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Abstract. First results of a coupled modelling and forecast-
ing system for fisheries on habitat-bound stocks are being
presented. The system consists currently of three mathemati-
cally, fundamentally different model subsystems coupled of-
fline: POLCOMS providing the physical environment imple-
mented in the domain of the north-west European shelf, the
SPAM model which describes sandeel stocks in the North
Sea, and the third component, the SLAM model, which con-
nects POLCOMS and SPAM by computing the physical–
biological interaction. Our major experience by the coupling
model subsystems is that well-defined and generic model in-
terfaces are very important for a successful and extendable
coupled model framework. The integrated approach, simulat-
ing ecosystem dynamics from physics to fish, allows for anal-
ysis of the pathways in the ecosystem to investigate the prop-
agation of changes in the ocean climate and to quantify the
impacts on the higher trophic level, in this case the sandeel
population, demonstrated here on the basis of hindcast data.
The coupled forecasting system is tested for some typical sci-
entific questions appearing in spatial fish stock management
and marine spatial planning, including determination of local
and basin-scale maximum sustainable yield, stock connec-
tivity and source/sink structure. Our presented simulations
indicate that sandeel stocks are currently exploited close to
the maximum sustainable yield, even though periodic over-
fishing seems to have occurred, but large uncertainty is as-
sociated with determining stock maximum sustainable yield
due to stock inherent dynamics and climatic variability. Our
statistical ensemble simulations indicates that the predictive
horizon set by climate interannual variability is 2–6 yr, after
which only an asymptotic probability distribution of stock
properties, like biomass, are predictable.

1 Introduction

In recent years evidence of degradation of marine ecosystems
by overfishing, by-catch, climate change, eutrophication and
chemical pollution from land runoff, coastal development,
habitat destruction and other human activities has become
undisputable (Levin and Lubchenco, 2008). Why are we still
uncertain about how best to manage the crisis of ecosystems,
especially fish communities, triggered directly or indirectly
by human impacts? Forecasting fish stocks, akin to the ubiq-
uitous weather forecasts, has proved to be an elusive target
for fishery science (Huse and Ottersen, 2003; Megrey et al.,
2005). This is fundamentally related to the character of the
ecosystem dynamics where the processes are poorly con-
strained, quantified and partially still poorly understood, and
involve ranges of temporal/spatial scales that span several or-
ders of magnitude, generally non-linearly linked. A key prob-
lem here remains the insufficient field sampling of ecosys-
tem state variables to parametrize processes, define its initial
state and boundary conditions as well as insufficient spatial
resolution of ecosystem models (Fulton et al., 2003). Conse-
quently, fundamental difficulties in analyzing ecosystem be-
haviour arise and hypotheses are numerous and difficult to
discriminate (Carpenter, 2002), further complicated by math-
ematical issues typical of non-linear systems like instabil-
ities, chaos and regime shifts. These pessimistic prospects
have spurred some interest in alternative routes to ecosys-
tem forecasting, like artificial neural networks (Chen and
Ware, 1999; Huse and Ottersen, 2003; Suryanarayana et al.,
2008). However, ecosystems are facing regime shifts and
major trophic reorganization these years (Beaugrand et al.,
2002; Alheit, 2009; Kenny et al., 2009; Moellmann et al.,
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262 A. Christensen et al.: Towards an integrated forecasting system for fisheries on habitat-bound stocks

Fig. 1. Small boxes show suitable sandeel habitats resolved on a
10 km scale corresponding to the POLCOMS grid. The habitat net-
work is represented by 585 such cells, which is the model domain
of the SPAM model. The lines indicate WGNSSK regional stock
assessment areas 1–4.

2009), which renders— unguided machine learning from re-
cent history dubious; there is no safe way around improving
a process-oriented representation of the marine ecosystems.

Despite not being on the mark yet, many advances in
process-oriented ecosystem modelling have been presented
recently (Fulton et al., 2011; Hinrichsen et al., 2011). Many
of these advances are supporting operational systems of
physical regional circulation models and associated biogeo-
chemical models describing the lower trophic ecosystem lev-
els (Gallego et al., 2007; Brasseur et al., 2009) which pro-
vide access to high quality input data for fish stock models.
The process of integrating operational oceanography prod-
ucts with fish stock models has been accelerated by projects
like MyOcean (MyOcean, 2009–2012).

Even though many impressive models describing com-
plex fish stocks, like tuna (Lehodey et al., 2008; Senina
et al., 2010; Lehodey et al., 2010), have been put forward,
many fundamental issues remains unresolved and too many
important processes are aggregated in model constructions.
To achieve a better understanding of fish stock dynam-
ics, it is attractive to focus on fish species with compara-
tively simple life cycles and then transfer experiences to fish
species displaying more complex traits as well as interact-
ing fish stocks. Here sandeel and other sedentary species
with well-characterized habitat requirements appear ideal,
because stock migration is a very challenging issue to model
(Kishi et al., 2011). Ecologically, sandeel is an important
mid-trophic wasp-waist species, capable of exerting both
bottom-up and top-down control, in that it constitutes a sig-
nificant part of the fish biomass (∼25 %) in the North Sea
ecosystem. Therefore, predicting and understanding the dy-
namics of this stock has attracted some interest (van Deurs

et al., 2009; Arnott and Ruxton, 2002; Lewy et al., 2004),
however most of these works are statistical approaches.Lewy
et al.(2004) found that the predictability of all the North Sea
sandeel stocks together was better than that of individual sub-
stocks; our work will challenge this finding. The short life
cycle of the species makes it especially susceptible to spa-
tial and temporal variability in ambient physical conditions,
because the biomass and recruitment are controlled by one
or two offspring cohorts (Arnott and Ruxton, 2002). For in-
stance, in 2010 the proportion of fish just one year old in
the catch was more than 90 %, and such a high proportion
has been observed in other years as well (WGNSSK, 2011).
Sandeel stocks display strong interannual fluctuations, of-
ten biomass changes by more than a factor of two between
years. In addition to this, North Sea sandeel biomasses have
historically experienced an apparent regime shift (Grandge-
orge et al., 2008; van Deurs et al., 2009), going from a high
average abundance level (∼2 Mt) to a lower average abun-
dance level (∼1 Mt) around 1998–1999 (WGNSSK, 2011).
The exact reason for this has not unambiguously been re-
solved, even though fishing pressure increased prior to the
regime shift. However, other fish stocks predating sandeels
(Beaugrand et al., 2003), as well as the North Sea zooplank-
ton composition (Beaugrand et al., 2002), experienced pre-
ceding regime shifts, pointing in the direction of trophic cas-
cades. Sandeels are fished for fish meal and fish oil produc-
tion. They bury in the sandy sea bed when not feeding, and
therefore these stocks are localized to areas with sandy bot-
tom substrate. These habitats have been mapped in detail
from fishery log books (Jensen and Rolev, 2004), see Fig.1.

The temporal and spatial variability of the North Sea
sandeel stocks makes this case study a rigorous test of the
current capability of forecasting fish stocks. Such a variable
resource poses a great challenge to an economical sector re-
quiring a relatively constant supply to operate with low cost
levels. Predicting stock dynamics on a short timescale of 1–
2 yr would be of great value to fishermen and industry, allow-
ing them to anticipate inherent stock fluctuations and reallo-
cate catch effort in time to other opportunities. Current fish
stock assessment is data driven with limited spatial resolution
(i.e. regional- or basin-scale).

Marine spatial planning often requires knowledge about
ecosystem properties and responses at subregional scales
(<50 km), and there is a pressing need to know how fish
stocks respond to management actions and human activity
on these smaller scales.
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In this paper we present a spatial fish stock forecasting sys-
tem addressing the needs above that can run in either hind-
cast/forecast mode or in reanalysis mode with a simple data
assimilation scheme for the purposes of

– providing short-term forecasts including the effects of
seasonal and interannual variability;

– providing a flexible tool for assessing effects of alter-
native scenarios of stock management, involving both
local-scale and basin-scale management actions; and

– downscaling regional-scale stock assessments to pro-
vide access to stock variability on spatial scales<50 km
which is not accessible through regional-scale stock as-
sessments.

