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Abstract. The latest release of GRACE (Gravity Recovery
and Climate Experiment) gravity field coefficients (Release-
05, or RL05) are evaluated for ocean applications. Data have
been processed using the current methodology for Release-
04 (RL04) coefficients, and have been compared to output
from two different ocean models. Results indicate that RL05
data from the three Science Data Centers – the Center for
Space Research (CSR), GeoForschungsZentrum (GFZ), and
Jet Propulsion Laboratory (JPL) – are more consistent among
themselves than the previous RL04 data. Moreover, the vari-
ance of residuals with the output of an ocean model is 50–
60 % lower for RL05 data than for RL04 data. A more op-
timized destriping algorithm is also tested, which improves
the results slightly. By comparing the GRACE maps with
two different ocean models, we can better estimate the un-
certainty in the RL05 maps. We find the standard error to be
about 1 cm (equivalent water thickness) in the low- and mid-
latitudes, and between 1.5 and 2 cm in the polar and subpolar
oceans, which is comparable to estimated uncertainty for the
output from the ocean models.

1 Introduction

Several versions of mapped ocean bottom pressure (OBP)
anomalies determined from GRACE (Gravity Recovery and
Climate Experiment) time-variable gravity coefficients have
been provided to the scientific community via the GRACE
Tellus website at Jet Propulsion Laboratory (JPL) (http://
grace.jpl.nasa.gov/) from the two central GRACE Science
Data System (SDS) centers (the Center for Space Research
(CSR) and Helmholtz Centre Potsdam GFZ German Re-
search Centre for Geosciences (GFZ)). The grids are based

on Release-04 (RL04) coefficients (Bettadpur, 2007) and
are post-processed to reduce correlated errors which ap-
pear as north–south stripes in the data (Swenson and Wahr,
2006), using either an ad hoc destriping algorithm and addi-
tional Gaussian smoothing that was optimized for the ocean
(Chambers, 2006), or by projecting GRACE data onto em-
pirical orthogonal functions (EOFs) from an ocean model
(Chambers and Willis, 2010). Uncertainty of the mapped
data has been estimated to be between 2 and 3 cm root-mean-
square (RMS) depending on the type of processing, based on
comparison to steric-corrected altimetry (Chambers, 2006;
Chambers and Willis, 2010), output from an ocean model
(Ponte et al., 2007; Quinn and Ponte, 2010), or bottom pres-
sure recorders (Morison et al., 2007; Park et al., 2008). Even
with this level of uncertainty, however, the mapped OBP data
from GRACE have proven useful in a number of studies as
disparate as, for example, studying low-frequency changes in
the Arctic (Morison et al., 2007) or the North Pacific (Cham-
bers and Willis, 2008; Song and Zlotnicki, 2008; Cham-
bers, 2011), variability of the Antarctic Circumpolar Cur-
rent transport (Zlotnicki et al., 2007; Boening et al., 2010;
Bergmann and Dobslaw, 2012), exchange of mass between
basins (Ponte and Quinn, 2009; Chambers and Willis, 2009),
or record anomalous pressure changes in the Southern Ocean
(Boening et al., 2011).

Recently, CSR, GFZ, and JPL have all produced a new
release of GRACE gravity field coefficients – designated
Release-05 (RL05) – spanning six years, from January 2005
to December 2010 (Bettadpur, 2012; Dahle et al., 2012).
Major changes between RL04 and RL05 include improved
knowledge of alignments between the star camera, ac-
celerometer, and K-band ranging system for Level-1B data,
and updated mean gravity field, ocean tide, pole tide, and
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de-aliasing models for Level-2 processing. The goal of this
article is to analyze these new GRACE data over the ocean
in a similar fashion as the older data and quantify the im-
provement of RL05 data over RL04. This will be done by
comparing GRACE OBP with that output from two differ-
ent ocean models. This should give a more accurate un-
certainty estimate than comparing to OBP derived from al-
timetry corrected for either seasonal steric variations (Cham-
bers, 2006) or monthly steric fluctuations (Chambers and
Willis, 2010), as these data tend to have unresolved interan-
nual steric fluctuations and/or sample mesoscale eddies that
are far larger than OBP variations. Moreover, recent studies
comparing RL04 GRACE data to ocean models have shown
better agreement than earlier studies (e.g., Quinn and Ponte,
2010), suggesting models are now producing more reason-
able low-frequency OBP variations. By comparing GRACE
to two different models and by comparing the models to one
another, we will show a method to estimate uncertainty in the
GRACE maps as well as those from the models.

