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Abstract

Temperature fields in marine sediments are studied for various purposes. Often, the
target of research is the steady state heat flow as a (possible) source of energy but
there are also studies attempting to reconstruct bottom water temperature variations
to understand more about climate history. The bottom water temperature propagates5

into the sediment to different depths, depending on the amplitude and period of the
deviation. The steady state heat flow can only be determined when the bottom water
temperature is constant while the bottom water temperature history can only be recon-
structed when the deviation has an amplitude large enough or the measurements are
taken in great depths.10

In this work, the aim is to reconstruct recent bottom water temperature history such
as the last two years. To this end, measurements to depths of up to 6m shall be ade-
quate and amplitudes smaller than 1K should be reconstructable.

First, a commonly used forward model is introduced and analyzed: knowing the bot-
tom water temperature deviation in the last years and the thermal properties of the15

sediments, the forward model gives the sediment temperature field.
Next, an inversion operator and two common inversion schemes are introduced. The

analysis of the inversion operator and both algorithms is kept short, but sources for
further reading are given. The algorithms are then tested for artificial data with different
noise levels and for two example data sets, one from the German North Sea and one20

from the Davis Strait. Both algorithms show good and stable results for artificial data.
The achieved results for measured data have low variances and match to the observed
oceanographic settings.

Lastly, the desired and obtained accuracy are discussed. For artificial data, the pre-
sented method yields satisfying results. However, for measured data the interpretation25

of the results is more difficult as the exact form of the bottom water deviation is not
known. Nevertheless, the presented inversion method seems rather promising due to
its accuracy and stability for artificial data. Continuing to work on the development of
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more sophisticated models for the bottom water temperature, we hope to cover more
different oceanographic settings in the future.

1 Introduction

The depth-dependent temperature in marine sediments is governed by the amount of
heat-exchange with the water above and the deeper regions of the earth mantle and is5

conditioned by the thermal properties of the sediment. When the water temperature is
time-independent, a steady state is produced where the vertical heat flow is constant
– at least in time scales of decades.

Periodically changing water temperatures propagate into the sediment to different
depths. A reliable forward model to describe the sediment temperature in the steady10

state or with (periodically) changing water temperatures exists (see e.g. Lowrie, 2007)
and will be introduced in Sect. 2.

Measured and modeled subsurface temperatures are analyzed for different pur-
poses. Two main fields of investigation are the geothermal heat flow and the reconstruc-
tion of the ground surface temperature history (Chouinard et al., 2007). Under circum-15

stances where the surface temperature can be regarded as constant, the measured
subsurface temperatures show a linear increase with depth, and with this geothermal
gradient the heat production in the lower parts of the earth can be determined. If the
heat flow is the aim of the investigation, the steady state is strictly required and any dis-
turbance originating from surface temperature variations is regarded as noise. In the20

deep sea this is often no problem, as the water column already filters the surface tem-
perature variations and the bottom water temperature is (nearly) homogeneous (Davis
et al., 2003). In regions with shallower water or onshore this is a rather big problem and
is often only solvable by using temperature measurements from deep boreholes.

Studies on the inversion of the bottom water temperatures, in order to subtract the25

annual deviation from the measured temperatures to obtain the heat flow, belong to the
second topic (e.g. Wang and Beck, 1987; Hamamoto et al., 2005). Here, the surface
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temperature is modeled as a Fourier series and more than one temperature-depth
profile is used. The aim is to obtain mean temperatures over time intervals of several
years (Chouinard et al., 2007). Deeper measurements are used to reconstruct older
climate history.

This work is located in between these two approaches. We are mainly interested in5

the surface temperature history, but on smaller time scales. The aim is to estimate the
bottom water temperature variations in the last one or two years based on only one
single measurement of depth dependent temperature and thermal diffusivity. As only
one measurement would be required, this could help to understand the (temperature)
dynamics of water basins where continuous temperature monitoring is hard to realize10

(e.g. in the Arctic Ocean).
Additionally, it could be possible to subtract the annual deviation from the depth de-

pendent temperature and thus the heat flow could be calculated in regions where the
geothermal gradient cannot be obtained directly from the temperature data.

Besides artificial data sets, we will provide results of tests with two measured data15

sets from the German North Sea and the Davis Strait. The regions where the mea-
surements are taken are quite different and thus show the broad field of usability of the
presented method.

2 Forward model setup

For the theoretical framework, we regard the sediment as a horizontally layered half-20

space, where we have no temperature change in each of the horizontal directions and
thus work with the one-dimensional heat equation:

ρCv∂tT (x,t) = ∂x(λ∂xT (x,t))+∂x(vT (x,t))+H(x,t),

where x ∈Ω ⊂R≥0 corresponds to the depth below the sea floor at x = 0, t > 0 is the25

time, v is the vertical movement of material and H an inner source. The sediment
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density ρ, specific heat capacity Cv and thermal conductivity λ are typically depth-
dependent. In the considered areas, the volumetric heat capacity ρCv shows only very
small changes with depth and will therefore be regarded as constant (see also Clauser,
2006). With the relation κ = λ

ρCv
for the thermal diffusivity we can reduce the parameters

to only one per layer.5

The equation above states that the deviation of the temperature T (x,t) with respect
to time equals the amount of diffusion (first term on the right hand side of the equation)
plus the heat transported with the material by v (second term) and the generated
heat H(x,t). In the settings we model in this work, the advection term ∂x(v T (x,t)) is
neglected, as the pore volume is assumed to be rather small and thus fluid flow is10

rather low. In regions affected by hydrothermal convection this term can make a big
difference but in our case it will be neglected.

