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Abstract. A numerical model is used to investigate the res-
onances of the Gulf of Carpentaria and the Arafura Sea, and
the additional insights that come from extending the analysis
into the complex angular velocity plane. When the model is
forced at the shelf edge with physically realistic real values of
the angular velocity, the response functions at points within
the region show maxima and other behaviour which imply
that resonances are involved but provide little additional in-
formation. The study is then extended to complex angular
velocities, and the results then show a clear pattern of grav-
ity wave and Rossby wave like resonances. The properties
of the resonances are investigated and used to reinterpret the
response at real values of angular velocity. It is found that
in some regions the response is dominated by modes trapped
between the shelf edge and the coast or between opposing
coastlines. In other regions the resonances show cooperative
behaviour, possibly indicating the importance of other phys-
ical processes.

1 Introduction

Observational studies of the tides and the success of the stan-
dard method of tidal prediction show that although non-linear
effects are present, the response of the ocean to tidal forc-
ing is predominantly linear. In terms of understanding ocean
physics, this is important because it means that we can make
use of the theory of linear operators. Such an approach has
been very successful in the development of many other areas
of physics.

One of the theory’s main results is that the response of lin-
ear systems can be expressed in terms of a Green’s function
(Webb, 1973b), and that this is an analytic function of an-

gular velocity with poles at the eigenvalues or resonances of
the system. The response to a particular forcing, the response
function, has similar properties. The residue at its poles has
a spacial structure proportional to the corresponding eigen-
function and an absolute magnitude depending on how well
the mode is excited by the forcing.

If the system is frictionless, the poles lie on the real axis,
but if friction is present, they move off the real axis into the
negative imaginary half of the complex plane. The distance
from the real axis then equals the decay rate of the reso-
nances.

The theory was used byZahel and M̈uller (2005) and
Müller (2007) to investigate the resonances of the global
ocean. Their results using a one degree model show that be-
tween the diurnal and semi-diurnal tides the resonances have
a separation of about 0.3 radians per day1, and that the imag-
inary components range between−0.13 and−0.6 radians
per day with an average around−0.3 radians per day, cor-
responding to a decay time of about three days.

This decay time, which corresponds to an energy decay
time of 36 h, is slightly longer than the observational evi-
dence which indicates an energy decay time of less than 30 h
(Miller , 1966; Garrett and Munk, 1971; Webb, 1973a; Egbert
and Ray, 2003). However, although a resolution of one de-
gree is sufficient to resolve many features of the deep ocean
basins, where tidal wavelengths are large, it is insufficient for
many of the details of continental shelves, where the wave-
lengths are much shorter.

1To make the connection with the tides clearer this paper uses
the “practical” units of radians per day. In these units the diurnal
tides lie near 2π radians per day and the semi-diurnal tides near 4π

radians per day.
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This is critical because a large fraction of the energy of the
tides is lost on continental shelves, especially those which
are about a quarter of a wavelength wide.Webb(1976) used
a simplified model to show that quarter wavelength reso-
nances are very effective at coupling such shallow shelves to
the deep ocean. Other studies using analytic and simplified
numerical models includeWebb(1976, Appendix 2),Webb
(1982), Arbic et al.(2009) andArbic and Garrett(2010).

Observational evidence indicates that the English Channel,
Hudson Strait, the Argentinian Shelf and the NW Australian
Shelf are all regions where there are both significant amounts
of tidal dissipation and quarter wavelength resonances.Zahel
and Müller (2005) show energy being lost around the British
isles and on the Argentinian shelf but very little being lost
in the other two regions. This is probably because the model
does not fully represent the geometry of such regions.

If this is true, then the shallow continental shelves will
contribute extra modes to the tidal bands. The result will be
a greater density of modes and more overlapping modes than
was found in their model.

Other studies have investigated the effect of resonances on
the ocean but with timestepping models limited to real values
of angular velocity.Griffiths and Peltier(2008, 2009) have
investigated the effect of changes in sea level on a global
ocean and have shown that both the Arctic Ocean and Antarc-
tic coastline may become resonant during an ice age. A re-
lated study byGreen(2010) concluded that increased tidal
amplitudes at the last glacial maximum was due to reduced
damping of the deep ocean resonances.

