the observations and
the model equivalent (i.e. model outputs projected to the exact observations times and
locations) contained in the 10 day assimilation window. Increments are then computed10

for each ensemble member as explained below. The increment is then introduced into
the model using the Incremental Analysis Update (IAU) algorithm (Ourmières et al.,
2006): a 10 day integration runs from tk by injecting fractions of the increment step by
step all along the assimilation window. The full increment is thus introduced in the sys-
tem at the final time tk+10 of the assimilation cycle. The IAU ensemble at the final time15

of the cycle provides the initial conditions for the forecast ensemble of the next cycle.
The forecast ensemble trajectories are thus discontinuous from one cycle to the next,
while the IAU ensemble trajectories remains continuous (and avoid possible numerical
shocks which would occur if the increments were fully injected at one single time).

The assimilation scheme is a Kalman filter based method. The SEEK filter (Brasseur20

and Verron, 2006) is applied with a localisation (like in LETKF, Bishop et al., 2001). This
is a square root algorithm mixed with an ensemble methodology (Burgers et al., 1998)
where each member is individually updated. The ensemble approach enables to by-
pass the linearity assumption because each ensemble member is propagated by the
non-linear model M and directly projected into the observation space by operator H25

(via module NEMO_OBS) for the update. On the other hand, the Gaussian assumption
still remains for the ensemble update, but could easily be relaxed by anamorphosis
transformations (not done here, Brankart et al., 2012).
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Each member i of the forecast ensemble of vector state x is written

xf
i = xf +δxf

i (7)

where xf is the ensemble mean and δxf
i the associated anomalies which define the

columns (with factor 1/
√
N −1) of the forecast square root covariance matrix Sf (co-

variance matrix Cf = SfSfT ). Each ensemble member is projected into the observation5

space by H so that Hxf is the forecast ensemble mean in observation space and

δ
(
Hxf

i

)
are the associated anomalies defining the columns (with factor 1/

√
N −1) of

the forecast square root covariance matrix in the observation space HSf.
The ensemble mean is then updated with a square root algorithm (Brankart et al.,

2011), without requiring observation perturbation. The update is therefore computed in10

the eigen space of

Γ = (HSf)TR−1(HSf) = UΛU−1 (8)

where U and Λ are respectively the unitary matrix and the diagonal matrix with the
eigenvectors and eigenvalues of Γ. Note that the observation error covariance matrix
R is diagonal: R = σ2

o×I with σo = 0.1 m. The transformation into the eigen space of Γ is15

needed to make the algorithm compatible with the localisation process (see localisation
parameters below). The analysis ensemble mean xa is then updated as follows

xa = xf +SfU(I+Λ)−1(HSf)TR−1
(
yo −Hxf

)
(9)

xa thus depends on the innovation yo −Hxf, the observation error covariance R, and

the anomalies expressed both in model and observation spaces: δxf
i and δ

(
Hxf

i

)
.20

In a second time, each ensemble anomaly i is updated as follows

δxa
i =
√
N −1

(
S

f
U(I +Λ)−

1
2Λ

1
2U

T
)
i

(10)
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so that each updated ensemble member xa
i can be rebuilt from the updated ensemble

mean and its associated updated ensemble anomaly:

xa
i = xa +δxa

i (11)

The increments δxi = x
a
i −x

f
i are then computed and are introduced into the model

using the IAU method in order to produce a continuous updated ensemble. It is also5

important to mention that the stochastic version of the model is used for these assim-
ilation cycle (same as for the free run integration). As a result, no inflation factor is
needed in this scheme (Hamill et al., 2001): the stochastic perturbations are sufficient
to avoid the collapse of the ensemble by ensuring an appropriate spread.

To avoid the spurious effect of inaccurate long-range correlations the update is also10

performed with a localisation algorithm: the local assimilation areas are limited by a ra-
dius of 4.5◦ (≈ 450 km at 30◦N) and the observations influence are defined by gaussian
functions with SD of 1.5◦ (≈ 150 km at 30◦N).

