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Abstract. As part of the GlobColour project, daily chloro-
phyll a observations, derived using remotely sensed ocean
colour data from the MERIS, MODIS and SeaWiFS sen-
sors, are produced. The ability of these products to be as-
similated into a pre-operational global coupled physical-
biogeochemical model has been tested, on both a hind-
cast and near-real-time basis, and the impact on the sys-
tem assessed. The assimilation was found to immediately
and considerably improve the bias, root mean square error
and correlation of modelled surface chlorophyll concentra-
tion compared to the GlobColour observations, an improve-
ment which was sustained throughout the year and in ev-
ery ocean basin. Errors against independent in situ chloro-
phyll observations were also reduced, both at and beneath the
ocean surface. However, the model fit to in situ observations
was not consistently better than that of climatology, due to er-
rors in the underlying model. The assimilation scheme used
is multivariate, updating all biogeochemical model state vari-
ables at all depths. The other variables were not degraded
by the assimilation, with annual mean surface fields of nu-
trients, alkalinity and carbon variables remaining of simi-
lar quality compared to climatology. There was evidence of
improved representation of zooplankton concentration, and
reduced errors were seen against in situ observations of ni-
trate andpCO2, but too few observations were available to
conclude about global model skill. The near-real-time Glob-
Colour products were found to be sufficiently reliable for op-
erational purposes, and of benefit to both operational-style
systems and reanalyses.

1 Introduction

Operational marine biogeochemical models are required for
a variety of purposes (Brasseur et al., 2009; Berx et al.,
2011). These include monitoring air–sea carbon fluxes and
plankton levels in a changing climate, forecasting algal
blooms which may be harmful to human health or to fish-
eries, providing information about the marine environment
to fisheries managers and policy makers, and predicting the
ocean state for naval customers. In this context, “operational”
is used to describe an automated system which runs in real-
time or near-real-time (NRT), and delivers products to end
users.

There is also the need for reanalyses, as these provide high
quality data sets that are also methodologically consistent.
Biogeochemical reanalyses are key to reconstruct past con-
ditions in the ocean, understand and differentiate natural vari-
ability and climate trends, improve the biases in models and
observations, and provide information for present and future
monitoring programmes.

In general, the most realistic representation of the ocean’s
biogeochemistry is required. Data assimilation, which is
widely used in numerical weather prediction (NWP; Kalnay,
2003) and operational physical oceanography (Cummings et
al., 2009), can help with this aim by combining the advan-
tages of models and observations. Models give full spatial
and temporal coverage of the ocean, but contain errors re-
sulting from inadequate approximations, parameterisations,
forcings and initial conditions. Observations are typically
more accurate, but are sparse and still contain sources of
error. Combining the two can produce results which have
full spatial and temporal coverage, that can be used for
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forecasting, and which are potentially more accurate than ei-
ther models or observations alone (Gregg et al., 2009; Cum-
mings et al., 2009).

Data assimilation can be used either for parameter esti-
mation or for state (or flux) estimation. In marine biogeo-
chemistry, much of the focus to date has been on parame-
ter estimation, usually with a zero-dimensional (0-D) or one-
dimensional (1-D) model (e.g. Matear, 1995; Hemmings et
al., 2004). This technique adjusts the internal parameters of
a model such that a subsequent model simulation will match
the observations as closely as possible. It is typically per-
formed as a tuning exercise, to decide the best values for pa-
rameters whose real-world values are unknown.

In this study data assimilation is used for state estima-
tion, employing a sequential (Talagrand, 1997) technique.
This technique adjusts a model field based on observations
in order to produce an analysis, which is the best estimate
of the ocean state at a given time. The process is stepped
through time to provide a series of analyses, each of which
can then act as the initial conditions for a forecast. The ma-
jority of applications of marine biogeochemical data assimi-
lation for state estimation have involved assimilating real or
simulated chlorophyll observations. These have been used to
update phytoplankton fields, typically in a univariate manner.
An overview of some of these efforts, with a focus on skill as-
sessment, is given in Gregg et al. (2009). Many of these have
used 0-D models (e.g. Losa et al., 2003), or 1-D models (e.g.
Eknes and Evensen, 2002; Allen et al., 2003; Hoteit et al.,
2003; Torres et al., 2006; Raick et al., 2007). Hemmings et
al. (2008) tested the assimilation scheme used in the present
study in a 1-D test bed in the North Atlantic. This test used
simulated chlorophyll and phytoplankton observations to di-
rectly update the model phytoplankton, zooplankton, nutri-
ent, detritus, dissolved inorganic carbon (DIC) and alkalinity
fields. The increments to each variable were calculated using
a principle of total nitrogen and carbon conservation. The
assimilation was found to be of overall benefit to both the
nitrogen and carbon variables, and produced more realistic
fields than if just the model phytoplankton was updated. In
this study the scheme has been extended to directly update
all biogeochemical state variables in a three-dimensional (3-
D) model based on remotely sensed surface chlorophyll ob-
servations.

A number of studies have assimilated biogeochemical data
into 3-D regional models (e.g. Ishizaka, 1990; Anderson
et al., 2000; Carmillet et al., 2001; Popava et al., 2002;
Beşiktepe et al., 2003; Triantafyllou et al., 2003; Hoteit et
al., 2005; Fontana et al., 2010). Natvik and Evensen (2003)
assimilated remotely sensed chlorophyll data into a model
of the North Atlantic. With respect to a control run, this re-
sulted in a qualitative improvement in surface phytoplankton
compared to the satellite data, and consistent changes in sub-
surface phytoplankton, zooplankton and nitrate. Ourmières
et al. (2009) assimilated nitrate climatology values into a
model of the North Atlantic, which improved the model’s

representation of nitrate compared to the climatology, and
led to an improved representation of chlorophyll compared
to satellite data. Ciavatta et al. (2011) assimilated chloro-
phyll data into a model of the western English Channel. This
resulted in improvements compared to the assimilated data,
and also an improved representation of other biogeochemical
variables, including a number of plankton functional types
and nutrients, compared to independent in situ observations.

Few studies have assimilated biogeochemical data into a
global model. Nerger and Gregg (2007) assimilated chloro-
phyll data into the NASA Ocean Biogeochemical Model
(NOBM), resulting in significantly improved globally aver-
aged modelled surface chlorophyll when compared to both
assimilated and independent observations. Primary produc-
tion was also improved when compared to satellite data,
however surface nitrate was slightly degraded compared to
a climatology. Nerger and Gregg (2008) extended the work
to include an online model bias correction scheme, which
further improved model surface chlorophyll concentrations.
Gregg (2008) also assimilated chlorophyll into NOBM, us-
ing a different method. The assimilation improved sur-
face chlorophyll compared to the assimilated data on daily,
monthly and annual timescales, at both regional and global
scales, and also when compared to independent data. Sim-
ulations were found to improve with assimilation frequency.
Primary production was also improved, but not by as much as
expected, with Gregg (2008) suggesting a need for multivari-
ate assimilation. While et al. (2012) assimilated in situ ob-
servations of the partial pressure of carbon dioxide (pCO2)

into the model used in this study, resulting in a significant
reduction in modelpCO2 bias and root mean square error in
comparison to the assimilated observations. The assimilation
was found to have a long memory, with observations posi-
tively influencing results several months after assimilation.

Coupled physical-biogeochemical models are increasingly
being run operationally, as well as for research purposes. For
instance, as of January 2012, there are six on-line or off-line
coupled physical-biogeochemical models regularly provid-
ing products to the MyOcean project (http://www.myocean.
eu). Two of these assimilate biogeochemical data; the model
for the Mediterannean Sea (Teruzzi et al., 2011) and the
model for the Arctic Ocean (Samuelsen and Bertino, 2011;
Simon and Bertino, 2012). A discussion of progress and
challenges in developing operational biogeochemical mod-
els with data assimilation is given in Brasseur et al. (2009),
whilst a pre-operational coupled physical-biogeochemical
model has been run daily with biogeochemical data assim-
ilation since 2009, as part of this current study.

For observations to be assimilated operationally they must
be available in NRT (Le Traon et al., 2009), as this allows
models to run on a regular basis in a robust and reliable man-
ner. Using data which describe the current ocean state gives
maximum benefit, as the model can be effectively and realis-
tically constrained by the data assimilation. This operational
requirement is addressed by the GlobColour project (Fanton
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d’Andon et al., 2008), which provides a long time series of
calibrated and validated satellite ocean colour observations
for the global ocean, as well as a set of NRT products which
are updated daily. Surface chlorophyll concentrations are de-
rived from these, and it is this data set which is assimilated
in this study.

The study presented in this paper has two aims. The first is
to test whether the GlobColour observations can be assimi-
lated reliably into a global coupled physical-biogeochemical
model running on an operational basis. This includes assess-
ing the suitability, robustness and timeliness of the data and
their delivery. The second aim is to test the impact of the as-
similation on the model’s representation of chlorophyll con-
centration, the carbon cycle and other biogeochemical vari-
ables of interest.

The physical-biogeochemical model, observations and bi-
ological data assimilation scheme used in this study are de-
scribed in Sects. 2, 3 and 4, respectively. Experiments to
test the effectiveness of the data assimilation are described
in Sect. 5, and the results presented in Sect. 6. Conclusions
are drawn and the pre-operational running of the system dis-
cussed in Sect. 7.