After demonstrating that the RL05 data are significantly
improved over the RL04 data using the same post-processing
methods, we will further investigate whether the parameters
of the destriping algorithm can be relaxed for the RL05 data
and still allow for similar or lower uncertainty. Section 2
will give an overview of the post-processing steps and ocean
models used for the analysis, Sect. 3 will present the compar-
ison between RL04 and RL05 maps and the error analysis,
Sect. 4 will examine whether the destriping algorithm can be
relaxed without increasing uncertainty, and Sect. 5 will sum-
marize the optimal processing of GRACE RL05 gravity data
when examining ocean bottom pressure.

2 Review of Release-04 data processing and ocean
models

Details of the post-processing of released GRACE grav-
ity coefficients to produce de-striped coefficients for ocean
applications, and converting from gravity coefficients to
mapped OBP in terms of equivalent sea level can be found in
Chambers (2006) and Chambers and Schröter (2011). Here,
we will review steps and point out improvements that are
used in the current RL04 post-processing, implemented af-
ter Chambers (2006).

First, a long-term mean gravity field is removed from the
coefficients to remove the time-invariant signal related to the
solid earth gravity. This is done by averaging the monthly
gravity coefficients reported by CSR, GFZ, and JPL be-
tween January 2005 and December 2010, and removing the
mean coefficient from each month to compute anomalies.
The monthly degree 2, order 0 coefficients estimated with
GRACE are replaced with those from a satellite laser ranging
analysis (Cheng and Tapley, 2004), due to significant errors
in observing that coefficient with GRACE. Monthly geocen-
ter estimates based on the method of Swenson et al. (2008)

have been applied, as GRACE does not detect these. The
method is based on a combination of GRACE gravity coeffi-
cients over the land and ice sheets and OBP from a model, in-
cluding mean ocean mass variability. A correction for glacial
isostatic adjustment (GIA) has been applied based on the
model by Paulson et al. (2007), in order to remove the sec-
ular trend in the gravity field that is not due to the recent
redistribution of water over the Earth’s surface (Chambers et
al., 2010).

The GRACE coefficients have correlated errors that map
into vertical stripes as first described by Swenson and Wahr
(2006). In Chambers (2006), we modified the algorithm pro-
posed by Swenson and Wahr (2006) to make it more appli-
cable to the longer-wavelength, small amplitude OBP varia-
tions and tested it on RL02 data. In processing the RL04 data,
we found that several parameters in the filter could be relaxed
and still provide maps without significant stripes. The filter
that has been implemented for RL04 coefficients is gener-
ally the same as the one described in Chambers (2006) ex-
cept that it keeps the lower 11× 11 portion of the coeffi-
cients unchanged (increased from the lower 7× 7) as well
as all order 0 and order 1 coefficients. A 5th order polyno-
mial is fit as a function of even or odd degree (n) to the re-
maining coefficients (reduced from a 7th order polynomial)
for each order (m) greater than 2 fromn = 12 (or n = m if
m > 11) up ton = 60. Only one polynomial is computed for
each odd or even set for a given order unlike the method of
Swenson and Wahr (2006), which calculates multiple poly-
nomials for each series as a running computation. Only coef-
ficients up tom = 40 are de-striped. Every coefficient above
n = 40,m = 40 is set to zero (reduced from n=80). The max-
imum order has been reduced from the filter in Chambers
(2006) because CSRRL04 coefficients were only solved to
n = 60, m = 60, and there is little difference in OBP over
the open ocean from a model truncated at degree/order 40
compared to full resolution, provided the data are not fur-
ther smoothed with a Gaussian with a radius longer than ap-
proximately 500 km (Fig. 1). Although differences in shallow
water are larger due to shorter-wavelength barotropic fluctu-
ations, GRACE will have problems observing these due to
leakage of much larger land hydrology fluctuations, so the al-
gorithm is optimized for finding long-wavelength open ocean
OBP variations. The filter is applied to the coefficients of
each month and each center separately, as the correlated er-
rors differ from month-to-month and center-to-center.