2 Forecasting model system

The forecasting system targeting habitat-bound fish stocks
presented here contains three elements as depicted in Fig.2:
at the bottom, ocean physics is provided by the POLCOMS
model; at the top, fish stocks and fisheries are described
by the SPAM model; the top and the bottom are glued to-
gether by the SLAM model, describing early life stages of
fish stocks. All three model components are described below
and are coupled offline, as described in Sect.2.4. In this way
all of the pathway from climate to fish landings is described
by the system. We illustrate the forecasting model system on
North Sea sandeel stocks. Challenges involved in generaliza-
tion of the forecasting system to other species are addressed
in Sect.4. The biological models (SLAM and SPAM) rep-
resents a light-weight but balanced choice between explic-
itly represented processes and aggregated processes, since
defaulting to the finest resolution and greatest complexity in
all the dimensions (e.g. spatial, temporal, taxonomic, process
detail) is not beneficial (Fulton, 2010) because uncertainties
in additional processes may lead to degradation for overall
model performance.

2.1 Physics

The hydrodynamic environment for the sandeel population
is given by an implementation of the POLCOMS modelling
system (Allen et al., 2001) implemented on the NW Euro-
pean shelf (Butenscḧon et al., 2012). This model is a further
development of the MyOcean v0 model (Siddorn et al., 2007)
for the NW European seas that provides an enlarged do-
main corresponding to the v1 model (Edwards et al., 2012),
allowing for a more realistic representation of the impacts
of the shelf exchange processes on the shelf waters (Holt
et al., 2012), and uses a consolidated version of POLCOMS.
POLCOMS is a primitive equation model for the coastal
ocean using sigma coordinates and a Arakawa B-grid with
a piecewise parallel scheme for advection processes. Turbu-
lence closure is achieved through the Mellor–Yamada model

Fig. 2.Diagram of coupled model elements.

with an algebraic mixing length. Details on this part of the
modelling system and extensive validation of its forecasting
quality are given in the above mentioned references. From
a model hindcast of the years 1960–2004, only the years
1970–2004 were used for this work to exclude spin-up ef-
fects. Figure3 shows spatial and interannual temperature dis-
tribution to illustrate a major environmental impact factor on
the sandeel habitats (see Fig.1). The POLCOMS modelling
system is coded in Fortran 90 to ensure high computational
performance.

2.2 SLAM (Sandeel Larval Analysis Model)

SLAM (Sandeel Larval Analysis Model) is an individual-
based model describing transport and survival probability of
early life stages (fish eggs and larvae) of sandeel (Christensen
et al., 2008).

Sandeels have pelagic larvae, and their physical transport
is described by passive advection–diffusion in this work.
Larval trajectories were generated by Euler forward inte-
gration using a time step of 1800 s, which has been found
to generate sufficiently accurate trajectories previously. Lar-
val hatching date is set to 20 February, based on biological
observations (Wright and Bailey, 1996; Jensen, 2001). Lar-
val growth is described by a temperature-controlled growth
model (model 3 in Table 2 inChristensen et al., 2008),
where temperatures are obtained from the coupled POL-
COMS model. In the SLAM model larvae settle when they
reach the length of metamorphosisL= Lm (Wright and Bai-
ley, 1996; Jensen, 2001), if they are at in suitable habi-
tat (Fig. 1) according to the temperature-controlled growth
model – otherwise they are lost (biologically they have a
high mortality). This and alternative growth models were
compared extensively in a previous work (Christensen et al.,
2008), and results were found to be relatively insensitive to
model details. All other details of the computational set-up
were identical to previous work (Christensen et al., 2008). By
hatching larvae from all suitable 585 habitat cells in Fig.1,
a 585×585 transport matrixTy is generated by the SLAM

www.ocean-sci.net/9/261/2013/ Ocean Sci., 9, 261–279, 2013
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(a) (b)

Fig. 3. (a)Temporally averaged temperature (◦C), 1970–2004, from POLCOMS, averaged over depth.(b) Spatially averaged temperature
(◦C), 1970–2004, from POLCOMS.

model for each year “y” describing habitat connectivity. For
each year,n= 1000 larvae per habitat cell were used to sam-
ple the transport matrix, so that a yearly transport simulation
encompassed 585 000 released particles. Basic probability
theory gives that the relative uncertainty RMS(Tij )/Tij on
a transport probabilityTij obtained by sampling is 1/

√
nTij ,

so that very rare transport pathways are less accurately re-
solved; on the other hand they do not contribute much to
biomass dynamics (in most cases). A databaseTy was gener-
ated for y = 1970–2004 from POLCOMS output to span cli-
matic variability (thus also including temperature-controlled
larval growth). These transport matrices were the input the
stock model SPAM (see below) used to calculate spatial re-
cruitment of new generations. The SLAM model addresses
density independent growth and mortality processes. The
model SPAM (see below) corrects for density dependence
on larval growth and mortality (van Deurs et al., 2009). The
SLAM model is coded in modular Fortran 90 to ensure high
computational performance.

2.3 SPAM (Sandeel Population Analysis Model)

SPAM (Sandeel Population Analysis Model) is a spatial
stock model for settled sandeel that follows cohorts (genera-
tions) through their life cycle. The SPAM model was previ-
ously parametrized for a regional-scale set-up (Christensen
et al., 2009), whereas this work presents a high resolution
set-up on a 10×10 km grid, coincident with the physical grid
used for the POLCOMS hindcast, so that spatial resolution of
all three model components is aligned. The 10 km grid scale
allows for emergence of fine-scale spatial biological patterns;
limited biological data only allows biological parameters to
be varied on regional or North Sea scale, otherwise the model
becomes over-parametrized.

The state variables in the SPAM framework are the abun-
danceNy

i,a and average fish lengthLy
i,a in each habitat cell

i in Fig. 1 for each generation with age “a” and for each
year “y”. The present set-up comprises 596 habitat cells each
having 12 age classes. The state variables describe condi-
tions on 1 January each year, so they represent time snap-
shots and not averages over the year. State variables are
updated from 1 January to 1 January the subsequent year
by integrating processes over the elapsed year. The SPAM
model and its parametrization were thoroughly discussed in
(Christensen et al., 2009), and we adhere to the notation es-
tablished there and provide a summary along with develop-
ments in AppendixA. The SPAM model can run as a stand-
alone life cycle model in hindcast mode or in reanalysis mode
with various degrees of data assimilation. The time integra-
tion step in the SPAM model is:

N
y+1
i,a+1= δa,0

∑
j

R
y
ij + e

−Z
y
i,aN

y
i,a (1)

L
y+1
i,a+1= L

y
i,a+ g

(
L

y
i,a,N

y
i,a

)
(2)

R
y
ij = T

y
ijS

y
ij

∑
a
Q

y
j,aN

y
j,a, (3)

whereZ =F +M +Z0 is the total mortality composed of
fishing pressureF , predationM and background (other) mor-
tality Z0. δ is the Kronecker delta.R is the recruitment (of
a new generation), which is assembled in SPAM from the
transport matrixT passed from SLAM, and fecundityQ and
conditional survival chanceS, both of which depends onN
andL. The primary forcings of the model are(F y

i,a, M
y
i,a,
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T
y
ij ). The indirect forcings are the habitat carrying capac-

ity Cy
i (see AppendixA for model parametrization details,

where also the length-specific growth parametrizationgi is
described). Especially in AppendixA, we describe attempts
to parametrize growth in relation to zooplankton abundance.
In addition to dependence on length and stock size, it was
tested whether growthg depended on zooplankton (i.e. food)
density and temperature; however, observations did not sup-
port a significant relation (see AppendixA for further de-
tails). A useful diagnostic quantity that we will discuss later
is the recruit-per-recruit numberry

i ,

r
y
i =

∑
ξ>y,a>1

σ
ξ
i,ξ−yQ

ξ
i,ξ−y

∑
j

T
ξ
jiS

ξ
ji, (4)

where

σ
ξ
i,ξ−y = e

−
∑
ξ>yZ

ξ
i,ξ−y (5)

which is the future number of (somewhere) settled offspring
that a new juvenile can expect to produce in its lifetime, given
that it settles in habitat celli at year “y”, andσ ξi,a is the prob-
ability of surviving to age “a” at yearξ , given settlement in
habitati. ry

i is a function of fishing mortalityF ξ>y
i,a (in ad-

dition to state matricesNξ>y andL ξ>y). In relation to stock
management, it is interesting to see at what fishing pressure
r = 1, i.e. when a newly settled juvenile closes its life cycle
with one new recruit on average.