As an illustration of the assimilation process described above, local time evolutions
of the 96-member ensemble is shown in Fig. 6 for 18 months (6 free run months and 1215

assimilation months). As already mentioned, we observe the saturation of the spread
of the free run ensemble (cyan curves) with different amplitudes and saturation time-
scales depending on the locations. This saturation shows that the local climatological
variabilities are reached. The updated ensembles (blue dots for the forecast ensemble
and green curves for the IAU ensemble) present a noticeable spread reduction and20

a temporal variability globally included in the climatological envelop defined by the
free run ensemble saturation. This kind of ensemble behaviors could foreshadow an
improvement of the probabilistic resolution without degrading the reliability. We also
note the spread reduction and a slight bias correction with the IAU ensemble compared
to the forecast one.25

The examples in Fig. 6 are a first qualitative evaluation of the updated ensembles.
The next subsection presents more quantitative and probabilistic evaluations of these
ensembles.
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4.2 Assimilation results

Since the diagnostics are performed against observations, we only focus this study
on SSH (JASON-1/ENVISAT altimetric data sets) and T/S profiles (ARGO buoys net-
work).

In order to generalize the first diagnostics suggested by Fig. 6, Fig. 7 shows the5

time series of the ensembles SD averaged over the Gulf Stream and Z-focus areas.
In this figure we can see first that the saturation of the SD is reached in the Z-focus
area but not over the global Gulf Stream area. The main reason for this is that the
Gulf Stream verification area contains locations where the perturbations grow very
slowly (e.g. near the subtropical gyre). The main point here is the reduction of the SDs10

observed with the introduction of the altimetric corrections. This reduction is effective
from the first assimilation cycle. After that, the averaged SD of the forecast and IAU
solutions is globally stabilized by the subsequent assimilation cycles. We also notice
the clear reduction of the SDs of the IAU ensemble as compared to the forecast. This
means that the stochastic perturbations are strong enough to produce a significant15

spread within 10 days and thus to avoid the ensemble collapse without introducing any
inflation factor. The 10 day oscillations of the SD is the result of the discontinuity of the
forecast ensembles.

As mentioned just before, the altimetric updates tend to reduce and stabilize the
SD, except the spurious increase observed around September 2005 (especially over20

the large verification area). This event is caused by a lack of observed data resulting
from missings JASON-1 tracks in September 2005, as shown in Fig. 8. This occasional
JASON-1 failure shows the impact of the satellite coverage on the updated ensembles,
resulting in an increase of the ensembles SD. That may sound obvious, but this shows
that the accuracy of the correction is very sensitive to the number of available altimetric25

data.
The same kind of behavior is observed on the T/S variables (not shown): the SD in-

creases with the free run ensemble and is reduced and stabilized by means of altimetric
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corrections. Nevertheless, the difference between the IAU and forecast ensembles SDs
is much smaller along the T/S profiles, simply because these variables are not assim-
ilated (unlike in Yan et al., 2014).

4.3 Probabilistic diagnostics for SSH

After studying the general characteristics of the ensemble, we now present the proba-5

bilistic diagnostics introduced in Sect. 3. We first investigate the reliability property of
SSH through the bias and the dispersion related to the RCRV. In Fig. 9, 3 sets of curve
are shown: dashed curves for verification against JASON-1 data, dotted curves for ver-
ification against ENVISAT data and solid curves for verification against both satellites
data. Note also that – for all the presented probabilistic scores in this section – the10

statistics are accumulated over one month (different from Sect. 3) and over the Gulf
Stream area. In the interpretation of the results, it is also very important to remark that
the IAU ensemble is checked against observations that have been used to compute
the increments. In this case, the ensemble system and the observations are not inde-
pedent. For the SSH variable, the 10 day forecast ensemble and observations are truly15

independent data.
The monthly time series (left panel) show no clear bias reduction compared to the

free run ensemble with altimetric corrections. The bias seems to present a seasonal
cycle (not explained). Nevertheless, the IAU ensemble reduces the bias as compared
to the forecast. This is due to the inbreeding between the IAU ensembles and the ob-20

servations in this case. Regarding the dispersion (right panel), the underdispersion of
the free run ensembles is removed by the altimetric corrections. The forecast ensemble
becomes almost perfectly dispersive while a slight overdispersion (≈ 85%) is observed
for the IAU ensemble (mostly due to the inbreeding with the observations).