Monthly averages of the modeled non-tidal ocean bottom
pressure variations (available as GAD files from each pro-
cessing center) are added back to the GRACE coefficients
in order to return the full, monthly OBP variation, since
GRACE gravity coefficients are estimated relative to this
model. Note that this model is primarily designed to model
high-frequency OBP variations that will alias into the short-
wavelength gravity field. Low-frequency, long-wavelength
errors in the model will be corrected by the GRACE estima-
tion, so that when the monthly background model is restored,
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Fig. 1.Standard deviation of differences between unsmoothed OBP
from JPLECCO and(a) JPL ECCO OBP truncated to spherical
harmonic degree/order 40 and smoothed with a 300 km Gaussian,
(b) JPL ECCO OBP truncated to degree/order 40 and smoothed
with a 500 km Gaussian, and(c) JPL ECCO OBP truncated to de-
gree/order 40 and smoothed with a 750 km Gaussian.

the combination reflects the unaliased monthly OBP that
would have been sensed by GRACE if no model was used
(Chambers and Willis, 2009).

Due to the large-scale smoothing used to extract the small
amplitude OBP variations, larger variations from land hy-
drology and ice mass loss will leak into the ocean near
the land-ocean boundary, extending out by about 500 km
(Fig. 2). In Chambers (2006), we simply masked these data
out. For the Release-04 processing, however, we used a
method first proposed by Wahr et al. (1998) to use GRACE
observations over land as a model of the land mass variabil-

Fig. 2. Standard deviation of OBP from GRACE (CSRRL05) (a)
without leakage correction and(b) with leakage correction.

ity to compute and remove the leaked signal. We could have
used output from a land hydrology model, but this has sev-
eral deficiencies. First, no global hydrology model contains
the mass losses from the ice sheets or glaciers, which are now
the largest mass fluctuations in the GRACE observations.
Second, hydrology models tend to model soil moisture and
snow fairly well, but not surface water or groundwater. Since
GRACE will observe both the ice losses and combined hy-
drology variations, it provides a better estimate of the signals
than just a hydrology model. To compute the leaked signals,
we first compute the gridded mass densities from GRACE
data with no filtering. Then we mask out ocean areas and
convert the land-only mass variations back to gravity coeffi-
cients. These are then destriped and smoothed identically to
the processing used to compute the OBP maps, and the val-
ues over the ocean are subtracted to remove the leaked sig-
nal. The method removes the majority of the leakage around
continents (Fig. 2), although there is some residual leakage
left around Greenland and the Alaskan glaciers that even this
method cannot fully reduce.

Two general ocean circulation models are also used in the
analysis. The first is a version of the MIT general circula-
tion model (Marshall et al., 1997) that is run at JPL as part
of the Estimating the Circulation and Climate of the Ocean
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(ECCO) consortium. We use monthly values of ocean bot-
tom pressure derived from version kf080 that is available
at http://grace.jpl.nasa.gov. This version of JPLECCO is a
baroclinic model forced by winds, pressure, and heat and
freshwater fluxes from the National Center for Environmen-
tal Prediction (NCEP) operational analyzes products and also
assimilates satellite altimetry (Fukumori, 2002; Kim et al.,
2007). The JPLECCO model extends only between±78◦

latitude; therefore, does not model OBP fluctuations in the
Arctic Ocean or near Antarctica. Large differences between
GRACE and JPLECCO at these boundaries should probably
be considered errors in the model because of this limitation.