ψ
y
i = F

ξ>y
i,a : r

y
i

(
F
ξ>y
i,a

)
= 1 (6)

This defines a local maximum sustainable fishing pressure.
For sinks, Eq. (6) will not have a solution (thus identifying
sinks, using this definition).

The SPAM model is written as a Python class library. Sim-
ulating stock dynamics at the present spatial resolution takes
less than half a second per year on a standard laptop, thus
enabling extensive ensemble simulations at high spatial res-
olution.

2.4 Coupling models

It is important to realize that the three elements in the present
forecasting system are fundamentally very different and ad-
dress different temporal and spatial timescales: POLCOMS
is an Eulerian model based on the continuum hypothesis
solving the balances for mass, momentum and energy in the
form of partial differential equations, while SLAM is a La-
grangian framework and SPAM implements discrete differ-
ence equations of stock dynamics. Therefore, at a technical
and mathematical level the coupling of the three elements is
by no means trivial and requires well-defined interfaces. In
this work, the models are coupled offline, meaning that mod-
els are run independently, as opposed to being coupled on-
line where models are run contemporaneously (and exchange

data bidirectionally). In this work, data exchange between
POLCOMS and the SLAM models occurs in daily 3-D time
frames of average ocean fields; the SLAM-SPAM interface
exchanges yearly transport matricesTy andSy. Further as-
pects of online versus offline coupling are discussed in the
Sect.4.

2.5 Stock data and data assimilation

Recently, the ICES Working Group on the Assessment of De-
mersal Stocks in the North Sea and Skagerrak (WGNSSK,
2011) moved from basin-scale to regional-scale assessment
of sandeel stocks in ICES area IV, based on statistical anal-
ysis of catch landings, catch sampling and biological sur-
veys. ICES WGNSSK adopted a regional division of the
sandeel habitat network, see Fig.1, partially based on hy-
drographic connectivity. In areasA=1–3, SSBA (spawning
biomass of age≥2, see Eq.A3), TSBA (total adult biomass
of age≥1, see Eq.A4), recruitment (RA), catchesYA and av-
erage weight at catch were reported for 1983–2010; in area 4
only catches for 1983–2010 were reported. The time series of
SSB, TSB, andR for 1983–2010 have a quite decent overlap
with the POLCOMS hindcast of physics (1970–2004) to en-
able reanalysis runs. These WGNSSK fish stock assessments
are considered as pseudo observations that can be assimilated
independently in SPAM in reanalysis mode.

Data assimilation techniques are widely used in geo-
sciences modelling and refer to a wide range of tech-
niques for model reanalysis, starting from direct insertion
and nudging, advancing to Kalman filters and variational
methods (Robinson and Lermusoaux, 2000). Crude direct
insertions replace model state variables with observations
assuming no observational error, while nudging relaxes the
model’s state toward observations using a prescribed relax-
ation pace. A popular basis is the Kalman filter (see, e.g.
Larsen et al., 2007). The basic problem in our context is that
basic premises of the Kalman filter are not satisfied (system
linearity and unbiased multivariate Gaussian error structure),
and therefore adaptation and extensive testing will be nec-
essary to apply this algorithm in the present context; error
estimates on ICES biomass estimates are only partial and in-
complete. Another popular basis is variational data assimila-
tion techniques (see, e.g.Barker et al., 2004), which explic-
itly balance model and observational uncertainty in a pre-
scribed cost function. Again, incomplete characterization of
uncertainty in model and ICES biomass estimates is an issue
requiring extensive work. Implementing a Kalman or vari-
ational scheme in the present context will require extensive
technical adaption, and since it is not our intention to present
a paper on data assimilation per se, we will apply a simple
nudging (aka Newtonian relaxation) scheme in the present
work.

In this work we will assimilate regional spawning biomass
(SSBA) and regional total biomass (TSBA), each correspond-
ing to 4 pseudo observations each year. The model prediction

www.ocean-sci.net/9/261/2013/ Ocean Sci., 9, 261–279, 2013
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of SSBA and TSBA are given by Eqs. (A3) and (A4), re-
spectively. These equations show that observations are not
point samplings of the model state but correspond to regional
sums over model states; this means that we need to have an
assumption about error distribution within regions. Here we
will apply the reasonable null assumption that the model er-
ror is proportional to model state variables. Further, since no
direct observations of length distributions (at 1 January) are
available inWGNSSK(2011), we associate model state er-
rors withNi a (thus not nudgingLi a), which is supported by
the presumption that the major error source in SPAM is un-
accounted variability in predation mortalityM. These two
biologically reasonable assumptions makes the assimilation
problem tractable as a rescaling ofNi∈A,a for each regionA,
since SSBA and TSBA depends linearly onNi∈A,a. Thus, in
reanalysis mode, we apply the following Newtonian relax-
ation scheme after the forecast steps Eqs. (1)–(3):

Ni∈A,a←Ni∈A,a+ κ (εA−1)Ni∈A,a, (7)

εSSB
A =

SSBA∑
i∈A,a≥2Ni aw(Li a)

, (8)

and

εTSB
A =

TSBA∑
i∈A,a≥1Ni aw(Li a)

, (9)

where εA = εSSB
A or εA = εTSB

A or a linear combination
thereof, if both SSB and TSB are being assimilated and 0<

κ < 1 is the nudging pace, withκ = 0 being the pure hind-
cast mode limit andκ = 1 being the direct insertion mode
limit, where model regional biomasses match ICES regional
assessment. The nudging scheme above is not mass conserv-
ing; however, this is not a problem, because the sandeel stock
is an open system internally governed by dissipative and cre-
ation processes, e.g. mortality, fishery and biomass growth.

2.6 Future climatic variability

The computational cost of a full decadal ensemble forecast
of the lower trophic levels of the marine environment that is
sufficiently constrained to quantify all the uncertainties in-
volved in such a system is currently untractable in an oper-
ational system. The question is then what to use as environ-
mental forcing when future predictions of stock development
must be assessed, i.e. how should we generate future matri-
cesTy needed for stock forecasting? In this paper we will
only address the impact of future climatic variability – not
climate change, which is a separate issue. We use a simple
statistical extrapolation of the environmental forcing into the
forecasting period, which requires no explicit projection of
the environmental state, that would come at extremely high
computational cost.

Fig. 4. Hindcast of the 1998–1999 sandeel stock regime shift,
with full reanalysis for 1983–1996. The actual computedT matri-
ces for 1983–2004 are imposed in all runs. Full thick line: actual
stock biomass (left axis) from ICES stock assessment. Dotted line:
1996–2004 hindcast, freezing fishing pressure to 1996 level. Dashed
line: 1996–2004 hindcast, imposing actual historic fishing pressure
(higher than 1996 level). Dash-dotted line: 1996–2004 hindcast,
imposing actual historic fishing pressure along with 20 % linear
reduction in carrying capacity between 1997 and 2004. Dot-dot-
dashed line: full-period 1983–2005 hindcast model run, applying
actual historic fishing pressure. Full grey line (right axis): average
actual historic fishing pressure, averaged over areas 1–3 for 1-yr-old
sandeel.

For SPAM ensemble forecasts, simply, each member of the
statistical ensembles each year independently drew a ran-
dom memberT of the set{Ty

}y∈[1970;2004] to generate the
response envelope to interannual variability. This procedure
is based on the assumption that the set{Ty

}y∈[1970;2004] spans
the climatic variability and is supported by our previous find-
ing that transport matricesTy of subsequent years have lit-
tle correlation structure in the temporal variability, if any
(Christensen et al., 2008).