2 Model description

This study uses a coupled physical-biogeochemical model,
the physical component of which is the Forecasting Ocean
Assimilation Model (FOAM). Details of the FOAM system
and its performance are not given here, but are described
in Storkey et al. (2010). The version used in this study is
based on version 3.2 of the Nucleus for European Mod-
elling of the Ocean (NEMO) hydrodynamic model (Madec,
2008), and the second version of the Louvain-le-Neuve sea
ice model (LIM2; Timmermann et al., 2005). At the surface
the model is forced by six-hourly mean fluxes from the Met
Office global NWP model. A key feature of FOAM is the
ability to assimilate remotely sensed and in situ observations
of temperature, salinity, sea-level anomaly (SLA) and sea ice
concentration. The data assimilation scheme is of optimal in-
terpolation (OI)-type, and is described in detail in Martin et
al. (2007) and Storkey et al. (2010). The FOAM system is run
operationally at the Met Office on a daily basis, producing
analyses and six-day forecasts. It is run globally at 1/4◦ res-
olution, and in three 1/12◦ regional configurations, covering
the North Atlantic Ocean, Indian Ocean and Mediterranean
Sea. However, due to the additional computational cost of the
biogeochemical model, for the purposes of this study a non-
operational version of the FOAM system is being run glob-
ally, using a 1◦ tripolar grid with 42 vertical levels, although
still including physical data assimilation.

The biogeochemical component of the coupled model is
the Hadley Centre Ocean Carbon Cycle Model (HadOCC;
Palmer and Totterdell, 2001). HadOCC is a relatively simple
nutrient, phytoplankton, zooplankton and detritus (NPZD)

model, which also includes dissolved inorganic carbon (DIC)
and alkalinity to complete the carbon cycle. The main nutri-
ent component in HadOCC is nitrate (ammonium is also de-
rived), so the NPZD variables are modelled in terms of their
nitrogen content. Conversion between carbon and nitrogen is
performed using fixed ratios, and a list of parameters used
within HadOCC is provided in Table A1. HadOCC has been
widely used for carbon cycle studies at the Met Office Hadley
Centre, and was the ocean biogeochemical component of the
first coupled climate-carbon model (Cox et al., 2000), which
examined future climate-carbon feedbacks. A development
of the model, Diat-HadOCC (Totterdell and Halloran, 2012),
which has a more complex ecosystem, has recently been used
in simulations that will form part of the Intergovernmental
Panel on Climate Change (IPCC) 5th Assessment Report.

HadOCC is shown schematically in Fig. 1, and the model
equations are given in Hemmings et al. (2008). The state vari-
ables are all treated as oceanic tracers, and are advected us-
ing the Monotonic Upstream Scheme for Conservation Laws
(MUSCL) scheme, which forms part of the NEMO code
(Lévy et al., 2001). Chlorophyll, which is assimilated in this
study, is not a state variable within the model, but is derived
from phytoplankton using nitrogen to carbon and carbon to
chlorophyll ratios. DIC and alkalinity are controlled by the
physical and NPZD variables, but have no influence on them.
Their inclusion allows the calculation of sea surfacepCO2
and air–sea CO2 flux, which are in turn affected by atmo-
sphericpCO2. This is assumed to be spatially constant, with
a value of 389.30 ppm used for 2008.

Since Palmer and Totterdell (2001), the light penetra-
tion model of Anderson (1993) has been implemented in
HadOCC. Furthermore, a variable phytoplankton carbon to
chlorophyll ratio has been added, which is allowed to vary
between 20 and 200. The method used for the carbon to
chlorophyll ratio is that of Geider et al. (1996), with nutrient
and temperature effects implemented as suggested by Geider
et al. (1997). Using a variable ratio has been found to give
a more realistic conversion between phytoplankton biomass
and chlorophyll concentration. HadOCC also has the option
to allow phytoplankton growth rates to increase with temper-
ature through use of aQ10 parameter (Eppley, 1972; Palmer
and Totterdell, 2001), an option which is utilised in this study.

HadOCC is coupled on-line to NEMO, and is called at
every model time step (30 min). The coupling is one-way,
which means that the physical fields drive the biogeochemi-
cal variables, but there is no feedback from the biogeochem-
ical to the physical variables.

3 GlobColour data

A detailed description of the GlobColour products is
given in the GlobColour Product User Guide (http://www.
globcolour.info/CDRDocs/GlobCOLOURPUG.pdf,
25 January 2011), and they can be accessed via
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Fig. 1.Schematic of the HadOCC model.

http://www.globcolour.info or http://www.myocean.eu.
The data assimilated in this study are global chlorophyll
products derived using remotely sensed ocean colour obser-
vations from three different sensors. These are the Medium
Resolution Imaging Spectrometer (MERIS) on board the
Envisat satellite; the Moderate Resolution Imaging Spectro-
radiometer (MODIS) on board Aqua; and the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) on board SeaStar.
Information from the MODIS sensor on board Terra is not
used, and all references to MODIS in this paper refer to
MODIS-Aqua.

GlobColour offer an archive of merged daily average level
three (Blower et al., 2009) chlorophyll products dating back
to the launch of SeaWiFS in 1997, which are freely avail-
able and described in Sect. 3.1. NRT products are available a
day behind real-time, and will be discussed further in Sect. 7.
The GlobColour products are generated from level two radi-
ance data provided by the European Space Agency (ESA)
for MERIS, and the National Aeronautics and Space Admin-
istration (NASA) for MODIS and SeaWiFS. The products
assimilated in this study are based on the MERIS 2nd repro-
cessing (2006), and MODIS 1.1 and SeaWiFS 5.2 reprocess-
ings. However, more recent reprocessings are now available
(MERIS 3rd, MODIS R2009.1 and R2010.0, and SeaWiFS
R2010.0), and current NRT GlobColour products make use
of these. Furthermore, the full GlobColour archive will be
reprocessed during 2012, and the impact this might have is
discussed in Sect. 3.2.

3.1 Level three merged products

The products used in this study are daily averaged fields of
sea surface chlorophyll. These are gridded at a resolution of

1/24◦ (4.63 km at the equator), on an integerised sinusoidal
(ISIN) grid. There is global coverage, although there are no
data at high latitudes for the winter Hemisphere, and there are
also gaps where there is cloud. On average the products cover
25.22 % of the ocean each day, and 87.69 % of the ocean each
month (Maritorena et al., 2010), although this has decreased
with more recent SeaWiFS reprocessings. The coverage is
considerably greater than is achieved by in situ observations,
but satellites have the disadvantage of being unable to take
measurements beneath the ocean’s surface.

Chlorophyll is generated from the water-leaving radiances
using the Garver, Siegel, Maritorena (GSM) model, as de-
scribed in Maritorena et al. (2010), and data from the three
sensors are merged and gridded at this stage. During 2008
some problems were experienced with the SeaWiFS sensor,
which was later decommissioned in December 2010, result-
ing in periods of data being lost or deemed unreliable. There-
fore not all days in 2008 contain a contribution from SeaW-
iFS.

For the purposes of daily averaging, a so-called “data-day”
is defined. This means that some observations valid at around
00:00 UTC count towards the day before or after the day
they were observed. This is to avoid combining observations
made at the same point at significantly different times of day.
The day an observation counts towards depends on the ob-
servation time and longitude, and the satellite’s orbit. Whilst
the products are daily averages, it should be noted that the
three satellites are helio-synchronous, and all observations
are made within two hours of local noon.

For each observation there is an error estimate and a set
of confidence flags. The error estimates are generated by
the GSM model, and the confidence flags mark whether an
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observation is, for instance, contaminated by cloud or land.
The way these flags are used in this study is detailed in
Sect. 4. The products are only accurate for clear case one
(Morel and Prieur, 1977) waters, as the GSM algorithm is not
designed to account for the increased amount of suspended
matter present in case two waters.

3.2 Product accuracy

The SeaWiFS pre-launch accuracy target for chlorophyll
was 35 % over the range 0.05–50.0 mg m−3 (Hooker et al.,
1992). This is the figure often quoted for the accuracy
of satellite chlorophyll products. The target for the water-
leaving radiances was 5 % (Hooker et al., 1992). Bailey
and Werdell (2006) conducted a comprehensive validation of
SeaWiFS data against in situ measurements of radiances and
surface chlorophyll. For chlorophyll derived using the OC4
algorithm (O’Reilly et al., 1998), they found the median per-
centage error compared to all available in situ measurements
to be 33.09 %, reducing to 25.96 % when comparing to ob-
servations taken in the open ocean (bottom depth greater than
1000 m).

The GlobColour Full Validation Report (http://www.
globcolour.info/validation/report/GlobCOLOURFVR v1.1.
pdf, version 1.1, 14 December 2007) provides similar vali-
dation for the merged GlobColour products. This validation
compares the products to in situ data, to the operational
products of the three individual sensors, and to other merged
products. The median percentage error for the merged
GlobColour GSM chlorophyll product when compared to
in situ measurements taken in the open ocean was found
to be 29.53 %. For the operational MERIS, MODIS and
SeaWiFS products this figure was 53.04 %, 44.08 % and
35.77 %, respectively. This demonstrates the advantage of
using the merged product (along with increased coverage
and consistency).