The GRACE project uses output from the Ocean Model for
Circulation and Tides (OMCT) to compute high-frequency
OBP in order to de-alias GRACE data during processing
(Thomas, 2002; Flechtner, 2007). Similar to ECCO, this is
a baroclinic model forced by winds, pressure, and heat and
freshwater fluxes from the ECMWF operational analyzes.
Unlike JPLECCO, OMCT models the entire ocean, includ-
ing the Arctic and Antarctic. The monthly average OBP from
this model (combined with overlying atmospheric pressure
and estimated only over days when GRACE data was avail-
able) is distributed as GAD files along with the GRACE grav-
ity coefficients. There are significant differences between the
RL04 version of the OMCT model and the RL05 version,
mainly to improve resolution and incorporate changes in pa-
rameterization that allowed better matches with in situ ob-
servations not available when the original version was held
fixed for GRACE processing. One aspect that has improved
is the high-frequency variability, which is important for de-
aliasing. The RL04 version has been shown to have signifi-
cant deficiencies at periods less than a month in two recent
studies (Bonin and Chambers, 2011; Quinn and Ponte, 2011,
2012). For this analysis, we will use the RL05 version, based
on the distributed GAD files.

Neither ECCO nor OMCT model the time-variable global
mean fluctuation in OBP caused by the exchange of water
mass among the land, ocean, and atmosphere which GRACE
does measure (e.g., Chambers et al., 2004, 2010). If this dif-
ference was not accounted for, the RMS of differences would
be biased high due to missing this nearly 1 cm annual sig-
nal. In order to make the models consistent with the GRACE
observed OBP, we add the GRACE observation of monthly
mean ocean mass to the JPLECCO and OMCT grids before
computing statistics. Moreover, JPLECCO does not con-
tain the time-variable global mean fluctuation in OBP due
to changes in the mean atmospheric pressure over the ocean
(e.g., Ponte et al., 2007), which is a 0.6 cm seasonal varia-
tion. This is included in the GAD coefficients (and so is also
included in the GRACE observations). To make data consis-
tent, we add the monthly mean pressure from the GAD data
to JPLECCO.

3 Analysis of Release-05 data

The new RL05 coefficients were initially processed exactly
as the RL04 coefficients described in Sect. 2, with the excep-
tion that the geocenter estimates are based on RL05 GRACE
gravity data combined with RL05 Atmosphere-Ocean De-
aliasing (AOD) OBP from the GAD files using the method
described in Swenson et al. (2008). The C2,0 coefficients in
the GFZRL05 solutions are considerably closer to the SLR
estimates than either the CSRRL05 or JPLRL05 solutions,
likely because GFZ uses a background time-variable gravity
model based on RL04 coefficients where the C2,0 value had
been replaced with that from SLR. We tested statistics with
and without replacing the C2,0 coefficient in the GFZRL05
data, and found they were not significantly better. Since re-
placing the C2,0 coefficient is still required for CSRRL05
and JPLRL05, we chose to replace the coefficient for con-
sistency.

To demonstrate the reduced uncertainty in the RL05 data,
the JPLECCO OBP maps (unsmoothed) are subtracted from
the destriped and 300 km smoothed RL04 and RL05 OBP
maps and the standard deviation of the residuals are com-
puted (Fig. 3). Note that for the rest of the analysis, we mask
out areas within 500 km of coastlines. This is to focus at-
tention on the deep ocean where OBP variations are longer-
wavelength and more resolvable by GRACE, and to quantify
accurate statistics for the deeper ocean areas that are unbi-
ased by higher errors near the coast. Coastal regions have
very large, short-wavelength signals related to baroclinic in-
teractions with the shelves, which are present to some extent
in the JPLECCO data (Fig. 1), but will never be resolvable in
GRACE. Additionally, even with the leakage correction de-
scribed in Sect. 2, GRACE data still have higher uncertainty
in near-coastal waters.