2.7 Model validation

Validation of fish stock models is notoriously difficult be-
cause fish stock state can not be observed directly. Often one
is most interested in the stock biomass, and for commercial
stocks fish landings are the most important data source. How-
ever, there is no simple proportionality between biomass and
landings, and data needs to be preprocessed under many as-
sumptions and possibly combined with other data sources;
consequently error estimates are difficult and incomplete.
The most qualified estimates on fish stock biomasses come
from fish stock assessments published by ICES (International
Council for the Exploration of the Sea, see ices.dk), which
combines fish landing data, survey data and many other data
sources and continuously develops the applied methodolo-
gies. We will consider their estimates on fish stock biomasses
as pseudo observations in the present work to parametrize

Ocean Sci., 9, 261–279, 2013 www.ocean-sci.net/9/261/2013/
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Table 1.SPAM model cost function “cf” (Eq.10) on total biomass
prediction (TSBy =

∑
i,a≥1 N

y
i,a w

y
i,a) and total recruitment pre-

diction (Ry =
∑
ij R

y
ij

) with different data assimilation levels for
1983–2004. In all cases, the actual yearly calculated values of the
transport (Ty) and assessed fishing mortality (F y ) was applied as
forcing. In the column Nudging, the number in parenthesis refers to
the value ofκ giving highest skill.

Skill

Predicted Assimilated Hindcast Nudging Direct
property data (κ = 0) (at optimalκ) insertion

(κ = 1)

TSB SSB 0.930 0.794 (0.68) 0.816
R SSB 1.094 1.005 (1.00) 1.005
R TSB 1.094 0.973 (0.90) 0.983

and validate the SPAM model. Our philosophy is to orient
modelling toward available data sources and do the best pos-
sible job with this.

2.7.1 Model skill assessment

To assess the skill of the framework at various levels of data
assimilation, we compared model output with results from
ICES stock assessmentWGNSSK (2011). The model skill
for an output propertyX is quantified by the conventional
cost function (Allen et al., 2007):

cf(X)=
1

N

N∑
q=1

|
MX
q −O

X
q

σ
(
OX

) |, (10)

whereMX
q andOX

q are theqth out ofN matching pairs of
model output and observation, respectively, on propertyX,
andσ(OX) is the observed RMS on propertyX. We have
applied the absolute value of each model residual to accen-
tuate a potential time bias or model drift, if present. The per-
formance level is conventionally ranked as cf<1: very good,
cf<2: good, cf<3: reasonable and cf>3: poor (Radach and
Moll , 2006).

In Table1 we show the model skill for biomass (TSB) and
recruitment (R) for the period 1983–2004. In all cases, with
and without data assimilation, the model performs good or
very good according to the cost function metric, Eq. (10),
even in hindcast mode (κ = 0). In all cases, data assimilation
(κ > 0) improves model skill a little, but not dramatically. In
two cases, an intermediate value of nudging pace (κ) is op-
timal, whereas for recruitmentR with data assimilation of
SSB, the direct insertion limit (κ = 1) gives best skill; how-
ever, the variability with (κ) is not dramatic in this case. Fig-
ure 4 (dot-dot-dashed line) shows a full-period 1983–2005
hindcast model run, applying actual historic fishing pressure,
compared to ICES stock assessment (full line). The figure
shows that the model reproduces many characteristic fluctu-
ations in the stock assessment data and basic statistical prop-

erties of the ICES stock assessment time series; a slight ten-
dency to under estimate biomass in 1983–1996 is apparent –
this is due to the fact that model carrying capacities are cal-
ibrated to the average biomass for period 1990–2011, which
straddles the period with low stock abundance (see below).

2.7.2 Anatomy of the 1998–1999 regime shift

As mentioned in the introduction, North Sea sandeel stocks
apparently underwent a regime shift around 1998–1999. This
situation constitutes an interesting situation to validate the
model’s set-up. The most prevalent hypotheses for the trig-
gering mechanism(s) are either overfishing or a shift in North
Sea zooplankton composition. To delineate the causality be-
hind this apparent regime shift, we ran hindcasts with dif-
ferent forcing scenarios as shown in Fig.4, along with the
actual stock development. The dotted line in Fig.4 shows
that no regime shift occurs if the fishing pressure is main-
tained at the 1996 level; if however, the actual historic fishing
pressure is applied (dashed line), the model stock biomass
displays a dip of quite similar magnitude as the actual his-
toric stock biomass (as obtained from ICES stock assess-
ment), and many characteristic fluctuations are reproduced
even though the prominent biomass peak in 1997 is underes-
timated. The dashed line also constitutes a short-term com-
parison between model hindcast and actual data (full black
line). The relative impact of a zooplankton quality change is
modelled as a decline in the habitat carrying capacityC. The
dash-dotted line in Fig.4 shows the effect of a 20 % decline
in habitat carrying capacity between 1997 and 2004 (relative
to parametrized level) in conjunction with the historic fish-
ing pressure. The effect is clearly smaller, and to obtain an
effect similar to the fishing pressure increase, a 60–80 % de-
cline in habitat carrying capacity between 1997 and 2004 is
needed, a decline which is not reflected in observations to our
knowledge; so, in summary, this exercise indicates that fish-
ing pressure most likely triggered the apparent regime shift
around 1998–1999, and the model is able to reproduce this
effect. Finally, Fig.4 clearly shows that the model reproduces
the two-year auto correlation of the stock biomass, which is
an emergent feature of the model. The fact that model perfor-
mance in hindcast mode is quite decent reflects a fair mecha-
nistic representation of biological processes in the coupled
model framework, however for more operational purposes
we recommend reanalysis mode to reduce model error fur-
ther.

Since stock biomass assessments from ICES are used both
for parametrization and validation, one may at first glance ar-
gue that there is a risk of circularity. However, parametriza-
tion of unknown biological variables, like the habitat car-
rying capacityC, are done using multidecadal averages of
drivers (like T , F andM) in relation to multidecadal av-
erages of local stock biomasses (B), thus giving time aver-
ages of biological variables likeC. Validation, on the other
hand is performed using drivers (T y , F y) for the actual year,
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Table 2.Biological parameters in the SPAM model.

Parameter Description Value Unit Source

s Larval minimum growth factor 0.67 – Letcher et al.(1996)
L0 Larval hatch length 6.3 mm Jensen(2001)
L∞ Adult length limit 218 mm Macer(1966)
β Growth exponent 0.768 – Jensen(2001); Boulcott et al.(2007)
λ0 Maximum growth prefactor 660 mm yr−1 WGNSSK(2011)
ω Relative growth variability 0.2 – Jensen(2001)
w∞ Adult weight limit 31.94 g Macer(1966)
φ Weight length exponent 3.068 – Macer(1966)
Q∞ Fecundity limit 12556 eggs Macer(1966)
q Fecundity length exponent 3.055 – Macer(1966)
tlarv Larval growth/drift period 8/52 yr Jensen(2001)
tjuv Juvenile growth period 12/52 yr Jensen(2001)
tps Post-settlement period 16/52 yr Jensen(2001)
tagw Adult somatic growth period 10/52 yr Jensen(2001)
tactive Adult active period 20/52 yr Jensen(2001)
tc Diagnostic fishing day (in active period) 1/52 yr Diagnostic

Table 3. Inferred biotic/abiotic parameters in the SPAM model obtained from residual minimization.

Parameter Description Unit
Value in areai

1 2 3 4

α Competition susceptibility – 0.0425
τ Avg. life time of a hatched larvae days 6.966
Ci Carrying capacity t km−2 2.36 2.04 2.54 2.08
ξi Mortality weighting factor – 1.18 1.13 1.00 0.84

compared to stock biomasses for the actual year (By), and
therefore the validation is meaningful and tests the internal
consistency and response properties of the stock model in
this work, because the number of biological parameters is far
less than the number of data points used for parametrization.
Especially the regime shift situation above is a hindcast that
tests the predictive capability of the stock model in this work,
since the actual time varying forcing (the fishing history) is
applied to test a characteristic known response.

3 Results

In this section we provide some examples of model output
that illustrate how the forecasting system described above is
able to address typical questions in relation to the scientific
basis for spatial fish stock management and marine spatial
planning. Conclusions for management should be based on
statistical properties of stock dynamics rather than results for
specific years, unless specific years are addressed, to avoid
decisions potentially based on outliers in the stock dynam-
ics. Each simulation starts with a spin-up period of 50 yr to
relax age, size and spatial distribution of the fish stock. In
all runs we start with a spin-up period where we apply area

resolved time averages for the period 1990–2011 of stock
driversF , M, Z0 andT (the latter at 10 km resolution); we
refer to these as reference conditions. After this follows a re-
analysis period (1983–2004), where TSB (WGNSSK, 2011)
were assimilated withκ = 1, as described in Sect.2.5 and
applying year specific values of stock driversF andT. For
all forecast ensemble runs 2004, the same initial conditions
(state matricesN andL ) are applied to all ensembles mem-
bers in the beginning of the forecast period, corresponding
to system state at the end of the reanalysis period. In other
words, ensembles were initialized by cloning the system state
at the end of the reanalysis period.