The effects of resonances of a global model were also in-
vestigated byArbic et al.(2009) in a study stimulated by the
results of a simple model coupling a shelf mode with one in
the deep ocean. They found, as didWebb(1976), that even
when the angular velocities match, the coupling is strong
only when the impedance of the shelf matches the impedance
of the deep ocean.

There have also been many studies of known continental
shelf resonances using limited area models. Early ones in-
clude the study byDuff (1970) of the Bay of Fundy andFong
and Heaps(1978) study of the Bristol Channel. More re-
cently,Arbic et al.(2007) investigated the shelf resonances of
Hudson Strait and Ungava Bay using a time stepping model.
They first estimated the position of a resonance by fitting a
simple pole to the solution calculated at three nearby real an-
gular velocities. A more accurate estimate was then obtained
by letting this solution freely oscillate and decay.

The present paper takes a different approach to these pa-
pers, in that its main concern is with the overall structure
of the response function as a function of complex angular
velocity. It concentrates on a realistic section of continental
shelf and uses the theory of linear operators to calculate the
eigenvalues and eigenfunctions of each resonance and to in-
vestigate how they combine to generate the actual response
at real values of angular velocity.

However, before doing this the paper first investigates
what can be learnt by limiting the calculations themselves
to real angular velocities. When this is done, the responses
at different locations show evidence of shelf resonances, but
the resonance contributions overlap so that it is difficult to ex-
tract quantitative information from the data or to obtain any
additional insights.

In contrast, when the calculations are extended to com-
plex angular velocities, the resulting three-dimensional fig-
ures show a rich pattern of resonances in the neighbourhood
of the tidal bands. The analytic properties of the response
function can then be used to accurately determine the reso-
nance eigenvalues and eigenfunctions, and the results used
to learn about their physical properties and to study how they
interact.

The numerical model used is a linear one similar to that of
Zahel and M̈uller (2005). The justification for making such
a choice is that, as mentioned previously, almost everywhere
in the world the non-linear terms in the barotropic tide, due
to friction, inertia and internal tides, are small. In addition,
any discussion of resonances is really only valid for physical
systems that can be treated as approximately linear.

The area of study chosen covers the Gulf of Carpentaria
and the Arafura Sea. This has been done because, firstly, it
enables the use of a model which has been validated in a
study of both the diurnal and semi-diurnal tides of the region
(Webb, 1981). Thus the model should give good results over
the whole band of frequencies around one and two cycles per
day.

Secondly, it is a large continental shelf. It therefore might
be expected to show many of the resonance features to be
found elsewhere. PreviouslyBuchwald and Williams(1975)
investigated the resonances of the region using a simpler
model, and it is also of interest to compare results from the
two types of model.

Thirdly, related to point two, tidal observations indicate
that the northern Arafura Sea supports both quarter and three-
quarter wavelength resonances. Tidal heights are smaller
than those found in the classic resonance regions, such as the
Bay of Fundy and the Bristol Channel, but it does provide an
opportunity to learn more about such resonances.

Finally, the original model code (Webb, 1981) is not lim-
ited to studies with real angular velocities but, like that used
by Zahel and M̈uller (2005), allows a full investigation of the
complex angular velocity plane.2.

The results reported here show that by extending the anal-
ysis to complex values of angular velocity, it is possible to
obtain new insights and obtain a better understanding of the
way resonances influence the tides. Such an approach pro-
vides a more accurate description of the spatial structure of

2The present model was used in a similar way byGrignon(2005)
to study a simplified representation of the English Channel. It is
hoped that a follow up study using a more realistic model of the
region will be published soon.
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each resonance and makes it easier to separate off the effect
of nearby resonances in the overall response of the ocean.

2 The numerical model

A numerical model is used to solve Laplace’s tidal equations.
In vector notation and with a linear friction term these are:

∂u/∂t + f × u + (κ/h)u + g∇ζ = g∇ζeq, (1)

∂ζ/∂t + ∇ · (hu) = 0 .

u is the depth averaged horizontal velocity,t is time, ζ the
sea level,ζeq the height of the equilibrium tide (corrected for
Earth tides),g the acceleration due to gravity,κ the linear
friction coefficient,h the depth, and “×” indicates a vector
product. The Coriolis vectorf is defined by:

f = 2�cos(θ)nz , (2)

where � is the Earth’s rotation rate,θ the co-latitude,
andnz the unit vertical vector. The equations are obtained
by integrating the full equations of motion in the vertical
and neglecting the vertical acceleration, non-linear and self-
attraction terms.