When using the homogeneous half-space setting, we model the earth’s heat source
as a steady state heat flow and thus we have no source term. With this reductions we
can simplify the heat equation to our model equation15

∂tT (x,t)−∂x(κ(x)∂xT (x,t)) = 0 ∀x > 0,t > 0. (1)

2.1 Thermal properties and boundary conditions

The geothermal gradient is the first derivative of the steady state solution with constant
homogeneous boundary value at x = 0 of this equation: ∂xTsteady(x,t) = q

λ = g for all20

x > 0,t > 0, where we denote the steady state heat flow with q. Here, the bottom water
temperature is constant but in the more general case the surface temperature is time-
dependent and its deviation propagates into the sediment.

This deviation of the bottom water temperature will be denoted by T f
water : R≥0 →R,

where f is a vector of parameters. The parameters in f are to be reconstructed.25

With initial and boundary conditions, the model Eq. (1) becomes a solvable initial-
boundary-value problem. In geophysical models aiming for temperature fields in the
earth, it is quite common to model the region Ω with infinite depth (Jaupart and
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Mareschal, 2011). In this paper, we will use this approach, however, in the numeri-
cal implementation the region will always have a finite depth xE which is sufficiently
large.

The boundary conditions need to be set up to satisfy the physical conditions, which
are the stimulation from a one-year-periodic function of the bottom water temperature5

and a zero-flow-condition at the lower boundary. The geothermal gradient as the solu-
tion to the static heat equation will be added after the modeling process. Thus, we can
set a homogeneous Neumann condition at the lower boundary in the time dependent
part and the Robin boundary condition at the sediment-water-interface. The latter de-
scribes the fact, that the heat flows out of the sediment while the sediment is warmer10

than the water above, and into the sediment while it is cooler.
Knowing the thermal properties of the sediment and the seasonal forcing of the

bottom water temperature, we get a full set of equations to determine the temperature
in marine sediment at every place and time:

∂tu(x,t)−∂x(κ(x)∂xu(x,t)) = 0 ∀x ∈Ω,t > 0 (2)15

∂xu(0,t) = h ·
(
u(0,t)− T f

water(t)
)

∀t > 0 (3)

∂xu(xE ,t) = 0 ∀t > 0 if xE <∞
lim
x→∞

∂xT (x,t) = 0 ∀t > 0 if xE =∞ (4)

u(x,0) = u0(x) ∀x ∈Ω. (5)
20

If the thermal diffusivity κ(x), the parameters f ∈ DT in a continuous function T f
water(t)

and g,h ∈R are known, a solution to the boundary value problem Eqs. (2)–(5) yields
the sediments’ temperature Ttotal(x,t) = u(x,t)+gx. Here, h(t) is the heat transfer coeffi-
cient and a measure on how well the heat energy passes the sediment–water interface.
Brakelmann and Stammen (2006) discuss the value of this coefficient and propose to25

use an average value of h = 150W m−2 for the German North and Baltic Sea.
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2.2 Bottom water temperature functions

The temperature at the earth’s surface is an overlay of many sinusoidal functions with
different periods in terms of Fourier series. As we are interested in the deviation of the
bottom water temperature for one year, we use the following simple model with only
a one-year-period ω = 2π

365 :5

T f
water(t) = A+Bcos(ωt+ϕ(d )), f = (A,B,d )T , (6)

where A and B in ◦C denote the average temperature and amplitude respectively. The
annual minimum takes place on a day d > 0, which leads to a phase delay ϕ(d ) =
ω(365

2 −d ) of the cosine function. Since we want to avoid to consider frozen water we10

restrict the definition space of T f
water to DT =R≥0 ×R≥0 × [0,365].

The example data set from the German North Sea shows influences of smaller pe-
riods besides the annual deviation, as the average depth is only 100m (Rhode et al.,
2004). Temperature and salinity of the North Sea are mainly governed by a general
cyclonic circulation, which renews the water in the time scale of one year (Rhode et al.,15

2004). Compared to this input from the Atlantic Ocean, the freshwater input from rivers
is small. The central part of the North Sea becomes stratified due to heating in the
summer, but gets vertically mixed during winter. At the western and southern coasts,
the vertical stratification is prevented by strong tidal currents (for detail on the oceanog-
raphy of the German North Sea see Rhode et al., 2004). Thus, in the North Sea we can20

assume the simple model for the bottom water temperature to hold. Still we expect the
temperature deviation to be a little bit noisy due to the small depth, and we also expect
differences from the parameters in different regions, relating to the tidal currents.