An issue with the merged GlobColour data set is that
there are known biases between the sensors. Using NASA
products, Gregg and Casey (2010) found a 12.2 % differ-
ence between MODIS and SeaWiFS global annual median
chlorophyll concentrations over the period 2003–2007. Us-
ing GlobColour products, Maritorena et al. (2010) found
that since 2005, chlorophyll values derived from MERIS
and SeaWiFS have remained fairly steady, but values from
MODIS have decreased markedly. There was a reduction
of 16 % between the periods 2002–2005 and 2006–2009.
This is evident in the GlobColour products used in this
study. By comparing the merged product and the equiva-
lent individual sensor products, it was found that after the
quality control procedure described in Sect. 4 had been
performed, the mean daily global chlorophyll concentra-
tions for 2008 were 0.211 mg m−3 from the merged product,
0.270 mg m−3 from MERIS, 0.185 mg m−3 from MODIS
and 0.227 mg m−3 from SeaWiFS. SeaWiFS values are typi-
cally closer to those from MERIS than to those from MODIS,

which means that when SeaWiFS data are available, the av-
erage chlorophyll concentration from the three sensors, and
so in the merged product, increases, even though chlorophyll
levels in the ocean have not significantly changed.

These biases should be reduced in future versions of the
GlobColour archive, by making use of the most recent ESA
and NASA reprocessings. In the products used in this study
it can often be clearly seen where different satellite tracks,
with contrasting chlorophyll concentrations, cross over. An
example of this is shown in Fig. 2. This effect is consider-
ably reduced in the equivalent product generated using the
most recent reprocessings. The impact of these biases could
also be addressed by assimilating the individual sensor prod-
ucts, and developing a bias correction scheme such as that
used within FOAM for sea surface temperature (Martin et
al., 2007).

4 Biological assimilation

4.1 Quality control

Prior to assimilation, the GlobColour products are automat-
ically quality controlled and processed using the Met Office
Observation Processing System (OPS). This is the same pro-
cedure used for the physical variables assimilated by FOAM
(Storkey et al., 2010), and is outlined below. A Gaussian er-
ror distribution is assumed by both the OPS and the assim-
ilation scheme. This assumption is invalid for chlorophyll,
because phytoplankton biomass follows a logarithmic distri-
bution in nature (Barnes et al., 2011; Campbell, 1995). How-
ever, log-transforming the chlorophyll data normalises it, and
so makes the assumption of Gaussian errors a reasonable
approximation. Therefore both the OPS and the assimila-
tion use log10 (chlorophyll) rather than chlorophyll. Whilst a
good approximation, log-transformation does not guarantee a
Gaussian error distribution, potentially impacting on the opti-
mality of the assimilation (Bocquet et al., 2010). An alterna-
tive approach, which has been used in some biogeochemical
data assimilation studies, is to use anamorphic transforma-
tions (Brankart et al., 2012), and this or similar approaches
could be explored in the future.

As stated in Sect. 3.1, each observation comes with a set
of confidence flags, as described fully in the GlobColour
Product User Guide. The OPS rejects an observation if a
flag is set marking no measurement, invalid measurement
or a grid box which contains greater than 50 % land. Fur-
ther quality control is performed as described in Ingleby
and Huddleston (2007) and Ingleby and Lorenc (1993).
The main component of this is a background check, in
which each observation is compared to a background field
of log10 (chlorophyll). A probability of gross error (PGE)
given the background value is calculated following Eq. (1)
of Ingleby and Huddleston (2007):
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Fig. 2. Merged GlobColour products for 52◦ W–32◦ W,48◦ S–28◦ S (South Atlantic) on 19 October 2008, generated using the ESA and
NASA reprocessings used for this paper (left-hand plot); and the most recent reprocessings (right-hand plot). This merges, from left to right,
a SeaWiFS swath at 16:41 UTC, a MODIS swath at 17:04 UTC, a SeaWiFS swath at 15:03 UTC, and a MERIS swath at 11:26 UTC.

P(G|O) = κP (G)/(κP (G)+ (2πV )−0.5

exp(−(o − b)2/2V )(1− P(G))) (1)

whereκ is the density of the probability distribution of gross
error due to instrument error, and is set here to be 0.1;P(G)

is the PGE due to instrument error, and is set here to be 0.04;
V is the sum of the background and observation error vari-
ances; o is the observation value and b is the background
value. If P(G|O) is greater than a specified threshold, set
here to be 0.5, then the observation is rejected. The back-
ground field used in this study is a monthly climatology pro-
duced by the authors from the GlobColour merged products.
Daily chlorophyll values were averaged onto a 1◦ grid, and
the mean for each month was taken over the period 1998–
2007. In an operational system, the previous day’s one-day
forecast could be used as the background, rather than the cli-
matology. The background error variances are the same as
those used in the assimilation scheme, and are described in
Sect. 5.2. The observation error variances are the square of
the observation errors specified in the GlobColour products.
These are used rather than those described in Sect. 5.2 (which
could alternatively be used), as this allows the quality control
to benefit from the exact error information that is provided
for each observation.

Once the quality control is completed, “super-obbing”
is performed. This groups together observations within a
13 km range, and takes the median to create a single “super-
observation”, which is used by the assimilation. This is
done because assimilating many high-resolution observa-
tions, which represent small-scale variability the model can-
not resolve, can introduce noise into the model and degrade
the solution. Furthermore, the assimilation scheme assumes
observation errors to be uncorrelated, and the super-obbing
process reduces any such correlations that might exist, as
well as reducing random error (Berger et al., 2011; Purser
et al., 2000).

4.2 Assimilation

There are three stages in producing a daily analysis, which
are the same for both the physical and biogeochemical vari-
ables. Firstly, the model is run for a day with the observation
operator applied. Secondly, the assimilation scheme is run
and the increments are calculated. Thirdly, the model is run
again for the same day, and the increments are applied.

In stage one, the observation operator performs a compari-
son between observation and model values using a first guess
at appropriate time (FGAT) technique (Martin et al., 2007).
This bilinearly interpolates model values to observation loca-
tions at the closest model time step to the observation time.
For the merged GlobColour products, in which no time in-
formation is supplied, the chlorophyll observations are taken
to be valid at 12:00 UTC. The model and observation values,
along with the observation location and time, are saved to a
file which is passed to the assimilation scheme. These files
are also used for validation purposes.

In the second stage, the assimilation scheme produces a set
of 2-D surface log10 (chlorophyll) increments using the same
method as for sea surface temperature (SST). A detailed de-
scription of the process is given in Martin et al. (2007), as
are the specific details for each of the physical variables as-
similated. The scheme uses a variant of OI known as analy-
sis correction (Lorenc et al., 1991), which uses an iterative
method to solve the generalised OI analysis equation:

xa = xb + BHT (HBHT
+ R)−1(y − h(xb)) (2)

where xa and xb are state vectors containing values of
log10 (chlorophyll) at each surface model grid point;xa is
the analysis, andxb is the background, which is the best es-
timate of the log10 (chlorophyll) field prior to assimilation,
in this case the one-day forecast produced by the initial run-
through of the model;y is a vector containing the observa-
tions,h is the observation operator, andH is the Jacobian of
the observation operator;B andR are matrices of model and
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observation error covariances respectively, and will be dis-
cussed in Sect. 5.2. The increments are given byxa minus
xb.

From the surface log10 (chlorophyll) increments, a set of 3-
D increments for each of the biogeochemical state variables
is calculated using the nitrogen balancing scheme described
in detail in Hemmings et al. (2008). This process is shown
schematically in Fig. 3. The surface log10 (chlorophyll) in-
crements are converted to surface phytoplankton increments
using the model’s nitrogen to chlorophyll ratio. This is cal-
culated from a fixed carbon to nitrogen ratio and the variable
carbon to chlorophyll ratio (see Table A1 and Sect. 2). The
phytoplankton increments are then used to determine sur-
face increments for the other nitrogen tracers (nitrate, zoo-
plankton and detritus). The nitrogen balancing scheme as-
sumes that phytoplankton errors result from a combination of
growth errors and loss errors, and uses the background state,
including the phytoplankton specific growth and loss rates,
to determine whether growth or loss errors dominate. Incre-
ments are then partitioned between nitrate, zooplankton and
detritus accordingly, to try and reduce these errors. This is
subject to the constraint that where possible, nitrogen should
be conserved at every grid point. The aim is to propagate the
changes in chlorophyll as realistically as possible to the rest
of the model, reducing not just the chlorophyll errors, but
also their causes. The surface increments are applied to each
model level above the mixed layer depth. Below this depth
the increments are a combination of “primary” and “sec-
ondary” increments. The primary increments are based on
the surface increments scaled to the background field at that
depth. The secondary increments, which are only applied if
the primary increments will create an unrealistic sub-surface
nitrate minimum, are based on the expectation that nitrate
concentrations increase monotonically with depth. The DIC
increments are derived from the phytoplankton, zooplankton
and detritus increments, using a set of constant carbon to ni-
trogen ratios (see Table A1). This conserves total carbon at
each grid point. The alkalinity increments are set to be oppo-
site in sign and equal in magnitude to the nitrate increments.
The same parameter set is used as in Hemmings et al. (2008).

Finally in stage three, the physical and biogeochemical in-
crements are applied evenly over the day using the incremen-
tal analysis update (IAU; Bloom et al., 1996) technique. This
applies an equal proportion of the increments at each time
step, rather than applying the entire increments at the first
time step, which reduces the likelihood of the increments
causing an instability in the model.

5 Hindcast experiments

In order to assess the impact of assimilating the GlobColour
products, two hindcasts have been performed. These hind-
casts, and the initialisation of the model and assimilation, are
described below.