Two results look contradictory at first sight: we observe the spread reduction of the25

IAU ensembles (Fig. 7) and in the same time the IAU ensembles overdispersion (Fig. 9
right panel). Actually, the spread of the ensemble is reduced, but also the bias against
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the observations so that the dispersion is finally degraded down to an overdispersive
system.

We now investigate the global CRPS measure for the SSH variable. Figure 10 shows
the reliability (left panel) and the resolution (right panel) components of the CRPS. The
resolution part is compared to the uncertainty associated with the verification dataset5

(this represents the climatological variability over the verification area and period).
The reliability – as measured by the CRPS – of the ensembles is improved by the

altimetric corrections compared to the free run ensemble. Also, the system becomes
more informative after assimilation processes (better resolution), i.e. the ensemble sys-
tem is more accurate in space and time for instance by correctly translating the eddies10

along the Gulf Stream front. For both components of the CRPS, the IAU ensemble per-
forms better than the forecast (these scores are negatively oriented), partially due to
the inbreeding between the IAU ensemble and the observations. The potential gain G
compared to the uncertainty is shown in Table 3.

The resolution curves in Fig. 10 (right panel) show that the free run ensemble has15

no resolution, i.e. G ≈ 0%. If we only look at the independent verification data, i.e. the
forecast ensemble, the potential gain we get with the assimilation process is up to 30%.

For the SSH variable the assimilation process leads to an information gain with a re-
liability improvement. Basically, the uncertainty (not the uncertainty from the CRPS) on
the 10 day forecast is reduced by 30% and this information is reliable.20

4.4 Probabilistic diagnostics for T and S

We now present the impact of the altimetric corrections on T/S profiles. The verification
is performed against ARGO observations. Figure 11 qualitatively shows this impact
at the nearest observed profiles from locations A and B (see Fig. 2) during the first
assimilation cycle.25

Considering the two local examples shown in Fig. 11, no clear improvement nor
degradation results from the altimetric corrections: the updated ensemble seems better
– smaller spread and model error – near location A, and worse – same spread but
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degrades the model error – near location B. In these two cases, anyway the vertical
structure of the profiles is not modified to fit with the observed vertical structure. In our
system the assimilation of altimetry alone does not provide sufficient constraint on the
profile structure.

To further investigate the probabilistic attributes of our ensembles along T/S profiles,5

we show the CRPS reliability part and the information gain (CRPS resolution part) for
temperature in the 0–200 m layer depth (Fig. 12).

Regarding T profiles, no noticeable difference can be detected in the score between
the free run ensemble and the updated ones. Further there is almost no difference in
the score between the forecast and the IAU ensembles. Considering the potential gain,10

the same remark can be done here as for the free run ensemble (see Sect. 3, Table 2).
On the other hand, the reliability CRPS part is very variable from month to month

compared to the SSH diagnostics. This can be explained by the spatial distribution of
the observed ARGO profiles used for the verification: for SSH this distribution is pretty
similar each month for the SSH (3 full JASON-1-cycles and 1 full ENVISAT cycle)15

except in exceptional situations like the one shown in Fig. 8, but for the T/S profiles it
is very variable depending on the ARGO buoys locations. Actually, from one month to
the other, very different areas are sampled by the ARGO moving network. As a result,
we can conclude that it is very difficult for the CRPS to measure any possible correction
on T/S profiles (like the weak impacts observed in Fig. 11).20

The results presented above indicate that the assimilation process leads to a more
skillful probabilistic system for SSH 10 day forecast and then for surface currents. The
altimetric corrections applied to the stochastic ensemble show clear positive impacts in
term of:

– improvement of the reliability of the system forecast, i.e. the confidence in the25

description of the uncertainty associated with the state of the flow increases,

– improvement of the resolution, i.e. reduction of the uncertainty by 30%.
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5 Conclusions

The main objectives of this study were

1. to explicitly represent the uncertainties inherent to the ocean circulation,

2. to implement a first experiment of a full 4-D-ensemble assimilation system based
on this stochastic model in a realistic configuration.5