The improvement in the RL05 maps is obvious. The stan-
dard deviation of RL05 residuals is generally less than 2 cm
throughout the ocean, and often less than 1.5 cm. Compare
that with RL04 residuals, where the standard deviation is
generally greater than 2 cm, and often more than 3 cm. The
maps from the three processing centers are also more consis-
tent in RL05 than RL04. GFZRL04 was generally noisier in
the mid-latitudes than either CSRRL04 or JPLRL04, and
JPL RL04 had very large errors in the Atlantic Ocean (pre-
viously noted by Quinn and Ponte, 2010). To better quantify
improvement we compute the variance reduction (1var) as

1var= 100×
var(1RL04-ECCO) − var(1RL05-ECCO)

var(1RL04-ECCO)
, (1)

where var(1RL04-ECCO) is the variance of the residuals
between RL04 maps and JPLECCO maps in each grid,
var(1RL05-ECCO) is the variance of the residuals between
RL04 maps and JPLECCO maps in each grid, and the for-
mulation computes the change relative to the variance in the
old RL04 residuals as a percentage. If the variance in the
RL05 residuals has become lower, then1var is positive,
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Fig. 3.Standard deviation of differences between unsmoothed OBP
from JPLECCO and GRACE mapped OBP (destriped, 300 km
Gaussian) for Release-04 (left column) and Release-05 (right col-
umn), using coefficients processed by CSR (top), GFZ (middle),
and JPL (bottom).

indicating an improvement, while if it is negative, RL05
maps are more different from JPLECCO than RL04. Val-
ues are plotted in Fig. 4. The overall improvement, in terms
of variance reduction relative to RL04 residuals, is between
50 % and 80 % over the majority of the ocean. The correla-
tion between OBP from RL05 and that of JPLECCO is also
significantly higher, with most values above 0.7 and many
above 0.8 (Fig. 5).

As the JPLECCO model does not include the Arctic, this
area will be examined using in situ data from a pair of Arc-
tic bottom pressure recorders (ABPR) deployed at the North
Pole by the North Pole Environmental Observatory pro-
gram (Morison et al, 2007; data available fromhttp://psc.apl.
washington.edu/northpole/Data.html). Recorder ABPR1 (lo-
cation: 89◦15.26′ N, 60◦21.58′ E) reported continually from
2005–2010. ABPR3 (location: 89◦14.85′ N, 148◦7.54′ E) re-
ported continually from 2005–2008. The data were aver-
aged over the first three years, detrended, and de-tided as
explained by Peralta-Ferriz et al. (2011). The ABPR series
is averaged into monthly points, to match the GRACE time
resolution.

Average OBP from RL04 and RL05 GRACE data from
CSR, JPL, and GFZ were computed in a 5◦ cap around
the North Pole and compared to the ABPR data (Fig. 6).
Correlations of the APBR data with GRACE are generally
high. The correlation of APBR with CSRRL04 was 0.86,
which altered only slightly (to 0.89) upon updating to RL05.
JPL’s correlation with the APBR improved from 0.48 (RL04)
to 0.87 (RL05). However, the correlation between the GFZ
arctic data and the APBR decreased slightly from 0.87 for

Fig. 4. Percent of variance reduced in Release-05 residuals com-
pared to Release-04 residuals for coefficients processed by CSR
(top), GFZ (middle), and JPL (bottom). Positive values mean the
Release-05 residual variance is reduced, negative values mean that
variance is increased relative to Release-04. All GRACE data were
destriped and smoothed with a 300 km Gaussian. Please see text and
Eq. (1) for details of the calculation.

RL04 to 0.77 for RL05. Additionally, the variability of the
GFZ RL05 Arctic signal (2.0 cm) is only 70 % of the size
of the other two RL05 GRACE signals (2.8 cm for CSR,
2.9 cm for JPL) and 58 % of the size of the ABPR vari-
ability (3.5 cm). The standard deviation of the residuals with
the ABPR are 1.6 cm (CSRRL05), 1.7 cm (JPLRL05), and
2.3 cm (GFZRL05). These results suggest an unexplained
reduction in real OBP variability in the GFZRL05 data that
is not seen in either the CSR or JPL solutions. This is sur-
prising, considering that the GFZ results are consistent with
JPL and CSR in other basins (e.g., Fig. 4). One major differ-
ence between the CSR, JPL, and GFZ RL05 processing is the
use of background ocean tide models. CSR and JPL use the
GOT4.8 model, while GFZ uses the EOT11a version. This
may be the source of the difference, and should be investi-
gated further by the processing centers.