5.1 Spin-up

The initial conditions for this study were taken from a pre-
vious FOAM-HadOCC hindcast, performed as part of a dif-
ferent study. Fields from the end of this run, valid for 31 De-
cember 2006, were used. However, the nitrate field differed
significantly from climatology, and so was replaced by the
World Ocean Atlas 2005 (Garcia et al., 2006) climatology
for January, interpolated to the model grid. A year-long spin-
up was then performed for 2007, in which no ocean colour
data were assimilated. Whilst shorter than ideal, this length
of spin-up was sufficient for “normal” model behaviour to
be reached, with imperfect initial conditions being one of the
sources of error that data assimilation aims to compensate
for.

All runs performed in this study, including the spin-up,
assimilated temperature, salinity and sea ice concentration
data, but not SLA data. There are two reasons for this. Firstly,
SLA data are used to give information about mesoscale ed-
dies, which the 1◦ resolution model is unable to resolve. Sec-
ondly, assimilating SLA data changes the position of isopy-
cnal levels in the model. A scheme has yet to be developed
to alter the biogeochemistry accordingly, so the physical and
biogeochemical fields can become inconsistent, causing mix-
ing which results in spurious sub-surface chlorophyll max-
ima.

In previous experiments, FOAM-HadOCC has shown sen-
sitivity to biogeochemical increments applied near sea ice.
This is because in regions where the ice has recently melted
there can be very low model chlorophyll values compared
to observations. The use of log10 (chlorophyll) in the assim-
ilation accentuates these differences, resulting in extremely
large increments. This information is propagated to nearby
grid squares where model chlorophyll values are higher, re-
sulting in anomalously high concentrations. Therefore in this
study no chlorophyll observations at latitudes higher than 60◦

north or south were assimilated, although biogeochemical in-
crements generated from observations at lower latitudes were
still applied in these regions, except in grid squares contain-
ing sea ice.

5.2 Calculation of error covariances

An important part of the data assimilation scheme is the
background and observation error covariances. These deter-
mine the magnitude of the increments, and how much they
are spread out onto the model grid. As detailed in Mar-
tin et al. (2007), FOAM requires sets of “mesoscale” and
“synoptic scale” background error variances for each model
grid point, which describe small- and large-scale model er-
ror variability respectively. For each, a correlation length
scale must be specified, which determines how much an in-
crement is spread to nearby grid points. A set of observa-
tion error variances is also needed. These contain both a
contribution from instrument error and a contribution from
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“representativeness” error – error arising from small-scale
processes captured by the observations which the model is
unable to resolve. This means that the errors specified in the
GlobColour products cannot be directly used for this pur-
pose, as they do not indicate representativeness error.

For the FOAM assimilation scheme, the error covariances
must be specified a priori. However, to calculate these accu-
rately requires performing a run with assimilation (which re-
quires error covariances). Initial error variance estimates for
log10 (chlorophyll) were therefore produced by calculating
the standard deviation of the GlobColour merged products on
a 1◦ grid for the period 1998–2007, performed on a monthly
basis to account for seasonal variation. These standard de-
viations were converted to variances, and at each grid point
the observation error variance was set to 50 % of the vari-
ance in the GlobColour data, and the mesoscale and synoptic
scale error variances each set to 25 % of the variance in the
GlobColour data. This approach ensured that the highest er-
ror variances were in the regions with the highest chlorophyll
variability, as would be expected. Whilst imperfect, these er-
ror variances allowed an assimilative run to be performed,
producing more accurate chlorophyll fields than a run with-
out assimilation. The correlation length scales were chosen
to be the same as for SST (100 km for the mesoscale and
400 km for the synoptic scale). Changes in chlorophyll of-
ten occur on smaller scales than this, but it is undesirable
to set the mesoscale length scale to be much shorter than
100 km for a 1◦ model, as “mesoscale” refers here to small-
scale processes resolved by the model, and is not intended to
be a direct representation of the ocean mesoscale (Martin et
al., 2007). However, future improvements might be expected
through tuning of these length scales.

In order to calculate a more accurate set of observa-
tion and background error variances, a run was performed
for 2008 which assimilated the chlorophyll products us-
ing the initially specified error covariances, and which pro-
duced a two-day forecast each day. Using the results from
this run, a new set of monthly error variances were calcu-
lated using a combination of the National Meteorological

Center (NMC) method (Parrish and Derber, 1992) and the
Hollingsworth-L̈onnberg (HL) method (Hollingsworth and
Lönnberg, 1986). The NMC method provides estimates of
the two (mesoscale and synoptic scale) components of the
background error by calculating the differences between one-
day and two-day forecasts valid for the same time. These are
given at every grid point, as is required. The HL method
uses observation minus model differences to calculate es-
timates of both the background and observation error vari-
ances. Being based on observations of the true ocean state,
this normally produces more accurate error values. However,
estimates can only be calculated at grid points where there
are sufficient observations. Therefore the two methods were
combined, with the NMC method used to give the spatial pat-
terns in the error variances, and the HL method used to give
the magnitudes. Mesoscale and synoptic scale background
error variances were first calculated with the NMC method.
To give a complete field, and to ensure consistency with the
background errors, these mesoscale error variances were also
used as a basis for the observation error variances. Each of
the three sets of error variances were then scaled so that their
global mean is identical to the global mean of the correspond-
ing HL estimates.

These newly calculated background and observation error
covariances are the ones used in the runs described below. To
ensure consistency with the assimilation, and the best possi-
ble quality control, the observations were reprocessed by the
OPS using the new background error variances, as described
in Sect. 4.1.

5.3 Main runs and experiment details

Two hindcasts have been performed for the year 2008, taking
initial conditions from the spin-up described in Sect. 5.1. One
hindcast (hereafter “Assim”) assimilated the GlobColour
chlorophyll data, and a control run (hereafter “Control”) as-
similated no chlorophyll data. These runs were identical in
every other respect, including the assimilation of physical
data, with the aim of assessing the impact of the assimila-
tion of chlorophyll data on the biogeochemical model.
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The statistics used to assess the results in this paper
are mean model minus observation error (bias), root mean
squared error (RMSE), Pearson’s correlation coefficient (r)
and normalised standard deviation (sn; model standard devi-
ation divided by observation standard deviation). Taylor plots
(Taylor, 2001) are also used. These summarise RMSE, cor-
relation and normalised standard deviation on a single dia-
gram. The unbiased (centred) RMSE, normalised by the ob-
servation standard deviation, is given by radial distance from
1.0 on the x-axis. The normalised standard deviation is given
by distance from the curved dashed line between 1.0 on the
x-axis and 1.0 on the y-axis. The correlation is obtained by
drawing a line from the origin through a plotted point, and
reading off where this meets the curved upper-axis. A perfect
match between model and observations would be plotted at
1.0 on the x-axis.

6 Results

When assessing the skill of a data assimilation scheme there
are three main things to check. First of all, that the assimi-
lation propagates the information from the observations cor-
rectly, so that the model results match the assimilated ob-
servations more closely, ideally within the observation error.
Individual observations can either be compared to the anal-
ysis after they have been assimilated, or to the background
field prior to assimilation. In this latter case the errors are
equivalent to one-day forecast errors, and the observations
can be considered to be semi-independent, as they have not
yet contributed to the model field. However, the assimilative
model run will still be intrinsically linked with these obser-
vations, because the observation errors are likely to be time-
correlated with those of observations assimilated on previous
days. Therefore, fully independent observations are required
in order to provide tangible evidence that the assimilation
has improved the model’s representation of the assimilated
variable. Finally, it must be checked that the non-assimilated
model variables are also improved by the assimilation, or at
least not degraded. Improvements in the assimilated variable
may be worthless if the rest of the system suffers as a result.

Maps of annual average surface chlorophyll for Control,
Assim and the GlobColour observations are shown in Fig. 4.
In this simple visual comparison it can be clearly seen that
Control is very different from the observations, whereas As-
sim matches them much more closely, in terms of both spatial
pattern and magnitudes. In this sense, the assimilation can be
considered a success.

Control has too much chlorophyll across most of the
ocean, but too little chlorophyll in the Brazil-Malvinas con-
fluence off the Patagonian coast, as well as north of about
50◦ N. This is accentuated in Fig. 4 because most of the
observations at high northern latitudes are taken during the
Northern Hemisphere summer. An in-depth discussion of the
reasons for these biases is outside the scope of this paper, but
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Fig. 4.Mean surface chlorophyll (mg m−3) for 2008.

the overestimation of chlorophyll in most regions is linked to
excess nutrient concentrations at the surface. A major contri-
bution to this problem comes from the physical data assimi-
lation. Equivalent simulations which do not include physical
data assimilation match the observations better (not shown).
This problem is not unique to the FOAM system (e.g. El
Moussaoui et al., 2011; Anderson et al., 2000; Ourmières
et al., 2009), and is related to excess mixing caused by
the physical assimilation creating spurious vertical veloci-
ties and altering the isopycnal levels in the model, which is
not accounted for by HadOCC. Despite these issues, physi-
cal data assimilation has been included in this study as it is
a fundamental component of the operational FOAM system.
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Furthermore, whilst the physical assimilation is currently a
source of error for the biogeochemistry, if these issues can
be fixed (which is being worked on), then the demonstrable
improvement the physical assimilation makes to the physical
fields should in turn result in more accurate biogeochemi-
cal fields than if physical data were not assimilated. As it is,
the chlorophyll assimilation is able to counteract these and
other errors somewhat, propagating the increments such that
model chlorophyll concentrations are either increased or de-
creased in a realistic manner. The chlorophyll errors in Assim
are much lower than those in both Control and an equivalent
hindcast with no data assimilation at all (not shown). Assim
is not a perfect match for the observations, but should not
be expected to be, as over-fitting to the observations can de-
stroy the relationships between variables in the model, thus
degrading forecast quality (Oke and Sakov, 2008). However,
chlorophyll patterns in regions such as the Brazil-Malvinas
confluence, which are not reproduced by Control, are cap-
tured well by Assim.