Baffin Bay and Davis Strait are governed by the north going West Greenland Current
moving temperate saline Irminger Water from the Atlantic Ocean in the top layers and25

cold low-saline Polar Water in the bottom layers (Ribergaard, 2008). The data set is
located in 1300m depth where the seasonal influence is mostly damped by the water
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column and the cold Polar Water is dominant. Thus, we expect the parameters A and
specifically B to be near 0 ◦C.

2.3 General behavior

The general behavior of the forward model is depicted in Fig. 1. We used a parameter
set typical for the German North Sea of f = (10.5,7,45)T for the bottom water deviation.5

Here we see, that the sediment experiences a large temperature range over one year in
the upper metres. As the depth increases, the covered temperature range gets smaller.

The attenuation of the amplitude with depth is clearly visible and so is the delay of
the temperature. We can observe that the current temperature-depth-profile contains
the bottom water temperatures from the last three to four months. Following the or-10

ange line indicating the day of the highest bottom water temperature, we can observe
a decrease in the sediment temperature with depth. In a depth of 4m the lowest tem-
perature, as evidence of the last winter, is reached and with further increasing depth
the temperatures also increase again. The blue line indicating the day of the coldest
bottom water temperature shows a mirror-inverted curve.15

3 Data

The temperature reconstructing method (to be described in Sect. 4) was tested for
artificial and measured data sets containing about 20 data points in a depth of up to
4 m. The artificial data sets were generated using the forward model and adding some
white noise, while the example data sets from the German North Sea and the Davis20

Strait were measured using the FIELAX VibroHeat and HeatFlow measuring devices,
respectively. The locations of the example data sets are shown in Fig. 2.

The principle for the measurements of depth dependent thermal parameters origi-
nates from the classical method of determining steady-state heat flow values for the
oceanic crust from deep sea sediments. Heat flow values are determined based on25
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Fourier’s law of thermal conduction from the steady-state (undisturbed) temperature
gradient and thermal conductivities. The design of deep sea Lister-type heat flow
probes follows the concept by Hyndman et al. (1979) where a thermistor string par-
allel to a massive strength member penetrates into the sediment by its own weight.
22 thermistors record the sediment temperature during the whole process. The in-situ5

temperature is determined from the decay of the frictional heat accompanying the pen-
etration, while the thermal conductivity and diffusivity values are calculated from the
temperature decay of an artificial, exactly defined, calibrated heat pulse which heats
up the sediment. The in-situ thermal gradient can than be calculated.

This method is normally used in deep sea soft sediments, where the heat flow probe10

penetrates due to its own weight. Shallow water sediments in the North and Baltic
Seas are characterized by more shear resistant sediments as sands, tills, and clays,
where this classical method of penetration by gravity alone is not applicable. For this
reason, a thermistor string has been combined with a standard VKG vibrocorer (Dillon
et al., 2012). The measuring procedure follows the classical way: the system is lowered15

towards the sediment, penetrates the sediment by vibrocoring, rests in the sediment
for in-situ temperature measurement and heat pulse decay recording. With this system,
a penetration depth of up to 6m is possible. The accuracy of the thermistor strings is
2mK and the resolution is 1mK.

The processing of the raw data from both measuring devices is handled with the20

same program. This program determines in-situ temperatures and thermal material
properties with an inversion algorithm following Hartman and Villinger (2002). Based
on the assumption of the thermal decay around a cylindrical symmetric infinite line
source, steady state in-situ temperatures, thermal conductivity and thermal diffusivity
are determined in an iterative inversion procedure. From thermal conductivity and dif-25

fusivity also the volumetric thermal capacity may be determined by ρCv = λ/κ, where
ρ is the density of the sediment and Cv the heat capacity.

Figure 3 shows depth dependent properties from a measurement in the North Sea
north of Borkum in June 2011. Contrary to the general positive temperature gradient in

2399

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/11/2391/2014/osd-11-2391-2014-print.pdf
http://www.ocean-sci-discuss.net/11/2391/2014/osd-11-2391-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
11, 2391–2422, 2014

Water temperatures
from marine

sediment
temperatures

F. Miesner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the earth’s crust, a temperature decrease with increasing depth appears, i.e. a negative
temperature gradient. This is due to the seasonal variation of bottom water temperature
in the North Sea. As the measurement was in June, the influence of the warm summer
temperatures is seen in the upper thermistors, the decreasing towards the lower is
a relict of low winter temperatures.5

For the inversion we had various data sets from the German North and Baltic Sea
being measured with the VibroHeat device and data sets from the Davis Strait and the
Baffin Bay, which were measured using the classic HeatFlow probe. Excluding some
measurements from areas within the Baltic Sea where the bottom water temperature
deviation differs too much from our simple model Eq. (6), the obtained results where10

all in the same range of quality and accuracy. The two data sets presented here are
picked for the data quality and not the results.

4 Inverse problem setup

4.1 Discretization of the forward model operator

In the inverse problem, we are seeking to determine the bottom water parameters f15

from (a priori known) values for the geothermal gradient g and the heat transfer coef-
ficient h for the Robin boundary condition and measurements of the thermal diffusivity
κ(x̃) and the temperature in the sediment gε(x̃,t∗). Here x̃ ∈Rk is the depth vector
according to the k sensors of the measuring device and t∗ > 0 a fixed time.