3.1 Fish stock forecasts

In relation to fish stocks, short-term forecasts means 1–5 yr,
whereas long-term forecasts means 10 yr.

Forcings were set to reference conditions in the forecast-
ing period, apart fromT, which was assigned as described in
Sect.2.6. In Fig. 5 we show 20 yr forecasts based on ensem-
ble runs for total stock biomass in WGNSSK areasA= 1–4
as defined in Fig.1. The forecast in Fig.5 were generated
using ensembles with 100 members, initialized as described
above. The purpose of these ensemble runs was to resolve
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the climatic variability response envelope. Some features are
very apparent: stock dynamics display a prominent two-year
auto correlation, which is most clear in the forecast period
2004, especially for area 1, but also clearly visible in the as-
similation period 1990–2004, where predation and fishing
pressure fluctuates between years and masks the two-year
auto correlation. The two-year auto correlation effect on the
stock biomass is observed for the stock (Arnott and Ruxton,
2002; van Deurs et al., 2009) and is a population density ef-
fect which also is an emergent feature in the SPAM model
parametrization. This population density effect comes from
food competition between adult fish and offspring or canni-
balism (on offspring) within the stock. It is also seen that the
two-year auto correlation is not in phase between areas or
ensembles, reflecting weak larval exchange between major
regions.

An interesting property in relation to the validity of fore-
casts is the climatic envelope decorrelation timescale, i.e. the
time it takes for interannual fluctuations to delete informa-
tion of the stock past history, which sets an upper limit for
medium/long-term predictions. This timescale is an intrinsic
property of the stock dynamics model coupled to prevalent
climatic forcing distributionT. We have previously shown
that transport matricesTy of subsequent years have little cor-
relation structure in the temporal variability, if any (Chris-
tensen et al., 2008). If the stock starts with a certain biomass
B0, the distribution of biomasses will evolve asP t (B) with

P t (B)→

{
δ(B −B0), t = 0
P∞(B), t →∞

, (11)

where the attractorP∞(B) is the is distribution of predicted
biomasses in the far future (if the stock is forced with same
climatic variability observed presently for a long time). In
Fig. 5 we see that the attractorsP∞A (B) are different for each
areaA, where area 2 has the broadest range. Also we note
that area 4 is predicted to be prone to years of low biomass
abundance, due to climatic variability.

The climatic envelope decorrelation timescaleτ is then the
speed at whichP t (B) converges toP∞(B). A rough estima-
tor for τ is

τ−1
∼

d
dt var(B)t=0

var(B)t=∞
. (12)

For the simplest reference system that can be solved ana-
lytically, diffusion with an attractive pointB0,

∂P

∂t
+

∂

∂B

(
−D

∂P

∂B
− k(B −B0)P

)
= 0, (13)

the estimator Eq. (12) gives the exact timescale in the ana-
lytic solution, where diffusivityD and advection speedk are
parameters.

The fact that transport matricesTy of subsequent years
can be considered independent makesτ insensitive to which
year we start. If the estimator Eq. (12) is applied to data in

(a)

(b)

(c)

(d)

Fig. 5. 20 yr ensemble forecasts of biomass in area 1, 2, 3, and 4
following reanalysis run 1990–2004. The ensemble averages over
climatic variability as represented byT, by drawing deviates as de-
scribed in Sect. 3.1:(a) WGNSSK area 1,(b) WGNSSK area 2,(c)
WGNSSK area 3,(d) WGNSSK area 4.
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Fig. 6. Asymptotic total biomass attractor (distribution) for North
Sea sandeel stocksP∞NS(B) predicted by the SPAM model.

Fig. 5, we find that areas 1–4 haveτ = (6,2,3,10+) yr re-
spectively, and the total biomass haveτ = 5 yr. Thus, unlike
Lewy et al.(2004), we do not find that regional decorrelation
timescales are consistently lower than basin-scale decorrela-
tion, and one may speculate that their conclusion is related to
their statistical approach. After this period, the system returns
to a dynamic attractorP∞A (B) characteristic for each area.
The asymptotic total biomass attractor for North Sea sandeel
stocksP∞NS(B) predicted by the SPAM model is shown in
Fig. 6. It is important not to confuse the climatic envelope
decorrelation timescaleτ with climatic change timescales;
the former addresses how the stock responds to climate vari-
ability, i.e. interannual climatic changes (considered stochas-
tic) on short timescales not related to global warming (or
other long-term timescales related to the Earth system). Fi-
nally we notice that the forecasts for 2004 predict stock re-
turns to a higher average level, consistent with recent years’
observations.

3.2 Spatial distributions and variability

An essential piece of information in spatial stock manage-
ment is the spatial and temporal distribution and variabil-
ity of the harvested biomass. In Fig.7 we plot the biomass
distribution (of 1 January) of contrasting years: 1996, 1997,
and 2004. The contrasting years are chosen so that 1996 and
1997 are before the apparent stock regime shift (1998–1999)
and 2004 after the apparent stock regime shift. The coupled
framework was run in reanalysis mode for the period 1983 to
2004, with assimilation of SSB withκ = 1, applying actual
forcingsTy andFy for each year. We see that the biomass
gets more concentrated in the Dogger bank region (left part
of area 1 in Fig.1) after the apparent stock regime shift,
whereas it previously was more evenly distributed over the
habitat network in Fig.1. The subsequent years 1996 and
1997 were chosen to elucidate potential spatial patterns in
the two-year autocorrelation in the stock biomass discussed

(a)

(b)

(c)

Fig. 7. Biomass distribution (in kt km−2) for contrasting years.(a)
1996,(b) 1997, and(c) 2004. Small transparent boxes show suitable
habitat areas (as 10×10 km boxes) for sandeel.

above in Sect.3.1; here we see that “blinking” is not in phase
between areas. We also see that there is significant spatial
variability within each main area in Fig.1, stressing the im-
portance of spatially downscaling stock assessment results.

In Fig. 8 we show spatial distribution of stock recruitment
intensity in 1997, based on a reanalysis for the period 1983
to 2004, with assimilation of SSB and application of year
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specific values ofT andF . Figure8a shows recruitment in-
tensity plotted by source, i.e. which habitats contribute most
to the overall stock recruitment, and Fig.8b shows areas of
successful initial settlement of juveniles (regardless of where
recruits came from). We see that there are significant differ-
ences between habitats that contribute and receive recruits
on small scales, i.e. the stock dynamics on a small scale
are strongly dependent on the exchange of larvae between
nearby habitats. In a previous work (Christensen et al., 2008,
2007) we demonstrated that typical exchange distances are
∼50–100 km. Such source/sink analysis allows us to identify
sensible areas (sources) and areas that can sustain heavy ex-
ploitation (sinks, which are automatically recolonized). Both
spatial figures above indicate that the 10 km grid scale is suf-
ficiently fine to resolve emergent spatial biomass variability
scales, since the spatial variability pattern is not “zig-zag”,
but a lower scale appears to be around 20–30 km.

3.3 Local stock sensitivity

A way to access local stock sensitivity to harvesting is to plot
and analyze the recruit-per-recruit derived maximum local
fishing pressureψi , Eq. (6). This is plotted in Fig.9. Refer-
ence conditions were applied forM andZ0, whereas actual
historic values were applied forF andT. The fieldψi was
generated by solving Eq. (6) with the same fishing pressure
for 1+ age groups and otherwise reference conditions;ri in
Eq. (4) was evaluated atN = 0 (andL (N = 0)) which gives the
upper limit forψi , since mortality and growth processes are
increasing and decreasing monotonously, respectively, with
population density. Quite surprisingly, we see that some of
the northern parts of the habitats are able to sustain the high-
est local fishing pressure, but on the other hand northern parts
also have variable values forψi : we see in Fig.9 that quite
a fraction of the north-eastern habitats haveψi = 0 due to the
fact thatri <1 for any fishing pressure, suggesting that these
areas are sinks. Another clear feature in Fig.9 is that bound-
ary habitats in the major areas have lower values forψi than
inner habitats: this is simply because of higher hydrographic
loss of offspring for boundary habitats (offspring have lower
probability of getting advected to a suitable settling habitat).