Figure 5 shows the model error for surface
log10 (chlorophyll) when compared to the assimilated
GlobColour observations. The model values have been in-
terpolated to the observation locations using the observation
operator to provide an exact like-for-like comparison. This
has been performed prior to assimilation, so in this case
the observations can be considered to be semi-independent,
and the errors are equivalent to one-day forecast errors
rather than analysis errors. Figure 5 shows time series of
daily mean global bias and RMSE for Control and Assim.
Included for comparison is the RMSE of the observations
themselves, calculated from the values given in the Glob-
Colour products. The signs of the observation errors are not
known, so the observation bias cannot be plotted. It is clear
that both model runs have too much chlorophyll compared
to the observations. However, both the bias and RMSE are
much lower for Assim than for Control, which indicates that
the assimilation is having a positive impact on the modelled
chlorophyll concentrations, as intended. The mean global
bias for 2008 is 0.398 log10 (mg m−3) for Control and 0.119
log10 (mg m−3) for Assim. The mean global RMSE is 0.586
log10 (mg m−3) for Control and 0.314 log10 (mg m−3) for
Assim. The correlation is also improved, from 0.261 for
Control to 0.619 for Assim. This improvement is immediate,
with the error considerably reduced after only a single day
of assimilation. The error for Assim remains lower, and
fairly constant, throughout the year, suggesting that Assim
is performing well at capturing the seasonal cycle. For
the initial hindcast used to calculate the error covariances,
described in Sect. 5.2, the mean global RMSE was 0.439
log10 (mg m−3), demonstrating the importance of using error
covariances designed specifically for use with the model
configuration.

Both the bias and RMSE of Control are higher than the
errors of the observations, as is the RMSE of Assim. How-
ever, the bias of Assim is lower than the RMSE of the

Fig. 5. Time series of global model and observation error for 2008.
The solid lines represent RMSE, the dotted lines represent bias. The
blue and red lines represent the error in Control and Assim respec-
tively when compared to the GlobColour observations on the obser-
vation operator step prior to assimilation each day. The black line
is the root mean squared of the observation errors specified in the
GlobColour files.

observations, which is what the assimilation would expect to
achieve. It would be hoped that this bias would be very close
to zero. Whilst not the case for log10 (chlorophyll), it is the
case for chlorophyll, for which the mean global bias for 2008
is 0.190 mg m−3 for Control and 0.008 mg m−3 for Assim.

It can be seen that the RMSE for the observations and for
both model runs follows a very similar pattern throughout
the year. In particular there are sudden decreases at the be-
ginning of April and in mid-August, corresponding to the
introduction of SeaWiFS data; and a peak in early Octo-
ber, corresponding to two days where there are no SeaW-
iFS data. As discussed in Sect. 3.2, the inclusion of SeaWiFS
data changes the mean daily global chlorophyll concentra-
tion in the merged observations. It is likely that the quality
of the model simulations have not significantly changed in
comparison to reality, it merely appears that way because the
measure of truth has changed.

A Taylor plot for log10 (chlorophyll), using the same
model-data comparisons as Fig. 5, is shown in Fig. 6. As well
as a global average, Fig. 6 provides a comparison for differ-
ent regions, to see how the assimilation affects the model in
each ocean basin. Across all regions, both unbiased RMSE
and correlation are improved in Assim, with similar values
obtained in each basin, indicating that Assim has comparable
skill across the entire model domain, which is less clearly the
case for Control. However, whilst the unbiased RMSE and
correlation are improved in all areas, the normalised standard
deviation generally remains similar, and is even made worse
in some regions, including for the global average. In all cases
the standard deviation is too low for Assim, suggesting that
the assimilation may be smoothing out too much of the vari-
ability in the model.

Ocean Sci., 8, 751–771, 2012 www.ocean-sci.net/8/751/2012/



D. A. Ford et al.: Assimilating GlobColour ocean colour data 761

0.0 0.5 1.0 1.5
0.0

0.5

1.0

 

N
or

m
al

is
ed

 s
ta

nd
ar

d 
de

vi
at

io
n

0.
20

0.
40

0.
60

0.
80

1.
00

1.
20

-0.1 0.0 0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

Control

Assim

Global              

North Atlantic      

Mediterranean       

Tropical Atlantic   

South Atlantic      

North Pacific       

Tropical Pacific    

South Pacific       

Indian Ocean        

Southern Ocean      

Arctic Ocean        

Dotted lines denote normalised centred RMSE

Fig. 6. Taylor plot showing skill in each ocean basin for Control
and Assim when compared to the GlobColour observations on the
observation operator step prior to assimilation each day.

The assimilation has clearly improved the model’s simu-
lation of surface chlorophyll compared to the assimilated ob-
servations, throughout the year and across all ocean basins.
However, as previously stated, comparisons to independent
observations are required in order to have full confidence
in the assimilation’s impact. In situ observations of biogeo-
chemical properties are sparse, but there are some data sets
available for validation purposes. One of these is the Sea-
WiFS Bio-Optical Archive and Storage System (SeaBASS;
Werdell et al., 2003), developed by NASA to enable assess-
ment of SeaWiFS products. SeaBASS collects in situ chloro-
phyll and radiance observations, as well as associated mea-
surements, from a large range of cruises and time series sta-
tions. The SeaBASS chlorophyll data have been used as part
of the error characterisation for calibration of the GlobColour
products, so are not strictly independent, but the dependency
will be much lower than that on the assimilated observations.

Figure 7 shows quantile-quantile plots for Control and As-
sim against SeaBASS observations of log10 (chlorophyll) at
the surface of the ocean. A quantile-quantile plot is a measure
of how well the distribution of model values matches the dis-
tribution of observation values, with an exact fit lying on the
one-to-one line. Only those observations taken in 2008 in the
open ocean (bottom depth greater than 1000 m, chosen to be
consistent with Bailey and Werdell, 2006) were used in this
comparison, as neither the model nor the assimilated satellite
observations are valid for shallow waters. The daily averaged
model field for the date each observation was made has been
interpolated to the observation location, providing an exact
spatial comparison. Consistent with the comparisons to satel-
lite observations, Control generally has too much chloro-
phyll compared to the SeaBASS observations, whilst Assim

Fig. 7. Quantile-quantile plot versus surface SeaBASS
log10 (chlorophyll) for Control (blue), Assim (red) and clima-
tology (gold). A map of observations used for the comparison is
given in Fig. A1a.

matches the observations much better for the entire range
of chlorophyll concentrations. This demonstrates that the as-
similation has improved the model’s representation of sur-
face chlorophyll when compared to these independent ob-
servations. Figure 7 also shows the equivalent comparison
for the monthly chlorophyll climatology derived from Glob-
Colour observations described in Sect. 4.1. This provides a
better fit to the observations than Assim, except at high or
low observed concentrations, indicating that further improve-
ments are required to FOAM-HadOCC.

Assim’s improved representation of surface chlorophyll in
comparison to the SeaBASS observations is confirmed by
the statistics shown in Table 1, with the bias, RMSE, and
correlation all better for Assim than for Control. Climatol-
ogy matches the SeaBASS observations better than Assim
though, with a lower bias and RMSE, and higher correlation.
However, climatology also has a normalised standard devi-
ation of 0.597 which, in conjunction with Fig. 7, suggests
that it does not represent the variability in the observations
as well as Assim.

Assim not only does a better job than Control of repro-
ducing the SeaBASS chlorophyll observations at the sur-
face, but also improves the representation of chlorophyll be-
neath the surface, as shown by the statistics given in Table 1.
RMSE, correlation and normalised standard deviation are all
improved, and there is a slight reduction in bias. This demon-
strates that the assimilation is correctly propagating the
information from the assimilated observations down through
the water column, providing a more realistic representation
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Table 1. Statistics versus SeaBASS log10 (chlorophyll)
(log10 (mg m−3)) observations at open ocean points (bottom
deeper than 1000 m). A map of observations used for the surface
comparison is given in Fig. A1a, and for the all depths comparison
in Fig. A1b.

Surface All depths
(192 observations) (1867 observations)

Control Assim Climatology Control Assim

Bias 0.659 0.312 0.141 −0.301 −0.297
RMSE 0.885 0.536 0.366 0.938 0.812
r −0.137 0.249 0.473 0.512 0.599
sn 1.065 0.868 0.597 1.315 1.218

of the variable beneath the surface, even where there are no
satellite observations to assimilate.

A further source of in situ observations is the Hawaii
Ocean Time-series (HOT) data set, with approximately
monthly measurements made at the A Long-term Olig-
otrophic Habitat Assessment (ALOHA) site at 22.75◦ N,
158.00◦ W. These are fully independent from the model.
Comparisons between model results and these observations
have been made by horizontally and vertically interpolating
the model values to the observation locations. The statistics
in Table 2 show that the bias, RMSE and correlation for fluo-
rometrically derived log10 (chlorophyll) against all observa-
tions are improved for Assim compared to Control. The im-
pact is greatest when the comparison is restricted to the sur-
face 50 m, where the normalised standard deviation is also
positively affected by the assimilation, but is still seen be-
neath this depth, showing the assimilation to have a benefi-
cial effect throughout the water column.