Before introducing our solution method to solve this inverse problem, we need to20

briefly formalize the forward model. It can be shown that the initial-boundary-problem
Eqs. (2)–(5) has a unique solution in the weak sense, see e.g. (Evans, 2010). Thus, we
can define the forward operator F : f 7→ T (x,t) mapping the parameters of the bottom
water temperature to the solution of the initial-boundary-problem. For this operator,
differentiability with respect to f can be shown if the function for the bottom water25

temperature deviation T f
water is continuously differentiable with respect to the parameter
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f . The continuous differentiability of the cosine function in Eq. (6) with respect to the
three parameters A, B and d is obvious.

When interested in greater time scales it is common to model the earth crust as
a homogeneous half space, i.e. Ω has infinite depth and the thermal diffusivity κ is
constant over the region. In this case, the solution to the initial-boundary-problem is5

analytical. Thus, in the numerical calculation of the temperature in the sediment the
only occurring errors are rounding errors in the scale of the machine accuracy and no
discretization errors. However, as we are modeling the sediment as a layered region
with finite depth we have two more sources of error: the discretization error and an
error resulting from the finite depth.10

The discretization is realized using the method of lines. This method and its con-
vergence properties are broadly analyzed by Hanke-Bourgeois (2009). The mesh size
and time steps of the discretization as well as the depth of the lower boundary need to
be determined such that the numerical solution is not to far away from the true solution.
In other words, we determine a parameter setting such that the relative error between15

the above mentioned analytical solution and the numerical solution does not exceed
the limit of 10−3 K. We chose this limit in reference to the accuracy of the data obtained
with the FIELAX VibroHeat device.

Having access to a numerical and nonlinear forward model F : R3 →Rk mapping the
three model parameters A, B and d to the numerically approximated temperature for20

time t∗ > 0 at points of the depth vector x̃ ∈Rk , we can now discuss the inverse method,
which is, roughly speaking, based on the observation that F possesses a gradient
∇F ∈Rk×3. Let us mention already here that this matrix had maximal rank (= 3) in all
our numerical examples.

Since the measured sediment temperature (and also the measured thermal diffu-25

sivity) may suffer from measurement errors, we assume that our temperature data is
a vector gε such that ‖g−gε‖ ≤ ε, where g is the undisturbed data. We assume further
that an exact parameter vector f + exists such that F (f +) = g (i.e., our model is valid
and represents reality). Our aim is to reconstruct f +.
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Our study started considering a non-linear iterative Newton algorithm as a first simple
approach, which already provided good results. Therefore, we discuss this approach
first. For comparison we furthermore adapted the iterative REGINNmethod, published
in Rieder (2003), to our needs.

4.2 The Newton algorithm5

Sticking to the notation of Rieder (2003), we consider for the solution of the non-linear
equation F (f ) = gε with disturbed data gε the ongoing iteration

f εn+1 = f εn + sεn, n ∈N. (7)

The iteration step sεn is to be determined, so that we – ideally – obtain f εn+1 = f +,10

the exact solution. Obviously, s+n = f + − f εn solves this equation. The approach of the
Newton algorithm is to determine a good approximation to s+n .

As F is differentiable with derivative ∇F the following equation holds:

∇F (f εn )s+n = g− F
(
f εn
)
−E

(
f +, f εn

)
= bn.

15

Here, E (v ,w) denotes the linearization error. This linearization error, and therefore
the right side bn, is not known but only a disturbed version bδ

n . So we approximate s+n
by solving

∇F
(
f εn
)
s = bδ

n . (8)
20

For ill posed problems, solving this linear equation can be quite problematic, but as
the derivative has full rank we can simply use Gaussian elimination to determine sεn.

Applied to our simple model, the iteration converges to a solution of F (f ) = gε. How-
ever, as we are not minimizing for the exact right side bn = g−F (f +) but for a disturbed
version, the best result may not be the minimal result. Therefore, we stop the iteration,25

whenever the reconstructed data is about as near to the noisy data gε, as the noisy
data is away from the exact data. Details on this discrepancy principle can be found,
e.g., in (Rieder, 2003).
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4.3 A regularized inexact Gauss–Newton inverse method

For the inversion of the simple model Eq. (6) for the bottom water temperature de-
viation the Newton algorithm gave stable results (as we will show in Sect. 5). In our
numerical experiments a regularization scheme was never necessary, but it could be
of importance if we decide to use a more complex input model for the bottom water5

temperature. This will not be covered in this work, but will be discussed as a sugges-
tion for further research in the last chapter. One advantage of regularization schemes
in general and the REGINNalgorithm published by Rieder (2003) are their proven con-
vergence properties for noisy data or ill-conditioned non-linear equations.

The REGINN algorithm is introduced and analyzed by Rieder (1999a) and10

Rieder (1999b). The algorithm is an inexact Newton method, i.e. it consists of a outer
Newton iteration and an inner regularization iteration, which determines the Newton
iteration step. Thus, the outer iteration follows the same idea as the above mentioned
simple Newton method Eq. (7), where the iteration step sεn solves Eq. (8), and which
is stopped with the discrepancy principle. The determination of the iteration steps can15

be implemented with any regularization scheme and the analysis is done for a general
formulation.