3.4 Stock management scenarios

A central issue in the scientific basis for stock management
is at what fishing pressure does the stock give maximal catch
and at which fishing pressure does the stock (risk) collapse.
In Fig. 10 we show the predicted sustained catch for each
WGNSSK area 1–4, along with the total catch, as function
of spatial and temporal constant fishing pressureF for all 1+
age groups. The catches are 20 yr averages after a 50 yr relax-
ation period (to relax state variables, average out fluctuations
and avoid stock depletion). Reference conditions applies for
for M, Z0 andT. The bars in Fig.10 (only shown for the
total catch) display the RMS on expected yearly catch that

(a)

(b)

Fig. 8. Recruitment (million larvae per km2 by end June) for 1997.
(a) Recruitment intensity plotted by source and(b) recruitment in-
tensity plotted by destination. Small transparent boxes show suit-
able habitat areas (as 10×10 km boxes) for sandeel.

Fig. 9.Lineage analysis of maximal local fishing pressureψ defined
in Eq. (6). Small transparent boxes show suitable habitat areas (as
10×10 km boxes) for sandeel.

comes from inherent stock fluctuations generated by popu-
lation density effects, indicating that large uncertainty is as-
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Fig. 10.MSY determination, applying same fishing mortality to all
1+ age groups. Error bars on total catch lines displays interannual
total catch variability (RMS). Symbols show catch and fishing mor-
tality (plainly averaged for the period 1990–2011) for each area.

sociated with determining stock maximum sustainable yield
due to stock inherent dynamics and climatic variability, and
that optimal long-term harvest is inherently associated with
large interannual variability in catch. Symbols in Fig.10
show actual historic catch and fishing mortality (plainly av-
eraged for the period 1990–2011) for each area (no fishing
mortality were available for area 4). We see that catches are
slightly overestimated by the SPAM model in hindcast mode;
however, the figure also suggests that the sandeel stocks are
currently exploited close to the maximum sustainable yield
(MSY) point, on average, in all areas 1–3, even though catch
and fishing mortality displays large fluctuations in the period
1990–2011. We see that different areas have different opti-
mal yield fishing pressures, ranging fromF ∼0.4 to 0.8 yr−1,
with F ∼0.7 yr−1 as North Sea wide optimum. Stock col-
lapses occur gradually, at different fishing pressures for dif-
ferent areas, betweenF ∼0.8 yr−1 (area 4) andF ∼2.0 yr−1

(areas 1, 3). This upper limit is consistent with the local
estimates based on recruit-per-recruit analysis, see Fig.9.
We see that the route of stock collapse is gradual when in-
creasing fishing pressures: the stock concentrates in the most
productive habitats, while extinguishing in lesser productive
habitats; this pattern need not be generic to other sedentary
fish species. ForF >FMSY, catch fluctuations increase, un-
til close to stock collapse, where fluctuations become very
small; this is due to the fact that stock density effects dis-
appear, because the stock does not utilize the habitat car-
rying capacity. Another way to appreciate this comes from
the observation that fish stock models essentially map to a
discrete logistic map (see, e.g.Murray, 2002): increasingF
drives fish stock models reversely through bifurcation cas-
cades, eventually collapsing the stock; the decrease in catch
fluctuations for decreasingF comes along because catch is
the product ofF and biomass, which saturates at lowerF .

4 Discussion

The forecasting system presented in this paper consisted of
three major building blocks: the Eulerian POLCOMS sys-
tem for physics, the Lagrangian model SLAM for early
life stages, and SPAM, the discrete box model for spa-
tial fish population dynamics. All these three model sys-
tems are developed independently in different coding lan-
guages and are mathematically very different and address
different timescales. These aspects stress the importance of
well-defined interfaces, e.g. POLCOMS and SLAM are cou-
pled by exchanging daily/sub-daily time frames of full three-
dimensional oceanographic data, whereas the coupling from
SLAM to SPAM (and POLCOMS to SPAM) is via biolog-
ically meaningful annual index matrices likeT (andS and
Q) produced by SLAM using oceanographic data from POL-
COMS. The strength of this is that it allows independent
improvements of all components: POLCOMS, SLAM and
SPAM.

The three models can in principle run in online mode,
exchanging data via files (or data pointers), or offline, ex-
changing data via files only. Times series for full three-
dimensional oceanographic data are relatively big (0.1–
10 TB) for 10–50 yr needed for spanning climatic variability,
but this becomes feasible with present day storing capacity
and data exchange rates. Annual index matrices, likeT, re-
quire negligible storage once computed. The offline mode is
definitely an advantage during interactive development, iter-
ative calibration runs and for the statistical extrapolation of
past states into the future applied in this study. Online cou-
pling may be relevant for production runs, but, as mentioned
above, the three model components are not load balanced.
However, online mode would become necessary in order to
include the grazing feedback of the fish/fish larvae on the
plankton biomass of the lower trophic level model, if zoo-
plankton grazing from fish/fish larvae is included. The rel-
ative model load is set by the integration time step, which
is smallest for POLCOMS (on the order of seconds for the
external mode and around 15 min for the internal mode),
in the middle for SLAM (30 min) and largest for SPAM
(∼ seasons–1 yr). Consequently, it becomes attractive for it-
erative fish stock simulations (e.g. parameter calibration runs
over same time window) to run offline, whereas the addition
of the SLAM/SPAM component has negligible impact on the
POLCOMS system in terms of computational resources, un-
less the SPAM simulation includes an excessive number of
ensembles.

We used the fish species sandeel in the North Sea as a case
study to illustrate our forecasting system, however it is pos-
sible with little or modest effort to adapt the system to cover
other habitat-bound fish species as well. The SLAM model
is a set-up within the IBMlib framework to handle North
Sea sandeel stocks; the IBMlib framework can handle any
early life stage with suitable adaptation for hatching, growth,
active movement and adult transition, and the generality of
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(a)

(b)

Fig. 11.Biomass distribution (in kt km−2) for 1996(a) with post-
settlement migration (Eq.A14) and(b) without post-settlement mi-
gration.

IBMlib is demonstrated by a growing base of case studies
using IBMlib beyond sandeel, e.g. herring (Fassler et al.,
2011), cod (Beyer et al., 2012), sprat (Christensen et al., in
prep), mackerel (Jansen et al., 2012), blue whiting (Payne
et al., 2012), as well as and generic trait-based studies (Mar-
iani et al., 2013). The IBMlib framework has interfaces to
numerous physical data sets. In another region, the IBMlib
framework is easily coupled to another physical model as
illustrated by the references above. The SPAM core model
Eqs. (1)–(3) is fairly general, expressed in terms of generic
life cycle events, and applies to most habitat-bound species.
Of course, when addressing another species, minor or mod-
est adaptations should be done. A new habitat map should
be provided; biological parameters should be adjusted and
particular processes, like the density dependence, should be
reparametrized. The most significant limitation in the core
model Eqs. (1)–(3) is stocks being habitat-bound (apart from
the pelagic phase). Limited migratory behaviour is fairly
straightforward to implement and is illustrated in Appendix
A2, and involving a migration matrix, applied in addition to
Eqs. (1)–(3) in each time step. Of course, in the case of direc-
tional movement, it is a major challenge to parametrize and

construct realistic and robust parametrizations of the vari-
ability in the migration in relation to the environment (and
model state variables), as noted in the introduction. Depend-
ing on the desired accuracy and complexity of biological
modelling, other minor extensions are feasible, like intra-
seasonal time steps and alternative synchronizations of life
history events. In summary, the SPAM is the model compo-
nent requiring relatively most extensions and adaptations to
encompass other fish species by the forecasting system pre-
sented in this paper.

When parametrizing the fish stock model component
SPAM, we have not imposed a stable equilibrium state, but
rather included the limit cycle (attractor) of the biological
model which is consistent with biological observations, dis-
playing negative autocorrelation of biomass between sub-
sequent years. This of course poses extra challenges when
parametrizing a model, but this has been accomplished by
focusing on statistical properties of the limit cycle of the bi-
ological model, as elaborated in AppendixA.