Another source of independent in situ chlorophyll obser-
vations is the Atlantic Meridional Transect (AMT) cruises.
In 2008 a cruise left the United Kingdom on 3 October, trav-
elled south through the Atlantic, and reached the Falkland
Islands on 10 November, taking measurements at regular in-
tervals along the way. The statistics for log10 (chlorophyll),
at all depths, are shown in Table 2. Compared to Control, the
bias, RMSE, correlation and normalised standard deviation
are all improved in Assim. Separating out the top 50 m and
the remaining depths shows the greatest improvements to be
near the surface, with Control and Assim being of compara-
ble accuracy beneath 50 m.

The comparisons made to satellite and in situ chlorophyll
observations give a great deal of confidence that the assimila-
tion is improving the model’s representation of chlorophyll,
both at and beneath the surface of the ocean. Having estab-
lished this, the impact the assimilation has on the remaining
model variables must be assessed. This is an important check,
as it is desirable for the assimilation to improve all model
variables. Furthermore, data assimilation has the potential to
degrade other model variables, which would not only make
the model less useful for creating analyses of these, but could

also lead to less accurate forecasts of chlorophyll than if no
assimilation had occurred.

Figure 8 shows cross-sections of each of the model state
variables for Control and Assim, along with the correspond-
ing assimilation increments. The section plotted is the up-
per 100 m of the Atlantic Ocean from 77◦ S to 68◦ N at a
longitude of 30◦ W, and the data shown are mean values for
May 2008, at the height of the North Atlantic spring bloom.
This serves to demonstrate the impact the assimilation has
beneath the surface over a wide geographical domain, and
which changes are directly due to the increments, and which
result from the biogeochemical model dynamics adjusting to
the increments. As described in Hemmings et al. (2008) and
summarised in Sect. 4.2, the assimilation scheme creates in-
crements for the six biogeochemical state variables based on
a principle of conserving nitrogen and carbon at each grid
point. This is dependent on the background state and the phy-
toplankton growth and loss rates, which the scheme uses to
determine whether the phytoplankton error is primarily due
to errors in the growth rate or errors in the loss rate.

In Assim (Fig. 8b), phytoplankton concentration is re-
duced compared to Control (Fig. 8a) throughout the mixed
layer south of about 60◦ N, and is increased further north,
consistent with the changes in chlorophyll. Beneath the
mixed layer a sub-surface phytoplankton maximum is cre-
ated, which stretches from the Equator to approximately
45◦ N, and persists throughout much of the year. Without
any observations to compare against, it is difficult to know
whether this sub-surface maximum actually occurred in the
ocean, and thus whether the assimilation increments below
the mixed layer are large enough.

In Control (Fig. 8d) there is a region of high zooplank-
ton concentration between about 15◦ S and 40◦ N, down to
a depth of around 50 m. In Assim (Fig. 8e) this is reduced
equally at all depths, despite large positive zooplankton in-
crements (Fig. 8f) in this area, which are created to balance
the nitrogen lost by decreasing the phytoplankton concen-
tration. The model’s reaction to the reduced phytoplankton
outweighs the increases from the assimilation, which is de-
sirable as it means that the model is maintaining a consistent
relationship between phytoplankton and zooplankton. North
of 40◦ N, zooplankton concentrations are very low in Con-
trol, even where phytoplankton concentrations are high. It
would be expected that zooplankton concentrations would
also be high in this region, and these are considerably in-
creased in Assim. This indicates that the use of data assimi-
lation may be overcoming inadequacies in the chosen values
of tuneable parameters. The change in zooplankton is further
demonstrated in Fig. 9, which shows annual mean surface
zooplankton fields from Control and Assim, equivalent to the
chlorophyll fields shown in Fig. 4b–c. A very similar pattern
of changes can be seen in both zooplankton and chlorophyll
(and phytoplankton), as would be expected, indicating that
the assimilation is having a favourable effect on the model
zooplankton. A similar impact is seen on detritus (Fig. 8g–i).
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Fig. 8. Cross-sections down to 100 m depth for 77◦ S to 68◦ N along 30◦ W for May 2008. P = phytoplankton (mmol N m−3; a–c),
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been plotted using the same colour scale, even though this does not capture the full range for all fields, in order to allow a direct comparison
between variables.

The nutrient field from Assim (Fig. 8k) is very similar to
that from Control (Fig. 8j), except that in Assim there are
fewer nutrients near the surface north of about 45◦ N. It might
be expected that the assimilation would produce large nutri-
ent increments to balance the loss of phytoplankton, thereby
accentuating nutrient biases. It is encouraging that this is not
the case. The scheme is intepreting the positive error in phy-
toplankton as being due primarily to negative error in the
loss rate rather than positive error in the growth rate, and
so is increasing zooplankton concentrations more than nu-
trient concentrations. Because the assimilation is conserving
nitrogen at each grid point, but the model has too much ni-
trogen at the surface, it can never properly correct the model
error. However, it can be argued that significant model biases
such as this should be addressed through model development,

rather than data assimilation. It is also clear that the model is
still able to produce zooplankton and detritus fields which
are consistent with the reduction in phytoplankton. The DIC
increments (Fig. 8o) follow a very similar pattern to the nutri-
ent increments (Fig. 8l), resulting in a reduction in DIC near
the surface north of about 45◦ N, and a slight increase near
the surface south of this latitude. This is consistent with the
changes to the other variables, and is to be expected. The al-
kalinity increments (Fig. 8r) are opposite in sign and equal
in magnitude to the nutrient increments, meaning that the
changes made to alkalinity are small in comparison to typ-
ical values, and little change to the field is seen.

Because observations of most biogeochemical variables
are sparse, comparisons to climatology are required in or-
der to gain an understanding of the large-scale abilities of
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Table 2. Statistics versus HOT ALOHA and AMT
log10 (chlorophyll) (log10 (mg m−3)) observations at open ocean
points (bottom deeper than 1000 m). For comparisons to AMT
data, model values have been rounded to two decimal places before
log-transformation, as this is the precision of the observations. A
map of AMT observations used for the comparison is given in
Fig. A1d.

HOT ALOHA AMT

Control Assim Control Assim

All depths 182 observations 16040 observations

Bias 0.105 0.040 0.41 0.38
RMSE 0.545 0.516 0.82 0.71
r 0.667 0.707 0.22 0.42
sn 2.385 2.365 1.39 1.35

0–50 m 58 observations 4393 observations

Bias 0.072 0.056 0.99 0.71
RMSE 0.416 0.317 1.14 0.83
r 0.335 0.358 −0.08 0.57
sn 1.945 1.432 0.42 0.82

>50 m 124 observations 11647 observations

Bias 0.120 0.033 0.19 0.25
RMSE 0.596 0.587 0.67 0.65
r 0.727 0.771 0.27 0.40
sn 2.507 2.576 1.30 1.41

the model. The 2009 World Ocean Atlas includes a climatol-
ogy for nitrate (Garcia et al., 2010), the Global Ocean Data
Analysis Project (GLODAP) provides climatologies for DIC
and alkalinity (Key et al., 2004), andpCO2 and air–sea CO2
flux climatologies are provided by Takahashi et al. (2009).
A Taylor plot summarising comparisons between annual av-
erage surface model fields and these annual climatologies is
shown in Fig. 10. The nitrate, DIC and alkalinity climatolo-
gies are complete fields at 1◦ resolution, and have been in-
terpolated to the model grid for the comparison. ThepCO2
and air–sea CO2 flux climatologies are complete fields at 5◦

resolution and the model fields were regridded to match. In
all cases grid points with bottom depth less than 1000 m were
excluded. For DIC, alkalinity, and nitrate there is very little
difference between Control and Assim in terms of the overall
annual mean statistics. For bothpCO2 and air–sea CO2 flux
Assim has a slightly increased unbiased RMSE, but also a
slightly increased correlation. From this, it can be concluded
that the data assimilation has resulted in no major changes to
the quality of these global annual mean fields.

A zooplankton climatology is available from the Coastal
and Oceanic Plankton Ecology, Production, and Observation
Database (COPEPOD; O’Brien, 2005). This is presented as
a 2-D field at 1◦ resolution, with zooplankton biomass val-
ues standardised to a 330 µm mesh with a sampling depth
interval of 0–200 m. The climatology therefore represents

b) Assim
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Fig. 9. Mean surface zooplankton concentration (mmol N m−3) for
2008.

mesozooplankton concentration, and does not directly cor-
respond to the zooplankton variable within HadOCC, which
represents total zooplankton concentration. However, a posi-
tive correlation between HadOCC and COPEPOD zooplank-
ton may still be expected, making the comparison worth-
while. Many grid points in the COPEPOD climatology con-
tain missing data values, and so the annual average model
field was interpolated to the climatology grid, summed over
the surface 200 m, and points with no corresponding values
in the COPEPOD data set, or with bottom depth less than
1000 m, excluded. The values in COPEPOD are given in
units of mg C m−3, and were converted to the model units
of mmol N m−3 using a carbon to nitrogen ratio of 5.625,
as used in HadOCC (see Table A1). The correlation be-
tween HadOCC and COPEPOD zooplankton was found to
be−0.254 for Control, and 0.112 for Assim. These correla-
tions are low for both model runs, possibly due to the afore-
mentioned differences between the model and climatology,
but suggest that the assimilation is at least not degrading the
model zooplankton.