One important source of uncertainty on model is simulated by introducing stochastic
parameterizations in the formulation of the equation of state (as in Brankart, 2013).
The effects of the unresolved scales on the ocean circulation are thus simulated,
and a stochastic perturbations ensemble is produced with the stochastic NATL025-
formulation. This ensemble is then objectively compared to altimetric observations10

(JASON-1/ENVISAT along-track data) and in situ T/S profile data (ARGO buoys net-
work). The present study shows that this ensemble correctly represents the climatolog-
ical variability of the eddy-dynamics over the Gulf Stream area, especially in the frontal
regions. The ensemble system (without assimilation) tends to be reliable – even if it is
globally slightly underdispersive – but provides no useful information on the mesoscale15

circulation (null probabilistic resolution associated with climatological system) as a re-
sult of the chaotic nature of the eddy flow. This ensemble is then updated by assimilat-
ing altimetric along-track data (JASON-1 and ENVISAT) through a full 4-D-ensemble
assimilation process: the covariance matrix is propagated by the ensemble and model
equivalent of every member computed at the exact observation time and location. The20

assimilation makes the ensemble more reliable – the underdispersion is reduced – and
more informative compared to climatology. The updated ensemble system is proba-
bilistically more skillful, considering the reliable reduction of uncertainty by 30 %.

The experiment presented in this study shows promising results in terms of uncer-
tainty, simulation and uncertainty reduction, but a number of aspects are still to be25

improved.
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First, the reduction of uncertainty has only been proved for the SSH analysis and
the 10 day forecast. No significant improvement could be objectively assessed for ob-
served T/S profiles (using the RCRV or CRPS measures). A positive objective as-
sessment is difficult to obtain for T and S because the observation coverage (ARGO
floats) is still sparse and quickly changes with time, because the computation of the5

scores thus requires aggregating observations with very heterogeneous statistics, and
because any possible improvement of the T and S mesocale structure is dominated
by other sources of uncertainty (like the large scale model bias). Other sources of un-
certainty should be introduced to effectively assimilate these observations, for instance
uncertainties in the atmospheric forcing (as in Yan et al., 2014), uncertainties in the10

initial condition, uncertainties in the model parameterizations (like the vertical mixing,
the mixed layer dynamics). Further work should be dedicated to design a probabilistic
model that is already reliable for T and S (or at least quite dispersive enough) be-
fore starting data assimilation, as we did in this paper for altimetry. This may require
to spend considerable time and effort to fine tune the parameterization of the various15

sources of uncertainty. To simplify this task, automatic procedure to estimate unknown
statistical parameters could be very helpful. Then, after assimilation has started, these
procedures could continue their work, for instance by using adaptative tuning of the
parameters linked to model uncertainty (i.e. a kind of generalization of the adaptative
estimator of model error covariances, see Dee, 1995). As we have tried to show in this20

paper, a correct simulation of model uncertainty is indeed necessary to produce con-
sistent probabilistic ocean forecasts, to perform ensemble data assimilation, and most
importantly to obtain objective verification scores.

The Supplement related to this article is available online at
doi:10.5194/osd-11-2647-2014-supplement.25
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Table 1. RCRV scores for 0–200 m layer temperature and salinity; same period and area as in
Fig. 4.

Bias Dispersion

Temperature −0.07 1.9
Salinity 0.50 2.5
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Table 2. Same as Table 1 for CRPS.

CRPS Reli Resol Unc

Temperature 1.12 0.28 0.84 3.44
Salinity 0.32 0.13 0.19 0.86
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Table 3. Potential gain G compared to the uncertainty from July 2005 to June 2006.

Forecast 11 % 20 % 22 % 16 % 18 % 19 % 20 % 21 % 25 % 30 % 32 % 27 %

IAU 26 % 32 % 34 % 30 % 31 % 32 % 31 % 32 % 34 % 40 % 42 % 39 %
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Figure 1. 6 members from the free run 96 member ensemble SSH (in m); snapshots for
9 July 2005.
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months of growing stochastic perturbations: as expected, the ensemble spread is larger in the most

active areas, especially around the Gulf Stream front.150

Figure 2. SSH standard deviation (in m) for July 9th 2005. The figure also shows the verification area (in

colour) used for the numerical diagnostics together with the smaller focus area Z. Points A and B are particular

locations used for diagnostics discussed elsewhere in the paper.