For this work, we adapted the algorithm published by Rieder (2003) where the inner
iteration is a Conjugate Gradient (CG) method. As we have two nested iterations, we
will refer with n to the outer (Newton) iteration and with m to the inner (CG) iteration.20

We consider again the Eq. (8)

∇F
(
f εn
)
s = bδ

n

for the Newton iteration step sεn and tackle this linear system using the CG method.
The CG method is designed to minimize the residuum ‖bδ

n −∇F (f εn )sm‖ in every iter-25

ation step m = 1,2,3, . . . in enlarging subspaces. As the residuum at the end of every
iteration step is the minimum in the corresponding subspace, the method is the most
efficient method possible. For more information on the CG method see e.g. (Rieder,
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2003; Hanke-Bourgeois, 2009). The inner iteration is stopped, when the linearized
residuum fulfills a certain accuracy estimation (for details on the choice of this esti-
mation see Rieder, 2003). The outer iteration is again stopped with the discrepancy
principle. Thus, we can directly compare the reconstructions from the two algorithms.

5 Results5

5.1 Artificial data for measured thermal diffusivity

In this section, we analyze the sensitivity of the algorithms in a layered half-space
setting. Therefore, we used the measured thermal diffusivity and the depth-vector of
the sensors, decided on a day of the year t∗ and a random vector of the seasonal
forcing parameters and produced disturbed data gε. For comparability of the results,10

we used the same water parameters for all the experiments presented here.
As the derivative is not a square matrix, any theoretical analysis of the convergence

behavior of the Newton or REGINNalgorithm does not apply. To cope with this lack of
theoretical information on the general behavior of the introduced inverse problem, we
executed the algorithms repeatedly with the same parameters and calculated the vari-15

ances. Thus, we can give a bound for the emerging reconstruction error in dependence
on the noise level in the data. The results are shown in Table 1.

For data with a noise level of 0.1 % (see Table 1) the reconstruction error has the
same magnitude for both algorithms. As we chose the initial guess randomly from the
definition space and the variances are very small, we can state that both algorithms20

work stably and that the initial guess has no influence.
We find for a noise level of 1.0 % in the data we can get a maximum reconstruction

error of about 8 %, while the mean value of all reconstructions is still close to the exact
parameter values with a mean error of only 3 % (see Table 1) with both algorithms.
This suggests that the overall result of the inversion can be improved by executing the25

algorithm several times and using the mean value.

2404

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/11/2391/2014/osd-11-2391-2014-print.pdf
http://www.ocean-sci-discuss.net/11/2391/2014/osd-11-2391-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
11, 2391–2422, 2014

Water temperatures
from marine

sediment
temperatures

F. Miesner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The overall mean parameter values foverall = (8.2923,6.1074,62.6449)T yield a rela-
tive reconstruction error of ≈ 1.1 %.

5.2 Artificial data with noisy bottom water temperature

In Sect. 5.1, we regarded artificial data for an undisturbed bottom water temperature
function. From the water data available via MARNET (2014) for the German North Sea5

we can derive that this is very unlikely to be accurate. In this section, we will therefore
investigate the influence of noise in the bottom water temperature on the accuracy of
the reconstruction.

Differently from the white noise added to the data itself, we here use the smaller
periods of the cosine series to approximate the occurring errors as well as possible.10

Thus, this section will give us an insight in sensitivity of the model with respect to
the three main parameters, even if the original forcing was more complicated and the
measured data contains errors.

For generating artificial data in this section we changed the seasonal forcing to the
first 52 summands of the Fourier series for one-year-periodic functions:15

T f
water(t) := A+

52∑
i=1

Bi cos(iωt+ϕ(di )),

f = (A,B1, . . .,B52,d1, . . .,d52)T .

This cut-off Fourier series approximates periods from one year to one week.
The results of this experiment are presented in the last section of Table 1. We ob-20

serve a distinct increase in the reconstruction error for a noise level in the data of
1 % from a mean error of 3 % for a undisturbed bottom water temperature function to
a mean error of 7 % here. Although the variances do increase, the mean reconstruction
result is still a very good approximation to the exact water parameters. This leads to
the conclusion that a single reconstruction may differ in large scales from the exact25
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parameter values, while already 20 repeated executions can markedly decrease the
reconstruction error. For both algorithms, we find differences between the average re-
sults and the exact parameter values of under 0.1K in the average temperature and
the amplitude and one day in the day of the annual minimum. We can observe that the
main uncertainty occurs from the determination of the day of the annual minimum.5

From the inversions done here, we can conclude that the three main parameters
get reconstructed quite well even if the real bottom water temperature function is more
complicated than the simple model in Eq. (6).