Comparisons have also been made to in situ observations
of nitrate from the SeaBASS database. These were taken
in the North Atlantic in April and May 2008, as shown in
Fig. A1c. Figure 11 shows quantile-quantile plots comparing
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observations at all depths to nitrate from Control, Assim and
the World Ocean Atlas 2009 climatology. The distributions
of Control and Assim are both a poor fit to the distribution
of the observations, displaying a much smaller range of val-
ues and generally overestimating low nitrate concentrations.
However, the distribution of Assim is a better match to that of
the observations than the distribution of Control is, suggest-
ing that the assimilation has improved the model’s represen-
tation of nitrate compared to the SeaBASS observations. This
is supported by the statistics shown in Table 3. Assim has a
lower bias and RMSE than Control, and a standard deviation
which is a better match to that of the observations. Control
does, however, have a higher correlation, possibly because
Assim has more variability, but this does not always match
that of the observations. As shown in Figs. 8j–l and 10, the
impact of the assimilation on the model nitrate is generally
smaller than in the region where the SeaBASS observations
were taken. Therefore comparison to a wider set of observa-
tions is required before an improvement can be conclusively
demonstrated, although this would require validation over a
longer period than the model has been run for in this study.
It is interesting to note that whilst the climatology is clearly
a better match to the SeaBASS observations than the model
runs, it also suffers from the same bias and lack of variability
as the model. It is known that the representation of nitrate in
HadOCC is degraded by the physical data assimilation, and
so if these problems are addressed it is hoped that HadOCC
can provide better predictions of nitrate concentrations than
climatology.

Observed profiles of DIC and alkalinity are available at
the HOT ALOHA site. As demonstrated by the statistics in

Fig. 11.Quantile-quantile plot versus SeaBASS nitrate for Control
(blue), Assim (red) and climatology (gold). A map of observations
used for the comparison is given in Fig. A1c.

Table 3. Statistics versus SeaBASS nitrate (mmol N m−3), HOT
ALOHA alkalinity (meq m−3), HOT ALOHA DIC (mmol C m−3)
and CARBON-OPSpCO2 (µatm) observations at open ocean
points (bottom deeper than 1000 m). 1096 nitrate, 121 alkalinity,
127 DIC and 915pCO2 observations were used in the comparisons,
and maps of the SeaBASS and CARBON-OPS data are given in
Fig. A1c and Fig. A1e, respectively.

Bias RMSE r sn

Nitrate Control 3.309 4.717 0.677 0.104
Assim 2.477 4.088 0.478 0.272

Climatology 2.469 3.580 0.751 0.449

DIC Control −34.608 38.132 0.996 0.948
Assim −34.708 38.166 0.996 0.949

Alkalinity Control −36.384 37.849 0.986 1.097
Assim −36.425 37.876 0.986 1.096

pCO2 Control 50.425 74.995 0.221 1.185
Assim 44.472 73.622 0.259 1.340

Table 3, for both variables there is very little difference be-
tween Control and Assim, showing the assimilation to have
little impact on the carbon cycle at this location. Assim has a
marginally higher bias and RMSE than Control, but this dif-
ference is negligible. In each case the model already provides
a very good fit to the observations with Control having a cor-
relation of 0.996 and a median percentage error of−1.653 %
for DIC, and a correlation of 0.986 and a median percentage
error of−1.510 % for alkalinity.
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In situ observations of sea surfacepCO2 were obtained
from the British Oceanographic Data Centre (BODC) as part
of the CARBON-OPS project (Hardman-Mountford et al.,
2008). Table 3 shows statistics comparing each model run
to these observations, which were quality controlled and de-
livered in NRT from the RRS James Clark Ross, a novel
feature of the project. Although the observations have un-
dergone automatic rather than full quality control, a conser-
vative error estimate of 15 µatm (N. Hardman-Mountford,
personal communication, 2012) is within the model errors
shown in Table 3. Both Control and Assim show a poor rep-
resentation ofpCO2, with values too high across most of the
ocean. However, compared to the CARBON-OPS observa-
tions, Assim shows an improved representation, with lower
bias and RMSE, and higher correlation (although a worsened
normalised standard deviation). This suggests that the assim-
ilation may be improving the carbon cycle within the model,
which would make it more suitable for monitoring air–sea
carbon fluxes.

7 Summary and discussion

The study presented here aimed to assess the impact of as-
similating GlobColour ocean colour data into the FOAM-
HadOCC coupled physical-biogeochemical model. Daily av-
eraged merged chlorophyll data were quality controlled and
assimilated using the analysis correction technique, with the
chlorophyll increments used to update all biogeochemical
state variables at all depths. The assimilation considerably
improved the bias, RMSE and correlation with the Glob-
Colour observations compared to a control run. This im-
provement was immediate, and sustained over the entire year
and in every ocean basin. Errors against independent in situ
observations were also reduced, although climatology pro-
vided a better representation. The improvement was great-
est at the surface, but also occurred at depth. Furthermore,
there were consistent changes in other biogeochemical vari-
ables, particularly phytoplankton, zooplankton and detritus.
The assimilation did not degrade the other model variables,
and there was evidence of improvement in some instances,
although an overall improvement was not demonstrated. An-
nual mean surface fields of nitrate, DIC, alkalinity,pCO2 and
air–sea CO2 flux were of similar quality compared to clima-
tology in both runs. There were also reduced errors against in
situ observations of nitrate andpCO2, but too few data were
used to be able to draw broader conclusions about model
skill.

The biological assimilation scheme (Hemmings et al.,
2008) is designed to be computationally efficient. The av-
erage time taken to run FOAM-HadOCC for a day was
306 s for the control run, and 318 s for the assimilation run
(both of which assimilated physical data). This represents
an increased computational cost of 4 %, which compares

favourably to commonly used techniques, such as the ensem-
ble Kalman filter (Evensen, 1994).

Since June 2009 FOAM-HadOCC has been running daily
on a pre-operational basis. This mimics the operational
FOAM suite (Storkey et al., 2010). Each day the latest Glob-
Colour merged product is downloaded and processed by the
OPS. This is assimilated by FOAM-HadOCC and an analysis
and six-day forecast produced. Verification of these forecasts
is outside the scope of this paper and will be addressed in
future publications.

The NRT GlobColour products are typically available by
14:00 UTC the day after the observations are valid, and the
system runs shortly after this time. The availability of these
products has been found to be sufficiently reliable for op-
erational purposes, with the products successfully down-
loaded on approximately 89 % of days over the period 1 Au-
gust 2009–31 July 2011. MyOcean implemented availabil-
ity monitoring in October 2010, and over the following year
the GlobColour products were found to be made available on
time on 95 % of days. This is comparable to the reliability
of remotely sensed SST products provided by the Group for
High Resolution Sea Surface Temperature (GHRSST). Don-
lon et al. (2012) found different GHRSST products to be suc-
cessfully delivered on 88–98 % of days over a four-year pe-
riod. On some of the days when the GlobColour products
were not successfully downloaded or assimilated, this was
due to technical problems inherent in the pre-operational na-
ture of the system. A fully operational system would be more
robust and this would not be an issue. On other occasions the
products were not made available on time by GlobColour.
Reasons for this include outages of the GlobColour servers
and delayed transmission of the satellite data by the data
providers.

During July 2009, products from FOAM-HadOCC were
automatically provided to the GlobColour team on a daily
basis via File Transfer Protocol (FTP). These products were
images of chlorophyll and primary productivity covering
the analysis and each day of the forecast. This successfully
demonstrated the full end-to-end capability of the system, us-
ing the GlobColour products to automatically provide prod-
ucts for a customer on an operational-style basis.

A number of conclusions and recommendations can be
drawn from this work. The assimilation of GlobColour data
has been demonstrated to improve the quality of a coupled
physical-biogeochemical model, and its use should be pro-
moted in the delivery of both NRT operational-style sys-
tems and reanalyses. Observations should continue to be pro-
duced in NRT and the sooner after the observation time these
are available the better. For example, the current operational
FOAM suite runs at 05:00 UTC each day and so, for full use
to be made of observations, they need to be available before
this time.

Whilst data assimilation has demonstrated the ability to
improve the quality of model output, significant focus must
still be given to developing the underlying model. As shown
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in Fig. 4, there are large biases which need to be addressed,
as these currently prevent the assimilative system from be-
ing consistently more accurate than climatology. Some of
these biases result from the physical data assimilation, which
demonstrably improves the physical variables, but can create
spurious mixing which degrades the biogeochemistry. Others
result from deficiencies with the biogeochemical model. It is
planned to address both these issues as a high priority. Poten-
tial improvements to the model could come from better pa-
rameterising the growth, mortality and grazing rates of phy-
toplankton and zooplankton, either through changes to the
model equations, or tuning of the current model parameters.
A more complex light model could be implemented, in or-
der to explicitly resolve the diurnal cycle, and the same light
model used for both the physics and biogeochemistry. The
effect of increasing horizontal and vertical resolution could
also be investigated, as well as changes to ecosystem model
complexity (for instance the inclusion of iron and oxygen).

The multivariate aspect of both this and other chlorophyll
assimilation schemes should be a priority for future assimila-
tion development. The scheme presented here has succeeded
in maintaining, and in some cases improving, the quality
of the other variables. However, greater success could come
from the use of data assimilation for simultaneous state and
parameter estimation. As well as updating the model vari-
ables, giving an improved representation of the current state,
the assimilation could also alter tuneable model parameters,
thereby changing the model trajectory in order to reduce bi-
ases. Furthermore, the assimilation could also be integrated
with the assimilation of other biogeochemical variables, such
aspCO2. It could also be fully integrated with the physical
assimilation, such that temperature and other factors directly
influence the chlorophyll increments, and potentially vice
versa, ensuring the physics and biogeochemistry are consis-
tent.