Equation (1) is linear, so the general solution for a given
forcing can be written as a linear combination of solutions of
the form:(

u(t)

ζ(t)

)
= <[

(
u

ζ

)
exp(−iωt)] , (3)

whereω is the angular velocity, and< represents the real part
of the complex expression.

If we defineP andQ as

P = g(iω− κ/h)/[(iω− κ/h)2 + f 2
] , (4)

Q = f /[(iω− κ/h)2 + f 2
] ,

then

u = (P + Q×)∇ζ ′ , (5)

where

ζ ′
= ζ − ζeq . (6)

Substituting foru in Eq. (1),

hP∇
2ζ ′

+ [∇(hP )+ ∇ × (hQ)] · ∇ζ ′

1

−iωζ ′
= −iω ζeq . (7)

This is the equation that is solved numerically in the model.
At coastlines the normal component of velocity is zero as

the model depth there is required to be non-zero. Ifnc is the
unit vector normal to the coast, then from Eq. (5):

(P + Q×)∇ζ ′
· nc = 0 . (8)

On the open boundary the amplitude and phase of the in-
coming wave needs to be specified. In terms of the classi-
fication of differential equations, this corresponds to using
Dirichlet boundary conditions.

Fig. 1. Plan of the study area, showing the smoothed coastline
used in the numerical model.◦ Tidal station used to determine the
open boundary conditions.• Other tidal stations. Depth contours are
shown as dotted lines. Islands whose coastlines are not represented
in the model are replaced by water of depth 2.5 m.

3 Numerical solution

In the numerical model, the spherical co-ordinate form of
Eq. (7) is replaced by a set of finite difference equations at
the vertices of a rectangular grid, using a grid spacing of
one eighth of a degree. The boundary condition, Eq. (8), is
applied at points where the grid intersects coastlines, the fi-
nite difference equations taking into account both the angle
between the coastline and the grid and the curvature of the
coastline. Both coastline and depths were taken from Admi-
ralty charts of the region.

In the original model (Webb, 1981), observed values of
the tidal height were imposed on the open boundaries to the
west of the Arafura Sea and on the eastern side of Torres
Strait. For the new study reported here, the wave entering the
region from the west is assumed to have unit amplitude and
constant phase all along the western boundary. In the east,
Torres Strait is now blocked.

The use of a constant phase in the west is partly justified
by the fact that the phase speed in the deep water along the
boundary is large. As a result both the M2 and K1 tides have,
to a first approximation, constant amplitude and phase along
the western boundary. Also, as Dirichlet boundary conditions
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Fig. 2. Computed co-amplitude and co-phase lines for the K1
tide in the Gulf of Carpentaria and Arafura Sea. Observed ampli-
tudes and phases, shown in the square boxes, are taken fromEaston
(1988) and from the Admiralty Tide Tables (Anon, 1971).

are used, the resonance eigenvalues and eigenfunctions are
independent of the forcing used for the model.

In the east the original tidal study (Webb, 1981) showed
that the amount of tidal energy entering through Torres Strait
is small and has little effect on the tides within the Gulf. This
might be expected given large differences in tidal phase be-
tween the opposite ends of the strait (Anon, 1971) and is con-
firmed by the observations ofWolanski et al.(1988). Thus,
the decision to simplify the analysis by blocking Torres Strait
should have little effect on the large-scale response of the
Gulf region.

The coefficients resulting from the finite difference equa-
tions are loaded into a sparse matrix and the associated forc-
ing terms into a corresponding vector. The full matrix equa-
tion is then solved using Gaussian elimination and back sub-
stitution, the numbering of the vertices being organised to
minimise the size of the intermediate matrix. Further details
of the model and solution are given inWebb(1981).

4 The behaviour at tidal frequencies

Figures2 and 3, reproduced fromWebb (1981), show the
original model’s solution for the K1 and M2 tides. In the fig-
ures, the amplitude and phase lines are from the model and

Fig. 3. Computed co-amplitude and co-phase lines for the M2
tide. Observed amplitudes and phases, shown in the square boxes,
are taken fromEaston(1988) and from the Admiralty Tide Tables
(Anon, 1971).

the boxed figures show the same quantities measured at tide
gauges. There are discrepancies, but they are relatively small.
Wolanski(1993) later analysed the tides of the region, mak-
ing use of additional current meter data, and found similar
tidal patterns. The main difference was for the K1 tide, where
the centre of the amphridrome was located 100 km further
north.