5.3 Example: Borkum

While we had data sets from three different locations in the German North and Baltic10

Sea, we will only present one example in detail. The locations of the measurements and
the nearest MARNET stations (see MARNET, 2014) are depicted in Fig. 2. All three
data sets are broadly discussed by Müller et al. (2013). The quality of the reconstruction
results in terms of variances was the same in all three examples. We choose to present
the data set north of the island of Borkum, because of organizational reasons: the15

distance between the data set location and the nearest MARNET station FINO1 is
smaller than with the other examples and the recorded water temperatures showed
the smallest differences from the chosen bottom water temperature function Eq. (6).
Additionally, we had access to the time series and could analyze the applicability of
this model equation.20

The results of the inversion are listed in Table 2. In comparison to the parameter vec-
tor used in Müller et al. (2013) f̃Borkum = (10.4,6.9,41)T , the overall mean parameters
are almost perfect. We see, that the Newton algorithm provides smaller values than the
REGINNalgorithm, but also with smaller variances in the average temperature and the
amplitude. The day of the annual minimum resulting from the Newton algorithm seems25

very unlikely and also has a larger variance.
Taking the mean values from all reconstructions with both algorithms, the values fit to

the educated guess. The variance on the day of the annual minimum is here of course
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quite large, because it was reconstructed differently by the two algorithms. The value
corresponds to a SD of ≈ 15 days.

For the bottom water temperature in this area, we had access to the data of the
station FINO1. We inverted the water data with the same algorithm and got the param-
eter vectors f2010 = (10.0,7.9,56)T for the data from 2010 and f2011 = (10.4,7.1,55)T5

for 2011. In this particular case, we see changes in the average temperature and the
amplitude of less than 1K between two years and also the day of the annual minimum
stays nearly the same. This leads to the assumption, that the simple model for the
bottom water temperature fits the natural conditions in this area quite well.

Comparing these parameter vectors to the ones obtained from the inversion (Ta-10

ble 2), we see that the Newton algorithm provided too small values, while the REGINN
algorithm yielded too large values. The overall mean fits best, but the day of the annual
minimum was better reconstructed with the REGINNalgorithm alone.

In the upper panel of Fig. 4, the FINO1 data from 2010 and 2011 are depicted. Addi-
tionally, the cosine functions of the mean inversion results are shown. In the lower panel15

the measured thermal diffusivity (right) and the measured and modeled temperature-
depth-profiles are depicted. We can observe, that the temperature interval resulting
from the Newton-results is to small, while the REGINN-result has too high tempera-
tures in the second half of the year. From the three cosine functions, the one resulting
from the overall mean fits the recorded temperatures best.20

For the temperature-depth-profile on the day of the measurement this does not hold.
The model with the over all mean result has too high temperatures. The Newton-result
fits the measured temperatures better, but only to a depth of 2 m. The REGINN-results
fit here best. The not-so-optimal fit of the overall mean results could be due to the
uncertainty of the reconstruction of the day of the annual minimum. Shifting the cosine25

of the overall mean results about one week (such that d ≈ 48) the cosine would fit the
recorded temperatures at FINO1 better and the temperature-depth-profile would also
fit the measurements better.
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5.4 Example: Greenland

The second example data set was measured on a cruise in 2006 in the waters of the
Davis Strait and Baffin Bay west of Greenland, the location is shown in the lower panel
of Fig. 2. We chose this data set, recorded in the southern part of the Davis Strait over
the other measurements of the cruise as no advective influences occurred.5

The measurement is located at the southern ridge of the Davis Strait at the passage
to the Labrador Sea. The water has a depth of about 1300m and thus the bottom water
temperature deviation is expected to be rather small.

The reconstruction results are shown in Table 3. We observe that both algorithms
reconstruct similar values. As continuous measurements of the bottom water tempera-10

ture deviation is not easy in these parts of the Arctic Sea there are no measurements
to compare these values to. However, the obtained temperature interval seems likely.

In Fig. 5, the cosine functions with the reconstructed bottom water function param-
eters are depicted (upper panel). In the lower panels the measured thermal diffusivity
(right) and sediment temperature (left) as well as the modeled temperature are shown.15

We can observe a wide range of thermal diffusivity values. The reconstructed bottom
water temperature deviations do not differ much, nor do the modelled sediment temper-
atures. They all fit the measured temperatures quite well. Looking at the low variances
(Table 3), this indicates a stable method and high applicability.

6 Discussion20

The aim of this work was to provide a method to obtain from one instantaneous mea-
surement of depth dependent sediment temperature and thermal diffusivity the param-
eters of a function modeling the annual bottom water temperature variation. Assuming
a homogeneous half-space, we obtained an analytical and a numerically approximated
solution. Before we discuss the obtained reconstruction results, we need to determine25

how much accuracy is desired in geophysical usage.
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6.1 Desired accuracy of the reconstructed parameters

In comparison to the measured water temperatures (see MARNET, 2014) it is obvious
that the mathematical model Eq. (6) neglects a lot of short periodic noise.

In Sect. 5.3, we showed for the station FINO1 that the average temperature A varied
about 0.5K between the years 2010 and 2011 and the amplitude even about 0.8K.5

Similar results can be obtained for other stations. Thus, an accuracy of less than 1K
for the parameters A and B would be small enough and far more than is known now for
areas that are difficult to access.

The day of the annual minimum only changed about 1 day at FINO1, but was most
difficult to reconstruct in all the experiments seen in Sect. 5. This is clearly due to the10

fact, that the cosine function has a small first derivative around the extrema. Thus, the
function Eq. (6) does not change a lot in the weeks around the annual minimum, e.g. it
remains over three weeks in the lowest 1 % of the covered temperature interval.