Figure 2 also shows the verification areas and local points we used for the diagnostics in the rest

of the paper. The main verification area (colour hexagon) focuses around the Gulf Stream. Most of

the subtropical gyre is removed from the verification area because ensembles have almost no spread

there and very weak altimetric signals are observed (compared to the signals in the Gulf Stream

area). A smaller area is defined in the Eastern Gulf Stream region (polygon Z) where the free run155

ensemble spread is the largest after 6 months integration. Finally, two points are selected to illustrate

local diagnostics: A = 68.5W 35.5N and B = 38.75W 45.5N.

Local examples (points A and B) of time series of the ensemble spreads are shown in Fig. 6 (cyan

curves) in next Section. On that figure we mainly see differences in amplitudes and saturation-times

between the two locations: large spread and fast saturation in A, and smaller spread and slower sat-160

uration in B. Globally, the ensemble spread saturation over the whole Gulf Stream area is not really

reached after 6 months. Nevertheless, the free run has been stopped because the global amplitude of

the standard deviation is sufficient to explain the unbiased RMSE (not shown) between the ensemble

mean and the GLORYS2V1 reanalysis. The GLORYS2V1 reanalysis is produced for the 1992/2009

period with NEMO global configuration at 1/4◦, assimilating the T/S profiles, Sea Surface Temper-165

6

Figure 2. SSH SD (in m) for 9 July 2005. The figure also shows the verification area (in colour)
used for the numerical diagnostics together with the smaller focus area Z. Points A and B are
particular locations used for diagnostics discussed elsewhere in the paper.
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Figure 3. Local profiles, 96-member ensemble for temperature (1st column), salinity (2nd col-
umn), meridional (3rd column) and zonal (4th column) velocity, 9 July 2005.
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N + 1 intervals (or bins). Then we compute the rank of the verification (observation) within these

bins, and the rank histogram is built by accumulation over all availlable realisations —assumed255

independent— of these ranks. The ensemble is reliable, i.e. the verification is statistically indistin-

guishable from the ensemble if it falls with equal probability in each of the N + 1 intervals and

then shows a flat rank histogram (uniform distribution of the ranks). A non-uniform rank histogram

characterizes a lack of reliability of the system. For instance, an ensemble with many outliers, mean-

ing that the verification values fall outside the ensemble, presents a U-shape rank histogram and is260

called underdispersive. On the other hand, an overdispersive ensemble, presenting a bell-shape rank

histogram, means the verification values too often fall inside the ensemble.

In Figure 4, the reliability of SSH is verified against along-track altimetric observations from

JASON-1 during the 10-day cycle from June 29th to July 9th 2005. The left panel shows the ob-

servation ranks. Many outliers are observed, especially in the subtropical gyre. This is mainly due265

to the very small spread of the ensemble in this area (see Fig. 2) combined to an important bias in

the simulation (ensemble mean minus observation). Actually, the ensemble spread is so small in this

area that the outliers only reflects this local model bias. For the rank histogram construction (right

panel), the statistics are only accumulated over the Gulf Stream verification area (see Fig. 2) to avoid

aggregating too heterogeneous data from the frontal region and the gyre. Graphically, we observe a270

weak positive bias (asymmetric rank histogram to the left) and a slight underdispersion. Note that

observational error is taken into account in the rank histogram construction by adding a Gaussian

random noise to the ensemble members (with standard deviation consistent with the observation

error used in the assimilation process, σo = 10cm, see next Section 4).

Figure 4. SSH JASON-1 tracks, local rank of the observations over 10-day JASON-1 cycle from June 29th to

July 9th 2005 (left panel) and rank histogram over the Gulf Stream verification area (right panel).