This study has made use of merged, daily averaged level
three chlorophyll observations. However, it is typically pre-
ferred to use level two (Blower et al., 2009) or level three
uncollated (GHRSST Science Team, 2010) observations for
data assimilation. These do not merge information from dif-
ferent sensors, and contain the exact time of each observa-
tion. This allows the observation operator to compare model
and observation values at the observed time, rather than an
arbitrary time, thus providing a more accurate comparison
which accounts for the diurnal cycle. Furthermore, the errors
of the different sensors are handled separately, so the error
characteristics of each observation should be known more
accurately. This is important for both data assimilation and
quality control, as well as allowing bias correction schemes
to be devised. A future publication will compare the assim-
ilation of the level three merged products to the equivalent
level three uncollated products in FOAM-HadOCC, and it is
suggested that the routine production of such products would
be potentially beneficial for data assimilation. If these were
produced in NRT, then they could also be made available

with less of a delay than the daily averaged products. How-
ever, better use of the merged data could also be made by
the data assimilation. For example, the observation operator
could compare the daily mean observations to a daily mean
model field, or perform the comparison at local noon rather
than model noon.

To extend the work presented here, multi-year reanalyses
will be performed with and without assimilation, and be used
to investigate inter-annual variability. Furthermore, biogeo-
chemical forecasts produced by the system will be assessed,
to investigate whether the assimilation allows forecasts to be
produced that are more skilful than persistence or climatol-
ogy.

Appendix A

Table A1. List of parameters used in the HadOCC model.

Parameter Value

C : N ratio for phytoplankton 6.625
C : N ratio for zooplankton 5.625
C : N ratio for detritus 7.5
Maximum photosynthetic rate 1.5 day−1

Initial slope of photosynthesis-irradiance curve 0.055 (W m−2)−1 day−1

Half-saturation concentration for nutrient up-
take

0.1 mmol N m−3

Phytoplankton specific respiration 0.05 day−1

Concentration-dependent phytoplankton spe-
cific mortality

0.05 day−1

(mmol N m−3)
Maximum grazing rate 0.8 day−1

Half-saturation concentration for grazing 0.5 mmol N m−3

Grazing threshold 0.01 mmol N m−3 day−1

Assimilation efficiency for zooplankton 0.9
Assimilation efficiency for detritus 0.65
Base zooplankton specific mortality 0.05 day−1

Concentration-dependent zooplankton specific
mortality

0.3 day−1

Remineralisation rate 0.1 day−1

(depth< 100 m)
8.58 depth−1 day−1

(depth> 100 m)
Detrital sinking velocity 10.0 m day−1

Carbonate precipitated per unit primary produc-
tion

0.013

Minimum carbon to chlorophyll ratio 20.0
Maximum carbon to chlorophyll ratio 200.0
Fraction of grazed material ingested 0.77
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Fig. A1. Locations and months of in situ observations used from SeaBASS, CARBON-OPS and AMT.
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providing the data. HOT ALOHA data were obtained from
http://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html. For
contributing data to SeaBASS the authors thank Frank Muller-

Karger and the team at the Institute for Marine Remote Sensing,
University of South Florida, and Ramon Varela and Yrene Astor
and their team at the Fundacion La Salle de Ciencias Naturales
de Venezuela, for the bio-optical and other oceanographic data
collected at the CARIACO Ocean Time Series; E. D’Asaro,
I. Cetinic, K. Fennel, C. M. Lee, and M. J. Perry for collecting
data as part of the North Atlantic Bloom Experiment 2008, with
support from US National Science Foundation (OCE-0628107 and
462 OCE-0628379) and NASA (NNX-08AL92G); the Bermuda
Bio-Optics Project (BBOP); and the SEA Semester program run
by Sea Education Association. The authors would also like to
thank Ian Totterdell for help with HadOCC; John Hemmings for
discussions about the data assimilation scheme and for generating
Fig. 1; Mike Bell for comments on the draft manuscript; and
Anna Teruzzi and two anonymous reviewers for their comments in
Ocean Science Discussions.

Edited by: P. Brasseur

Ocean Sci., 8, 751–771, 2012 www.ocean-sci.net/8/751/2012/

http://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html


D. A. Ford et al.: Assimilating GlobColour ocean colour data 769

References

Allen, J. I., Eknes, M., and Evensen, G.: An Ensemble Kalman Fil-
ter with a complex marine ecosystem model: hindcasting phy-
toplankton in the Cretan Sea, Ann. Geophys., 21, 399–411,
doi:10.5194/angeo-21-399-2003, 2003.

Anderson, L. A., Robinson, A. R., and Lozano, C. J.: Physical and
biological modeling in the Gulf Stream region – Part 1: Data
assimilation methodology, Deep-Sea Res. Pt. I, 47, 1787–1827,
2000.

Anderson, T. R.: A spectrally averaged model of light penetration
and photosynthesis, Limnol. Oceanogr., 38, 1403–1419, 1993.

Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the
on-orbit validation of ocean color satellite data products, Remote
Sens. Environ., 102, 12–23, 2006.

Barnes, C., Irigoien, X., De Oliveira, J. A. A., Maxwell, D., and
Jennings, S.: Predicting marine phytoplankton community size
structure from empirical relationships with remotely sensed vari-
ables, J. Plankton Res., 33, 13–24, 2011.

Berger, H., Langland, R., Velden, C. S., Reynolds, C. A., and
Pauley, P. M.: Impact of enhanced satellite-derived atmospheric
motion vector observations on numerical tropical cyclone track
forecasts in the Western North Pacific during TPARC/TCS-08, J.
Appl. Meteorol. Clim., 50, 2309–2318, 2011.

Berx, B., Dickey-Collas, M., Skogen, M. D., De Roeck, Y.-H.,
Klein, H., Barciela, R., Forster, R. M., Dombrowsky, E., Huret,
M., Payne, M., Sagarminaga, Y., and Schrum, C: Does opera-
tional oceanography address the needs of fisheries and applied
environmental scientists?, Oceanography, 24, 166–171, 2011.
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Brown, J., Dye, S., Blackford, J., Somerfield, P., Holt, J., Hydes,
D. J., and Aiken, J.: An operational monitoring system to pro-
vide indicators of CO2-related variables in the ocean, ICES J.
Mar. Sci., 65, 1498–1503, 2008.

Hemmings, J. C. P., Srokosz, M. A., Challenor, P., and Fasham,
M. J. R.: Split-domain calibration of an ecosystem model using
satellite ocean colour data, J. Marine Syst., 50, 141–179, 2004.

Hemmings, J. C. P., Barciela, R. M., and Bell, M. J.: Ocean
color data assimilation with material conservation for improving
model estimates of air–sea CO2 flux, J. Mar. Res., 66, 87–126,
2008.

Hollingsworth, A. and L̈onnberg, P.: The statistical structure of
short-range forecast errors as determined from radiosonde data
– Part I: The wind field, Tellus A, 38, 111–136, 1986.

Hooker, S. B., Esaias, W. E., Feldman, G. C., Gregg, W. W., and Mc-
Clain, C. R.: An overview of SeaWiFS and ocean color, NASA
Tech. Memo., Vol. 104566, National Aeronautics and Space
Administration, Goddard Space Flight Center, Greenbelt, MD,
1992.

Hoteit, I., Triantafyllou, G., Petihakis, G., and Allen, J. I.: A singu-
lar evolutive extended Kalman filter to assimilate real in situ data
in a 1-D marine ecosystem model, Ann. Geophys., 21, 389–397,
doi:10.5194/angeo-21-389-2003, 2003.

Hoteit, I., Triantafyllou, G., and Petihakis, G.: Efficient data assimi-
lation into a complex, 3-D physical-biogeochemical model using
partially-local Kalman filters, Ann. Geophys., 23, 3171–3185,
doi:10.5194/angeo-23-3171-2005, 2005.

Ingleby, B. and Huddleston, M.: Quality control of ocean tempera-
ture and salinity profiles – historical and real-time data, J. Marine
Syst., 65, 158–175, 2007.

Ingleby, N. B. and Lorenc, A. C.: Bayesian quality control using
multivariate normal distributions, Q. J. Roy. Meteor. Soc., 119,
1195–1225, 1993.

Ishizaka, J.: Coupling of Coastal Zone Color Scanner data to
a physical-biological model of the southeastern United-States
continental-shelf ecosystem – Part 3: Nutrient and phytoplankton
fluxes and CZCS data assimilation, J. Geophys. Res., 95, 20201–
20212, 1990.

Kalnay, E.: Atmospheric modeling, data assimilation and pre-
dictability, Cambridge University Press, Cambridge, 2003.

Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R.,
Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng,
T.-H.: A global ocean carbon climatology: Results from Global
Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18,

GB4031,doi:10.1029/2004GB002247, 2004.
Le Traon, P.-Y., Larnicol, G., Guinehut, S., Pouliquen, S., Bentamy,

A., Roemmich, D., Donlon, C., Roquet, H., Jacobs, G., Griffin,
D., Bonjean, F., Hoepffner, N., and Breivik, L.-A.: Data assem-
bly and processing for operational oceanography: 10 years of
achievements, Oceanography, 22, 56–69, 2009.
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