If we consider the desired accuracy of 1K we just stated, that means that the function
remains even 52 days in the accurate interval. Having possible fields of usage in mind15

(like the Arctic Ocean) we need to obtain an accuracy level based on the relative error
– at least for the two temperature-related parameters: reconstruction of a parameter
of the order of 0.1K with an accuracy of ±1K is not useful. In the experiments with
artificial data sets a relative error of magnitude about or slightly less than the relative
data error was achieved. The above stated differences in the recorded bottom water20

temperature at the station FINO1 yield a relative change of about 5% in the average
temperature and 10% in the amplitude.

Considering all this, we decided to aim for reconstructing the parameters better than
A±5%, B±10% and d ±10 days.

6.2 Achieved accuracy of the reconstructed parameters25

For the real data sets, we assumed a noise level of 1 %. While we regarded different
noise levels in the experiments with artificial data, only the obtained information on
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data with 1 % noise is relevant for the applicability on real data. As seen in Table 1, we
obtained SDs of A±0.2K, B±0.5K and d ±2.5 for both algorithms. In relative errors
this equals A±2% and b±8%. Thus, we achieved the desired accuracy with only
20 repeated inversions. By taking the overall mean of all reconstructions from both
algorithms, we were able to decrease the reconstruction error. Here, the variances and5

SDs increased, but the obtained result was closer to the exact parameter values.
As we changed the function of the bottom water temperature to a cut-off Fourier-

series, the variances increased to A±0.5K, B±1.5K and d ±4.8 days (see Table 1),
or in relative errors A±6% and B±24%. Here, the amplitude was less accurate than
desired. Still, the mean of the reconstructed values was accurate within the desired10

interval.
As the variances were smaller for less noisy data in both experiments, we can con-

clude that both algorithms yield stable results for data with a noise level ≤ 1 % and for
a bottom water temperature function which varies from a plain cosine in magnitude of
up to 8 % (see Table 1). For higher noise level in the data or the forcing function the15

methods still converged, but were not accurate enough.

6.3 Applicability to real data

The experiments with artificial data suggested a stable method, whose accuracy could
be increased by executing the algorithms repeatedly and using a mean value of results
from both algorithms. The reconstruction error did not increase too much, when we20

changed the function for the bottom water temperature and still reconstructed the main
parameters sufficiently accurately.

Using real data sets, we need to take a closer look at the general form of the bottom
water temperature deviation in the regarded area. As mentioned above some areas in
the Baltic Sea cannot be modeled with our simple model. The data sets from the North25

Sea, as the one introduced in Sect. 5.3 in contrary yielded stable results, but with rather
large variances. However, the results match with the recorded water temperatures. The
differences of the results from the two inversion algorithms to the graphically obtained
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parameter values (used from Müller et al., 2013) are within the desired error bounds.
Here, we saw the greatest differences in the day of the annual minimum, but already
discussed that it is not possible to determine it more precisely while A and B are only
accurate to 1K.

Lastly, the results from the inversion of the data set west of Greenland have the5

smallest variances, proposing reliable values. Other surveys on the temperature (and
salinity) of the Baffin Bay and Davis Strait gave similar temperature values (see e.g.
Ribergaard, 2008). As there are currently no long-term measurements the results of
this method are of scientific value, if one trusts them. It is important to note, that match-
ing with the recorded temperatures is not the same as being exact: the recorded tem-10

peratures are also measurements with errors and they were not recorded at exactly
the same locations as the data sets were taken.

In conclusion, we propose to use the overall mean values from both algorithms, as we
do not know the exact parameters and therefore, can not say which algorithm is more
reliable. Before reconstructing data sets, one should carefully consider if the simple15

model Eq. (6) is applicable for the regarded data set. If it is already known, that the sea
is layered and not well mixed or if there are strong currents along the sea floor, this
method will not give reasonable results. If one finds unreasonable results, this should
be interpreted as a strong hint that the simple model and hence the method are not
applicable.20

7 Conclusions

The presented method could be of major interest for climate researchers and oceanog-
raphers, because it may provide oceanographic information for regions where long-
term monitoring is not possible or too expensive. However, before applying the method
to other regions, the validity of the simple model for the bottom water temperature25

needs to be carefully discussed.
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Therefore, a main topic in further research could be the generalization of the bottom
water temperature model. The implementation of the inversion algorithms can be easily
adapted to reconstruct the parameter vector of other periodical functions. The Fourier
series, introduced in Sect. 5.2, would be a reasonable start. The more coefficients of
the Fourier series one wants to reconstruct, the more sensors are needed to get a full-5

rank derivative. For regions with more noise in the bottom water temperature deviation,
such as the Baltic Sea, the smaller periods could possibly generate more realistic data,
and thus improve the reconstruction results for such data sets.

A piece-wise constant function as in the large scale climate history reconstruction
could also be used. Such a model is then possibly capable of reconstructing a-periodic10

events in the most recent water temperature changes. This would be of great interest
for the Baltic Sea (e.g. to identify inflows from the North Sea over the Danish Straits)
or the Arctic Sea (e.g. to indicate cold water discharge due to iceberg calving events).