To numerically assess the lack of reliability graphically observed on the rank histogram, we intro-275

duce the Reduced Centered Random Variable (RCRV) as follows. For each realisation of the system,

10

Figure 4. SSH JASON-1 tracks, local rank of the observations over 10 day JASON-1 cycle from
29 June to 9 July 2005 (left panel) and rank histogram over the Gulf Stream verification area
(right panel).
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of the potential gain compared to the climatology can be defined as follows:310

G = 1− Resol

Unc
(6)

Considering the case in Fig. 4, the uncertainty associated with the along-track SSH of JASON-1 is

Unc= 0.070, and the CRPS and its decomposition are equal to 0.076 = 0.005 + 0.071. This indi-

cates that the system is poorly informative with G > 1 in this example. We can then conclude that

—after 6 months of stochastic perturbations integration— the ensemble produced by the sytem tends315

to the climatology of the verification dataset: pretty good reliability but poor resolution. In summary,

we have here an example of a full probabilistic diagnosis on the SSH produced by the system against

JASON-1 along-track observations. Of course, such SSH diagnostics can be performed against EN-

VISAT or both satellites.

The goal of the assimilation (next section) is then to improve the information contained in the320

system (i.e. improvement of the resolution), while keeping the system as reliable as possible (i.e.

without deteriorating reliability).

Now, we evaluate the skill of the system for the T/S profiles against ARGO observations. In

this case, the statistics are accumulated during 10 days (JASON-1 cycle), over the Gulf Stream

verification area and over the first 0-200m layer of the ocean (observations from different depths are325

considered independent). The observation error is estimated from 0-200m observations errors based

on Ingleby and Huddleston (2007) study about the quality control of T/S profile data: σo = 0.9K for

temperature and σo = 0.17psu for salinity.

Figure 5 shows the rank histograms for both temperature and salinity. Unlike the SSH rank his-

togram, a strong underdispersion is here observed for both variables and a negative bias is noticeable330

for salinity (asymmetry to the right side of the rank histogram).

temperature (C) salinity (psu)

Figure 5. Global rank histogram of 0-200m layer for temperature (left panel) and salinity (right panel); same

period and same area as in Fig. 4.

12

Figure 5. Global rank histogram of 0–200 m layer for temperature (left panel) and salinity (right
panel); same period and same area as in Fig. 4.
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Figure 6. SSH time series of the ensemble (free run, forecast and IAU) at locations (A) and (B).

reduction and a temporal variability globally included in the climatological envelop defined by the

free run ensemble saturation. This kind of ensemble behaviors could foreshadow an improvement of

the probabilistic resolution without degrading the reliability. We also note the spread reduction and

a slight bias correction with the IAU ensemble compared to the forecast one.425

The examples in Fig. 6 are a first qualitative evaluation of the updated ensembles. The next sub-

section presents more quantitative and probabilistic evaluations of these ensembles.

4.2 Assimilation results

Since the diagnostics are performed against observations, we only focus this study on SSH (JASON-

1/ENVISAT altimetric data sets) and T/S profiles (ARGO buoys network).430

In order to generalize the first diagnostics suggested by Fig. 6, Figure 7 shows the time series of

the ensembles standard deviation averaged over the Gulf Stream and Z-focus areas. In this figure we

can see first that the saturation of the standard deviation is reached in the Z-focus area but not over

the global Gulf Stream area. The main reason for this is that the Gulf Stream verification area con-

tains locations where the perturbations grow very slowly (e.g. near the subtropical gyre). The main435

point here is the reduction of the standard deviations observed with the introduction of the altimet-

16

Figure 6. SSH time series of the ensemble (free run, forecast and IAU) at locations A and B.
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Figure 7. SSH time series of standard deviations for free run, forecast and IAU ensembles over the Gulf Stream

verification area (left panel) and the Z-focus area (right panel).

ric corrections. This reduction is effective from the first assimilation cycle. After that, the averaged

standard deviation of the forecast and IAU solutions is globally stabilized by the subsequent assim-

ilation cycles. We also notice the clear reduction of the standard deviations of the IAU ensemble as

compared to the forecast. This means that the stochastic perturbations are strong enough to produce440

a significant spread within 10 days and thus to avoid the ensemble collapse without introducing any

inflation factor. The 10-day oscillations of the standard deviation is the result of the discontinuity of

the forecast ensembles.