Facing that the computational cost of a full decadal en-
semble forecast of the lower trophic levels of the marine en-
vironment requires excessive computer resources, we have
applied a simple “pick-a-random-past-year” scheme for fu-
ture climate forcing that reproduces statistical properties of
a historical time series by construction; however alternative
schemes to generate syntheticT time series are conceivable,
e.g. convex interpolation in a historic time series like

Tz =
∑

y
szyTy, (14)

where 0< sz < 1 is a random vector with
∑

y szy = 1. This

sampling scheme has smaller variance< T×T >− T̄× T̄
than the random-year sampling scheme applied in this pa-
per. Also, this scheme may blur a potential covariation and
clustering in the historical setTy. Alternatively, principal-
component correlation with teleconnection indices (Barnston
and Livezey, 1987), like NAO, could be applied. We believe
that a scheme for generating a syntheticT time series should
satisfy certain minimal requirements likeT >0 and repro-
ducing basic statistical properties of aTy.

We found that the decorrelation timeτ of biomass dynam-
ics due to stochastic climatic variability is of order 2–6 yr,
with some variations between areas in the modelled region;
this is the time it takes for random kicks from the climatic
variability to wash out the past biological state of the fish
stock; this time frame is somewhat encouraging in that it al-
lows for some short to medium timescale economical plan-
ning. When the time horizon exceeds∼6 yr, the principal
model output is the asymptotic probability distributions (at-
tractors) of the system properties, e.g.P∞(B) the probability
distribution of biomasses in the far future. These attractors
are also very useful for management scenarios; they limit the
ignorance of the future and provide an average trend as well
as variability on the stock state when subjected to alternative
management scenarios.
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The complexity of life processes increases as one moves
up the trophic chain, and therefore many assumptions have
to be made for early life stages (the SLAM model) and adult
fish (the SPAM model).

In calculating transport indicesT in the SLAM model,
we have made certain biological assumptions, e.g. a fixed
spawning day (20 February), where offspring begins the
pelagic transport. In our previous work (Christensen et al.,
2008), we examined the the effect of this and other biological
approximations, like the settlement dynamics, on the calcu-
lated transport indicesT. At regional scale, we found relative
transport probabilities to be rather robust toward parameter
perturbations, however differences were found. Currently, a
fixed average spawning day represents “best knowledge”, be-
cause no data exist to relate a spawning distribution to envi-
ronmental cues. Of course, this contributes to the overall en-
velope of uncertainty of the model predictions. In the SLAM
model, for example, active motion of larvae has not been
included, as well as grazing feedback on zooplankton from
sandeel larvae. The latter is partially justified by the fact that
sandeel larvae and adults on average only constitute a frac-
tion of the zooplankton grazing biomass, even though locally
sandeel may dominate the zooplankton grazing (A. Rindorf,
personal communication, 2011). This isolated grazing feed-
back from sandeel on zooplankton is partially represented by
the density dependence ofS, see Eq. (A12). From a parallel
study (Mariani et al, 2013), we know that active vertical mo-
tion of larvae in the North Sea have some, but not dramatic,
impact on horizontal transport for typical variability in ver-
tical motion patterns; however, presently biological models
on sub-daily vertical migration are uncertain and still at a re-
search stage. This and other sources of biological uncertainty
adds some basic uncertainty to the calculation of transport
matrices and improving this is a topic in future research.

A potential way to assess impact on population dynamics
from uncertainty in calculated transport indicesT for a given
year (or as part of a scenario) is to compute the distribution
p(T) of transport matrices over the distribution of biological
parameters associated with the larval pelagic phase; by sub-
jecting the distributionp(T) to principal component analysis,
it is possible to sample the intra-year range ofT of generated
ensemble runs, similarly to the future climatic response en-
velopes in Sect.3.1. Effectively, this will lower the forecast
decorrelation timescales we established earlier.

In the recent years several studies, e.g.Daewel et al.
(2008); Hufnagl and Peck(2011); Gurkan et al.(2012, 2013),
on models for predicting larval survivalSand growth in rela-
tion to the biogeochemical environment have been published,
based on the generic model inLetcher et al.(1996). These
bioenergetic models typically contain 60+ parameters, most
of which can only be guessed or taken from other species.
Thus, even though they provide interesting insight into biol-
ogy, their quantitative skills are uncertain, especially in that
they possess higher predictive skill than simple temperature-
driven models, as applied in our study. Indeed the predictions

of these bioenergetic models are strongly dependent on zoo-
plankton size spectrum, which are seasonally varying. Most
biogeochemical models, e.g. ERSEM (Edwards et al., 2012),
do not output zooplankton size spectra, but only vaguely de-
fined bulk micro- and macrozooplankton biomasses, so the
size spectrum must be reverse engineered, introducing yet
further assumptions, even though some attempts are emerg-
ing to include size- and stage structure of zooplankton (Maar
et al., 2013). Further, the bloom dynamics of zooplankton
in biogeochemical models do not match observations suffi-
ciently well yet, even though progress is good. Finally, it has
been hypothesized that the most important bottom-up impact
on North Sea larvae comes from a taxonomic shift in the zoo-
plankton community structure, a feature which is not mod-
elled in present biogeochemical models. In summary, bioen-
ergetic models forSare still at research level and not on oper-
ational level. Anyway, all these uncertainties are absorbed in
the product ofT andS in the integrated framework, and de-
creasing uncertainties is a topic in future research. However,
such efforts may potentially increase forecast decorrelation
timescales toward the limit set by climatic variability.

In the SPAM model the major short comings are the lack of
spatial and temporal heterogeneity of predation pressure on
the fish stock. This will decrease the decorrelation timescales
τ found in Sect.3.1. In the present paper, a spatial and tempo-
ral average predation pressure was applied, as available from
stock assessment work (WGNSSK, 2011). In the future, it is
conceivable that temporal variability can be modelled from
multispecies stock assessment time series, in conjunction
with predator–prey interaction matrices. For the present case
study, North Sea sandeels, data did not currently support a
plausible parametrization of growth response to zooplankton
variability. Additionally, the habitat carrying capacity did not
include temporal variability, due to lack of data. The current
parametrization however did not indicate very strong gradi-
ents in habitat carrying capacity in the North Sea for sandeel
(see AppendixA), but spatially coherent interannual fluctua-
tions are quite likely. Finally post-settlement adult migration
was not included; adult sandeel are believed to display only
small scale migration (�28 km) (Jensen et al., 2011), trig-
gered by daily feeding cycles. In AppendixA we show for
high resolution set-ups like the one in the present paper that
this will create a minor spill-over effects between adjacent
habitats, but will not affect results on mesoscale,∼50 km.

5 Conclusions

We have presented an integrated forecasting system describ-
ing a single fish species, which is based on process-oriented
simulation of ecosystem dynamics, from physics to fish, and
presented a few illustrative examples of using our forecast-
ing framework on questions relevant to management of fish
stock, e.g. providing short-term forecasts including the ef-
fects of climatic variability and downscaling regional scale
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stock assessments. We have demonstrated that the integrated
forecasting system is a flexible tool for assessing effects of
alternative fishing scenarios and providing biological insight
into stock dynamics. The spatial explicit nature of the fore-
casting system allows for very rich and highly policy rele-
vant output, e.g. warning signs of over fishing and imminent
stock collapse from spatial signatures of how habitats are de-
pleted, as well as risk of stochastic extinction of local fish
stocks. Even though fish stock assessment results are asso-
ciated with significant uncertainty, model skill benchmarks
in this paper indicate that numerical representation of bio-
logical oceanographic processes underlying recruitment still
needs to be improved, even though model skill currently was
found to be quite good.

Appendix A

SPAM parametrization

In this Appendix we briefly summarize the parametriza-
tion of the biological processes in the SPAM model. Most
parameters and process representations of the high resolu-
tion (10 km) set-up are the same as in the previous regional
scale (∼100 km) set-up, seeChristensen et al.(2009), where
a more elaborate derivation and model discussion can be
found, along with a parameter sensitivity test. We adhere to
the notation established there. In the following,i designates
habitat cell in question, “y” year for time varying properties,
and “a” age of a cohort.