Because the results using RL05 coefficients from CSR,
GFZ, and JPL are statistically identical in all areas but the
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Fig. 5.Correlation between unsmoothed OBP from JPLECCO and
GRACE mapped OBP (destriped, 300 km Gaussian) for Release-
04 (left column) and Release-05 (right column), using coefficients
processed by CSR (top), GFZ (middle), and JPL (bottom). Only
values greater than 0.4 (the 99 % significance level) are shown.

Arctic, for the remainder of this study, we will utilize only the
CSRRL05 grids to assess uncertainty and optimal smooth-
ing. Although we do not show it, the results using the GFZ
and JPL coefficients for the following tests are essentially
the same, so our conclusions will apply to the new data from
either CSR, GFZ, or JPL.

The RL04 maps on the GRACETellus website are cur-
rently produced using three different Gaussian smoothers
in addition to the destriping algorithm (300 km, 500 km,
750 km). An analysis by Ponte et al. (2007) concluded that
the 750 km version had lowest residuals with another ver-
sion of the ECCO model. If we compare the RL05 data
smoothed with different Gaussian smoothers to the un-
smoothed JPLECCO OBP, we find that 500 km smoothed
maps have significantly lower standard deviations (Fig. 7),
compared to either the 300 km (shown in Fig. 3) or 750 km
smoothing. The 300 km smoothing is still likely noisier, as
evidenced by higher residuals in the tropics where the sig-
nal is low, while the 750 km signal is likely a more attenu-
ating signal, as evidenced by an increase in residuals in the
high-latitudes where OBP variability is highest in both the
RL05 residuals (Fig. 7), and in residuals of the JPLECCO
model smoothed with various Gaussians (Fig. 1). However,
the 750 km smoother does noticeably reduce noise in the
tropics where the signal is lower. We have examined ad-
ditional smoothing radii between 300 km and 600 km, and
500 km does have a near minimum mean standard deviation
of residuals of 1.3 cm, compared to 1.6 cm for 300 km. Note
that some sort of destriping algorithm is still required; simply
smoothing the coefficients with a 500 km Gaussian results in

Fig. 6. Time series of OBP at the North Pole measured by a BPR
(black line) and(a) CSRRL04 & CSRRL05, (b) JPL RL04 &
JPL RL05, and(c) GFZ RL04 & GFZ RL05.

residuals with a mean standard deviation of 1.7 cm and dif-
ferences that are larger than destriping and smoothing with a
300 km Gaussian (Fig. 7).

We can also compare the RL05 maps with the new de-
aliasing model (Fig. 8). Note the significantly larger residu-
als at the higher latitudes in the Southern Ocean than when
compared to JPLECCO. This is the area where the older de-
aliasing model was shown to be deficient (e.g., Bonin and
Chambers, 2011). Apparently, the new OMCT model still
has issues in this region, but it appears that the GRACE data
have corrected it so that they agree better with JPLECCO.
JPL ECCO likely performs better here because it assimilates
altimetry, and these regions have strong barotropic signals
that are reflected in sea level.

If we assume uncorrelated error between the GRACE data
and ocean models and between the models, we can use the
standard deviation of the residuals (σ) computed between
the three different mapped data sets (JPLECCO, AOD, and
GRACE) to estimate standard error (ε) in each set of data:

σ 2
E-A = ε2

E + ε2
A

σ 2
G-E = ε2

G + ε2
E

σ 2
G-A = ε2

G + ε2
A

εG =

√
σ2

G-A+σ2
G-E−σ2

E-A
2

εE =

√
σ 2

G-E− ε2
G

εA =

√
σ 2

G-A − ε2
G

, (2)
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Fig. 7.Standard deviation of differences between unsmoothed OBP
from JPLECCO and CSRRL05 mapped OBP for(a) destriping
and 500 km Gaussian,(b) no destriping and 500 km Gaussian, and
(c) destriped and 750 km Gaussian.