As mentioned just before, the altimetric updates tend to reduce and stabilize the standard de-

viation, except the spurious increase observed around September 2005 (especially over the large445

verification area). This event is caused by a lack of observed data resulting from missings JASON-1

tracks in September 2005, as shown in Figure 8. This occasional JASON-1 failure shows the impact

Figure 8. Jason-tracks coverage for 3 successive 10-day cycles from September 7th to October 7th 2005.

of the satellite coverage on the updated ensembles, resulting in an increase of the ensembles stan-

dard deviation. That may sound obvious, but this shows that the accuracy of the correction is very

sensitive to the number of available altimetric data.450

The same kind of behavior is observed on the T/S variables (not shown): the standard deviation

increases with the free run ensemble and is reduced and stabilized by means of altimetric corrections.

17

Figure 7. SSH time series of SDs for free run, forecast and IAU ensembles over the Gulf Stream
verification area (left panel) and the Z-focus area (right panel).
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Figure 7. SSH time series of standard deviations for free run, forecast and IAU ensembles over the Gulf Stream

verification area (left panel) and the Z-focus area (right panel).

ric corrections. This reduction is effective from the first assimilation cycle. After that, the averaged

standard deviation of the forecast and IAU solutions is globally stabilized by the subsequent assim-

ilation cycles. We also notice the clear reduction of the standard deviations of the IAU ensemble as

compared to the forecast. This means that the stochastic perturbations are strong enough to produce440

a significant spread within 10 days and thus to avoid the ensemble collapse without introducing any

inflation factor. The 10-day oscillations of the standard deviation is the result of the discontinuity of

the forecast ensembles.

As mentioned just before, the altimetric updates tend to reduce and stabilize the standard de-

viation, except the spurious increase observed around September 2005 (especially over the large445

verification area). This event is caused by a lack of observed data resulting from missings JASON-1

tracks in September 2005, as shown in Figure 8. This occasional JASON-1 failure shows the impact

Figure 8. Jason-tracks coverage for 3 successive 10-day cycles from September 7th to October 7th 2005.

of the satellite coverage on the updated ensembles, resulting in an increase of the ensembles stan-

dard deviation. That may sound obvious, but this shows that the accuracy of the correction is very

sensitive to the number of available altimetric data.450

The same kind of behavior is observed on the T/S variables (not shown): the standard deviation

increases with the free run ensemble and is reduced and stabilized by means of altimetric corrections.

17

Figure 8. Jason-tracks coverage for 3 successive 10 day cycles from 7 September to 7 Octo-
ber 2005.
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Nevertheless, the difference between the IAU and forecast ensembles standard deviations is much

smaller along the T/S profiles, simply because these variables are not assimilated (unlike in Yan et

al. (2014)).455

4.3 Probabilistic diagnostics for SSH

After studying the general characteristics of the ensemble, we now present the probabilistic diagnos-

tics introduced in Section 3. We first investigate the reliability property of SSH through the bias and

the dispersion related to the RCRV. In Figure 9, 3 sets of curve are shown: dashed curves for verifi-

cation against JASON-1 data, dotted curves for verification against ENVISAT data and solid curves460

for verification against both satellites data. Note also that —for all the presented probabilistic scores

in this section— the statistics are accumulated over one month (different from subsection 3) and

over the Gulf Stream area. In the interpretation of the results, it is also very important to remark that

the IAU ensemble is checked against observations that have been used to compute the increments.

In this case, the ensemble system and the observations are not indepedent. For the SSH variable, the465

10-day forecast ensemble and observations are truly independent data.

bias dispersion

Figure 9. SSH bias (left panel) and dispersion (right panel) from RCRV.

The monthly time series (left panel) show no clear bias reduction compared to the free run ensem-

ble with altimetric corrections. The bias seems to present a seasonal cycle (not explained). Never-

theless, the IAU ensemble reduces the bias as compared to the forecast. This is due to the inbreeding

between the IAU ensembles and the observations in this case. Regarding the dispersion (right panel),470

the underdispersion of the free run ensembles is removed by the altimetric corrections. The forecast

ensemble becomes almost perfectly dispersive while a slight overdispersion (≈ 85%) is observed for

the IAU ensemble (mostly due to the inbreeding with the observations).

Two results look contradictory at first sight: we observe the spread reduction of the IAU ensembles

(Fig. 7) and in the same time the IAU ensembles overdispersion (Fig. 9 right panel). Actually, the475

18

Figure 9. SSH bias (left panel) and dispersion (right panel) from RCRV.
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spread of the ensemble is reduced, but also the bias against the observations so that the dispersion is

finally degraded down to an overdispersive system.