A1 Model equations

The local population density indexρ is defined per habitat
cell as

ρ
y
i =

B
y
i

C
y
i

=

∑
a>0N

y
i w

y
i,a

Ci
, (A1)

whereBy
i andCy

i are the local biomass and carrying capacity,
respectively. In the present set-up,Cy

i =Ci is time indepen-
dent.ρ regulates growth and survival in the model; note that
C

y
i is a scale not an upper limit.wy

i,a is the dynamic weight-
at-age. For length-based processes, a fixed weight–length key
is applied:

w = w∞

(
L

L∞

)φ
. (A2)

Thereby, also the regional spawning biomass (of age≥2)
SSB and the regional total adult biomass (of age≥1) TSB
become available:

SSBA =
∑

i∈A,a≥2

Niaw(Lia) and (A3)

TSBA =
∑

i∈A,a≥1

Niaw(Lia) , (A4)

whereA refers to a region in Fig.1. Larval/adult growth is
controlled by the growth equation:

dL

dt
= λ(ρ)

((
L

L∞

)1−β

−
L

L∞

)
, (A5)

which is integrated analytically over the non-hibernation pe-
riods to givegi in Eq. (2). The local growth potential is
parametrized as

λ(ρ)= λ0
1+ ρ

1+ ρ+αρ2
, (A6)

whereα is the competition susceptibility. For larvae trans-
ported between habitatsi and j , the geometric average
ρij = 1

2 (ρi +ρj ) is applied in Eq. (A6).
It has also been tested by multivariate analysis whether

the growth prefactorλ0 exhibited correlation with ocean
temperature and zooplankton (food) variability, since cohort
growth time series can be inferred from available catch data
(WGNSSK, 2011). Zooplankton 4D fields were extracted
from the biogeochemical model ERSEM in the operational
POLCOMS-ERSEM system (Butenscḧon et al., 2012; Ed-
wards et al., 2012), with same physics set-up as described in
Sect.2.1. We generated an annual index of habitat temper-
ature by averaging temperature from POLCOMS vertically
and horizontally over habitats in Fig.1 for the growth season
20 February–1 June of each year. For zooplankton (food) we
made an annual index by horizontally averaging the vertical
peak concentration of micro- and mesozooplankton output
from ERSEM over habitats in Fig.1 for the growth season
20 February–1 June of each year. We found no correlation
between cohort adult growth and the habitat temperature in-
dex. Quite surprisingly however, zooplankton correlated neg-
atively with cohort growth, i.e. more food implied less so-
matic growth. The negative correlation was rather weak (only
able to explain 5 % of the growth variation), yet statistically
significant. This is quite counter-intuitive, and until a biolog-
ical understanding of this unexpected correlation is available,
we think it is best for the realism of the overall set-up not to
include this correlation. Anyway, the correlation is far below
the overall uncertainty of the framework, which is another
reason for not including it in the present version. The current
hypothesis is that zooplankton quality is negatively corre-
lated to zooplankton biomass, however the current version of
ERSEM available for this work does not resolve zooplankton
biomass into species. Alternatively, it may also be an indirect
ecosystem effect, or some other biological mechanism.

Current observations only support a simple standard
parametrization of fecundity as

Qi,a=Q∞

(
L

L∞

)q
µ(a−2), (A7)

wherea is the fish age andµ is the step function, i.e. fe-
cundity variability is correlated to growth variability in the
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model. For sandeel larvae, models describing the effect of
zooplankton variability on larval growth and survival are still
at the research level and need further validation. This issue is
elaborated in the discussion of this paper. Therefore, a sim-
plified model is applied where the larval conditional (given
transport) survivalS is the product of the predation avoidance
Sp and starvation avoidanceSs. The former is parametrized
as

Sp= e
−Mpltlarv, (A8)

wheretlarv is the duration of the larval drift phase.
Here we note that in the present SPAM set-up the value

applied fortlarv is a characteristic average value, not the ac-
tual pelagic period distributions calculated in SLAM; on av-
erage (by parametrization), these timescales are similar and
the variability of tlarv from SLAM is less than the spatio-
temporal variability ofMpl, which is the average larval pre-
dation risk.

Currently no sub-model is available to as-
sess the variability of Mpl, and therefore Mpl is
estimated from from size spectrum theory as

Mpl =
ηξi

τ
, (A9)

whereτ is the expected life time of a newly hatched larvae
before it gets eaten, on average. The prefactorη is slightly
species specific and depends on average growth speed and
length-at-settlement.ξi is an area specific weighting factor
of order unity (explained below).

η =
τ

tlarv

tlarv∫
0

Mp(t) and (A10)
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)
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which for sandeel givesη ∼ 0.403, where−ν ∼−3/4 is the
standard length–mortality scaling (West et al., 2001). Starva-
tion avoidanceSs is parametrized as

Ss(ρ)=
1

2
+

1

2
erf

(
1− λ0

λ(ρ)

ω

)
. (A12)

Finally, stock catches are estimated from the narrow-
season limit as
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y
i,a(tc) ,

(A13)

wheretc is duration from the end of hibernation to the middle
of the (narrow) catch season.wy

i,a (tc) is the average weight
at catch, computed from Eqs. (A5) and (A2).

A2 Post-settlement adult migration

Adult sandeel are believed to display only small-scale migra-
tion (<28 km) (Jensen et al., 2011), triggered by daily feed-
ing cycles. In the SPAM model, post-settlement migration is
represented by

N
y+1
i,a =

∑
j

AijN
y+1
j,a , (A14)

evaluated after Eqs. (1)–(3). Aij represents annually accu-
mulated migration, which is a product of independent daily
migrationsA1

ij between adjacent habitats:

A =
(
A1
)n
, (A15)

where n= 365Ta is the number of feeding days during a
season. ExpressingA as a matrix product rather than just
distance-dependent matrix elements makes a difference close
to the edges and for stepping-stone habitats. The daily tran-
sition probabilityt between adjacent habitats inA1 is found
from

t =
D

12365
and (A16)

D =
R2

2Ta
, (A17)

where the post-settlement annual migration scaleR∼28 km
(Jensen et al., 2011) is applied,Ta = 140/365, and habitat size
1= 10 km. The effect of Eq. (A14) is to create minor spill-
over effects between adjacent habitats, which is illustrated in
Fig. 11, where reference conditions apply forM, Z0 andT.
Therefore adult migration has not been included in the main
body of the paper for simplicity. HereA was parametrized
for the daily loitering mechanism of adult sandeel; for other
speciesA may further include directional movement and
density-regulated migration.

A3 Biological parameters

Since SPAM is a process-oriented model, many parameters
are available from the literature; these parameters along with
references are provided in Table2. The background mortality
Z0 (other sources) was included in the predation mortality
because it was not separable from the predation mortality.

A4 Reference conditions

Reference conditions refer to average values (WGNSSK,
2011) (over the reference period 1990–2011) applied to stock
drivers: predation mortalityM̄i,a and fishing mortalityF̄i,a.
For predation mortality, only a North Sea average value was
provided (WGNSSK, 2011), M̄a, and the area-specific pre-
dation mortality was constructed as

M
y
i,a= M̄aξi (A18)
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so that larval and adult predation risk are correlated (reflect-
ing spatial heterogeneity in density of predators). Similarly,
under reference conditions,T was averaged over the refer-
ence period 1990–2011,T̄ = 〈Ty

〉y∈[1990−2011]; reference car-
rying capacity was set as outlined below.

A5 Inferred biotic/abiotic parameters

For the remaining model parameters, there were insufficient
empirical bases for direct parameter estimation, and these pa-
rameters are estimated from SPAM model output by min-
imizing a residual of remaining observations to generate a
time-independent estimate of models parameters. These pa-
rameters are mostly area weighting factors representing spa-
tial heterogeneity, and these are given in Table3. No spa-
tial heterogeneity were allowed forα and τ to avoid over-
parametrization. We also see that spatial variability ofCi and
ξi are in a sensible regime, creating confidence to the robust-
ness of the parametrization. The residual used to inferα, τ ,
Ci , andξi was the sum of residuals for〈TSB〉i , RMS (TSBi)
and average growth for the reference period 1990–2011 in
each area as provided byWGNSSK(2011).
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