where E, A, and G represent JPLECCO, AOD (i.e., OBP
from GAD files), and GRACE, respectively. The two mod-
els share some common heritage, in the form of the starting
primitive equations, and so will have some common errors.
This means that the assumptions underlying Eq. (2) are not
strictly valid. However, there are substantial differences in
the models, such as the fact that JPLECCO assimilates data
while AOD is simply a forced run, the winds, heat and fresh-
water fluxes come from two very different numerical weather
prediction models, and parameterization of smaller-scale fea-
tures (eddies, bathymetry) are different. Thus, we believe that

Fig. 8.Standard deviation of differences between unsmoothed OBP
from RL05 AOD model and CSRRL05 mapped OBP that has been
destriped and smoothed with a 500 km Gaussian.

the differences are far larger than the potential common er-
rors, and that Eq. (2) is a reasonable approximation to com-
puting a better standard error in the GRACE maps then sim-
ply using the difference between GRACE and any one model,
since this assumes no error in the model. The largest differ-
ences between the models are found in shallow waters and at
high latitudes, while the smallest differences are found in the
tropics where there are no significant OBP variations. The
small difference in the tropics means that the computation of
eitherεA or εE sometimes results in a negative sign. When
this happens, we assume uncertainty isσE-A (the difference
between the models), which is an upper bound of the uncer-
tainty, as it assumes one model has no error. The computation
for εG does not suffer from this problem, but when the value
of εA or εE is replaced, we also replace the value ofεG com-
puted in Eq. (2) withσG-E (the difference between GRACE
and JPLECCO), which again represents an upper bound of
the error. This occurs in less than 5 % of the grids, all in the
tropics.

Figure 9 shows the results of the calculation for the
CSRRL05 data, JPLECCO, and the monthly-averaged
AOD data. The estimated standard error for GRACE is of
order 1 cm over most of the mid-latitudes, which is signifi-
cantly lower than previous releases of GRACE data, but still
higher than the estimated uncertainty of the models. The un-
certainty at high latitudes where OBP variability is large, es-
pecially in the Southern Ocean, is approximately the same on
the GRACE maps as it is estimated to be in the JPLECCO
model. Both are significantly smaller than the estimated un-
certainty in the AOD model in regions of high OBP vari-
ability. We note that this applies only for the monthly and
longer periods, and the same problem may not be seen in the
AOD model at periods shorter than a month. This would re-
quire additional testing, which is beyond the scope of this
discussion. GRACE still has high uncertainty in regions bor-
dering ice sheets and glaciers (e.g., Greenland, Alaska, West
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Fig. 9. Estimated standard error in mapped OBP based on Eq. (1)
for (a) CSRRL05 (destriped, 500 km Gaussian),(b) JPL ECCO
(unsmoothed), and(c) RL05 AOD (unsmoothed).

Antarctica), likely due to leakage of the large mass loss
trends into the ocean. GRACE OBP in these areas should
be used with caution.

We have also evaluated the GRACE OBP maps after pro-
jecting onto EOFs from a model, which has been used pre-
viously to reduce noise even further (Chambers and Willis,
2010). We tested using EOFs from both the new RL05 AOD
model and JPLECCO, and ranging from using 10 EOF
modes to 20 EOF modes. We found a minimum uncertainty
estimate using 15 EOFs and patterns from the AOD model.
This suggests that although the magnitude and variability of

the AOD model OBP on monthly scales may not be as con-
sistent with GRACE as JPLECCO is, the patterns of where
the variability occurs is. Moreover, using the AOD model al-
lows for the recovery of Arctic Ocean variability. The un-
certainty of the EOF reconstructed (EOFR) OBP maps from
GRACE is significantly lower than using the destriping al-
gorithm alone, with a mean of 0.7 cm (Fig. 10). Uncertainty
was computed using Eq. (2); the uncertainty estimated for
JPL ECCO and AOD is not shown as it is almost identical
to that computed with the destriping algorithm (Fig. 9). Us-
ing the EOFR filtering reduces the error around ice sheets
and glaciers dramatically, and also reduces noise in the mid-
latitudes where OBP variability is low.