We now investigate the global CRPS measure for the SSH variable. Figure 10 shows the reliability

(left panel) and the resolution (right panel) components of the CRPS. The resolution part is com-

pared to the uncertainty associated with the verification dataset (this represents the climatological480

variability over the verification area and period).

CRPS reliability CRPS resolution

Figure 10. SSH: reliability (left panel) and resolution component of the CRPS compared to the uncertainty

(right panel).

The reliability —as measured by the CRPS— of the ensembles is improved by the altimetric

corrections compared to the free run ensemble. Also, the system becomes more informative after

assimilation processes (better resolution), i.e. the ensemble system is more accurate in space and time

for instance by correctly translating the eddies along the Gulf Stream front. For both components of485

the CRPS, the IAU ensemble performs better than the forecast (these scores are negatively oriented),

partially due to the inbreeding between the IAU ensemble and the observations. The potential gain

G compared to the uncertainty is shown in Table 3.

forecast 11% 20% 22% 16% 18% 19% 20% 21% 25% 30% 32% 27%

IAU 26% 32% 34% 30% 31% 32% 31% 32% 34% 40% 42% 39%
Table 3. Potential gain G compared to the uncertainty from July 2005 to June 2006.

The resolution curves in Fig. 10 (right panel) show that the free run ensemble has no resolution,

i.e. G ≈ 0%. If we only look at the independent verification data, i.e. the forecast ensemble, the490

potential gain we get with the assimilation process is up to 30%.

For the SSH variable the assimilation process leads to an information gain with a reliability im-

provement. Basically, the uncertainty (not the uncertainty from the CRPS) on the 10-day forecast is

reduced by 30% and this information is reliable.

19

Figure 10. SSH: reliability (left panel) and resolution component of the CRPS compared to the
uncertainty (right panel).
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Figure 11. Impact of the altimetric correction on local T/S profiles ensembles during the first
assimilation cycle: 3 July 2005 (top row) and 9 July 2005 (bottom row). Forecast ensemble
(blue), IAU ensemble (green) and ARGO observation (black).
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served vertical structure. In our system the assimilation of altimetry alone does not provide sufficient

constraint on the profile structure.

To further investigate the probabilistic attributes of our ensembles along T/S profiles, we show the505

CRPS reliability part and the information gain (CRPS resolution part) for temperature in the 0-200m

layer depth (Fig. 12).

CRPS reliability CRPS resolution

Figure 12. T profiles, reliability (left panel) and resolution component of the CRPS compared to the uncertainty

(right panel).

Regarding T profiles, no noticeable difference can be detected in the score between the free run

ensemble and the updated ones. Further there is almost no difference in the score between the fore-

cast and the IAU ensembles. Considering the potential gain, the same remark can be done here as510

for the free run ensemble (see subsection 3, Table 2).

On the other hand, the reliability CRPS part is very variable from month to month compared to the

SSH diagnostics. This can be explained by the spatial distribution of the observed ARGO profiles

used for the verification: for SSH this distribution is pretty similar each month for the SSH (3 full

JASON-1-cycles and 1 full ENVISAT cycle) except in exceptional situations like the one shown in515

Fig. 8, but for the T/S profiles it is very variable depending on the ARGO buoys locations. Actually,

from one month to the other, very different areas are sampled by the ARGO moving network. As a

result, we can conclude that it is very difficult for the CRPS to measure any possible correction on

T/S profiles (like the weak impacts observed in Fig. 11).

The results preesnted above indicate that the assimilation process leads to a more skillful prob-520

abilistic system for SSH 10-day forecast and then for surface currents. The altimetric corrections

applied to the stochastic ensemble show clear positive impacts in term of:

– improvement of the reliability of the system forecast, i.e. the confidence in the description of

the uncertainty associated with the state of the flow increases.

– improvement of the resolution, i.e. reduction of the uncertainty by 30%.525

21

Figure 12. T profiles, reliability (left panel) and resolution component of the CRPS compared
to the uncertainty (right panel).
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