As mentioned in Sect. 2, determining the steady state heat flow is also a large field
of interest. If the reconstruction is stable enough, the calculated seasonal influence15

could be subtracted and thus the the steady state heat flow could be obtained. For
now this is not possible, as the heat flow is a constant input parameter to the forward
model. Here, further investigation is needed to implement a method, which is capable
of reconstructing the heat flow as well.

Over all it is both desirable to get more data sets to compare results of the inversion20

technique against measurements as well as to develop models for the bottom water
deviation that fit more oceanographic settings. This could further verify our method and
the used inversion schemes but also broaden the area of application.
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Table 1. Statistics for the inversion of artificial data. The uppermost part contains the inversion
results for artificial data with 0.1% white noise added, the middle part artificial data with 1.0%
noise. The lowermost part shows inversion results to artificial data with 0.1% white noise added
after the seasonal forcing already contained noise of about 8%.

Data Artificial 0.1% noise

exact parameters A B d
8.2 5.9 62

results Newton A B d mean error max error

mean 8.1961 5.8857 61.9709 0.3124 % 0.6483 %
variances 0.0004 0.0025 0.0464

result REGINN A B d mean error max error
mean 8.1978 5.8963 61.9620 0.2096 % 0.5850 %
variances 0.0003 0.0013 0.0318

Data Artificial 1.0% noise

exact parameters A B d
8.2 5.9 62

results Newton A B d mean error max error
mean 8.2245 5.9563 61.8430 2.8837 % 7.2872 %
variances 0.0474 0.2499 2.8912

result REGINN A B d mean error max error
mean 8.3601 6.2585 63.4468 2.6344 % 5.6842 %
variances 0.0246 0.1344 1.6411

Data Artificial 0.1% noise 8.0% water noise

exact parameters A B d
8.2 5.9 62

results Newton A B d mean error max error
mean 8.2504 5.8955 62.8765 6.8582 % 17.5380 %
variances 0.2941 2.2165 22.7159

result REGINN A B d mean error max error
mean 8.2923 5.8878 62.2655 8.6890 % 14.9191 %
variances 0.9917 10.0657 29.5053
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Table 2. Results of the inversion of the data set from Borkum. The Newton algorithm gives an
unlikely estimate for the day of the annual minimum, but the overall mean parameters fit the
guess from Müller et al. (2013) almost perfectly.

Data Borkum

results Newton A B d
mean 9.7861 5.6583 26.6172
variances 0.0030 0.0210 2.6269

result REGINN A B d
mean 11.9501 9.1510 55.5305
variances 0.0260 0.0886 1.7055

overall results A B d
mean 10.8681 7.4047 41.0739
variances 1.1999 3.1425 213.7791
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Table 3. Results of the inversion of the data set west of Greenland. Both Algorithms give similar
reconstruction values with small variances.

Data Greenland

results Newton A B d
mean 3.1770 0.1583 71.5104
variances 0.0003 0.0001 2.1522

result REGINN A B d
mean 3.1764 0.1600 74.2546
variances 2.6×10−6 3.7×10−6 0.9310

overall results A B d
mean 3.1767 0.1591 72.8825
variances 0.0002 5.8×10−5 3.4286
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Figure 1. Bottom water temperature (top panel) as input to the forward model operator and
the solution (bottom panel) at different days of the year. The bottom water temperature function
is a cosine with a mean value of 8.2 ◦C, an amplitude of ±5.9K and the minimum on the 62
day of the year. The colors indicate the bottom water temperature and thus the day of the year
when the temperature-depth-profile is plotted. The bright orange temperature-depth-profile is
the solution on the 220th day of the year, when the bottom water temperature is near the annual
maximum of 14.1 ◦C.
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Figure 2. Locations of the two example data sets (red). In the upper panel, the data location
near the island of Borkum in the German North Sea is depicted. Additionaly the observation
station FINO1 is marked (green). In the lower panel, the data location west of the coast of
Greenland near Nuuk is shown.
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Figure 3. Results of a VibroHeat survey in the North Sea north of Borkum in 2011 showing
in-situ temperature, thermal conductivities, thermal diffusivity, and volumetric heat capacity as
a function of depth.
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Figure 4. Inversion of the data set near Borkum. In the upper panel, the recorded bottom wa-
ter temperature at the BSH-station FINO1 are depicted for the years 2010 (green) and 2011
(blue). Additionally, the cosine functions as results of the inversion schemes are plotted: the
mean result of the Newton Algorithm, the REGINN result and the overall mean. In the lower
panels, the measured temperature (left) and thermal diffusivity (right) are depicted. The result-
ing temperature-depth-profiles from the modeling with the inversion results are plotted together
with the measured temperatures in the left panel.
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Figure 5. Inversion of the data set west of Nuuk. In the upper panel, the cosine functions as
results of the inversion schemes are plotted: the mean result of the Newton Algorithm in dashed
line, the REGINN result in dashed line with dots and the overall mean in a straight line. In the
lower panels the measured temperature (left) and thermal diffusivity (right) are depicted. The
resulting temperature-depth-profiles from the modeling with the inversion results (the line styles
are the same as above) are plotted together with the measured temperatures in the left panel.
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