4 Tests of destriping algorithm

Now that the Release-05 data have been shown to be more
accurate than Release-04 data using the same destriping al-
gorithm, we test whether changing parameters of the algo-
rithm will further reduce the uncertainty. For these tests, we
will always truncate coefficients to degree/order 40 and use
an additional 500 km smoother, as these have been shown
to not significantly attenuate expected OBP variability in the
deep ocean (Fig. 1), and give the lowest residuals with the
current algorithm.

This leaves two parameters to adjust: the choice of lower-
degree and order coefficients to leave unmodified, and the
order of the polynomial. We compute a variety of destriped
CSRRL05 series, varying the onset of destriping from a
minimum degree/order of 10 to 19, and the polynomial order
from 2 (quadratic) to 7. We then compute the correlation of
each 6-yr destriped set of GRACE maps with the unsmoothed
JPL ECCO maps, and also compute the standard deviation of
the residuals. To determine which combination of destriping
parameters best reduces differences between GRACE and
JPL ECCO, we examine the average correlation and stan-
dard deviation (Fig. 11). For comparison, with no destriping,
but only a 500 km Gaussian smoothing applied, the average
correlation between CSRRL05 (to maximum degree/order
40) and JPLECOO is 0.67 and the standard deviation of the
residuals is 1.7 cm.

The range of correlation and standard deviation for differ-
ent parameterizations is relatively small, but an option with
maximum correlation and minimum standard deviation can
be found (Fig. 11). The old destriping used for RL04 utilized
a fifth-order polynomial and a minimum filtered degree/order
of 12, but the optimal parameterization for RL05 based on
these tests is to start filtering at degree/order 15, and use a
fourth-order polynomial for the fit (average correlation with
JPL ECCO: 70.7 %). The change to the residuals is small us-
ing the new RL05 filter; on average it reduces the variance by
10 %, although this can be as high as 50 % in some areas, no-
tably in the Southern Ocean and near coastal North America
(Fig. 12). Although the variance is increased in some areas,

Ocean Sci., 8, 859–868, 2012 www.ocean-sci.net/8/859/2012/



D. P. Chambers and J. A. Bonin: Release-05 GRACE time-variable gravity coefficients 867

Fig. 10.Estimated standard error in mapped OBP based on Eq. (1)
for EOFR filtered CSRRL05 data.

Fig. 11.Statistics comparing different destriping parameterizations
with JPL ECCO: (a) correlation, and(b) standard deviation of
residuals, both averaged over ocean grids.

this is generally in areas where the variance is already low
(standard deviation< 1 cm), so a 30 % increase in variance is
less than 0.2 cm. We consider this acceptable since the filter
reduces variance in many areas where the original variance
was high (standard deviation> 2 cm).

5 Conclusions

The Release-05 processing is a significant step forward in
reducing noise in the GRACE gravity coefficients. For the
wavelengths that are most useful for studying ocean bot-
tom pressure variations in the deep ocean (> 1000 km), an
optimal destriping filter plus additional 500 km Gaussian
smoother results in OBP that has an estimated standard er-
ror of ∼ 1 cm over the mid- and low-latitudes, and between
1.5 and 2 cm at high-latitudes where OBP variations are high
and around ice sheets and ocean-terminating glaciers. The
uncertainty at high latitudes is slightly higher than that esti-
mated for JPLECCO, but is less than that estimated for the
atmosphere–ocean de-aliasing model used in GRACE pro-
cessing. Applying a further filter by projecting the data onto
EOF modes from a model reduces the uncertainty to a point
where it is comparable to that estimated for JPLECCO.

Fig. 12. Percent of variance reduced using new optimal destrip-
ing parameters and 500 km smoothing compared to those used for
RL04, also using 500 km Gaussian smoothing. Positive values mean
the variance with the new algorithm is reduced, negative values
mean that variance is increased.

Results are virtually the same for data from all three
processing centers (CSR, GFZ, JPL) except in the Arctic,
where there is evidence that GFZ has lower signal than ex-
pected, but CSR and JPL have similar variability as a bot-
tom pressure recorder. Although the modified destriping fil-
ter that is proposed does increase variance of residuals with
JPL ECCO in some areas, the overall average reduction is
positive (especially in the Southern Ocean), and we believe
it is better to under-filter the GRACE data than to over-filter
it.
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