The present model results for the K1 amplitude and phase
lines indicate that, to a first approximation, the diurnal tide
propagates along the northern boundary as a Kelvin wave
and that it then circles clockwise around the Gulf of Car-
pentaria losing energy on the way. However, a simple decay-
ing Kelvin wave would have an amplitude which declined
monotonically with distance. Instead, the model shows four
regions where the amplitude at the coast is a local maximum.

Three of these, in corners of the Gulf may result from the
Kelvin wave propagating around a nearly right-angled cor-
ner. The fourth, in the north-east of the Arafura Sea, near
138◦ E, 7◦ S, could be associated with a quarter wave reso-
nance between the Digoel River3 and the shelf edge.

In contrast, the semi-diurnal M2 tide shows no simple re-
semblance to a Kelvin wave. In the north of the Arafura Sea,
there appears to be a 3/4 wavelength wave, trapped between

3For locations see Fig. 1.
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Fig. 4. Real and Imaginary components of the response functions between zero and 30 radians per day for Digoel River (blue), Karumba
(red) and Yaboomba Island (green). Vertical lines mark the angular velocities corresponding to the K1 (6.30 radians day−1) and M2
(12.14 radians day−1) tides.

the shelf edge and the Digoel River. There are two additional
maxima in the south of the Arafura Sea and the north of the
Gulf, which may be related, and a low amplitude east–west
oscillation in the centre and south of the Gulf.

These results emphasise the fact that individual tidal con-
stituents give little insight into the physical processes in-
volved. It is possible to repeat the analysis with other tidal
constituents, but the tidal bands are so narrow that little more
can be learnt.

However, in the present case the model is not limited to the
tidal bands. It can be forced with a wide range of frequencies
and so provide a wealth of additional information.

5 The response function

Using the new boundary conditions, the model was run at a
series of frequencies between zero and 30 radians per day
(∼ 4.8 cycles per day). It is impractical to show co-tidal
charts for all the frequencies calculated, so instead Figs. 4
to 7 show the responseR at three stations which have been
selected to illustrate a range of behaviour.R is defined as

R(x)= ζ(x)/ζb , (9)

whereζ(x) is the (complex) tidal height at positionx, andζb
is the tidal height on the open boundary.

The first station is near Digoel River in the north of the
Arafura Sea where both the diurnal and semi-diurnal tides
indicate the presence of standing waves. The second is near
Karumba in the south-east of the Gulf of Carpentaria. Res-
onances do not appear to be a key feature of the region,
but there is a strong contrast between the diurnal and semi-
diurnal tides. The final point is near Yaboomba Island on the
southern boundary of the Arafura Sea. The diurnal tide ap-
pears as a simple progressive wave along the coast, but the
semi-diurnal tide appears to be affected by a resonance.

The results are presented here in three different ways. The
first, in terms of the real and imaginary components ofR,

is the most fundamental and is closely related to the later
exploration of the complexω plane. The second, in terms
of the amplitude and phase, is easier to relate to the physics,
and this is also true of the third, where the real and imaginary
components are plotted against each other.

5.1 Real and imaginary components

Figure4 shows the real and imaginary components of the re-
sponse function at each station. As the angular velocity tends
to zero, all the real values tend to unity and the imaginary
values to zero, indicating that the tide everywhere follows
that on the open boundary. As the angular velocity increases,
the functions diverge, with the Digoel River showing the
largest amplitude excursions. At Karumba the components
have much smaller excursions, especially at higher angular
velocities. Neighbouring maxima and minima are also much
closer than for Digoel River.

At Yaboomba Island the oscillations in the real and imagi-
nary components at low angular velocities are less than at the
two other stations. However, near 11.5 radians per day there
is a change in sign of the real component and a maximum
in the imaginary component, after which both components
show oscillations comparable with those of Digoel River.

5.2 Amplitude and phase

Figure5 re-plots this data in the form of the amplitude and
phase of the response. The amplitudes are all one at zero an-
gular velocity, but at higher values the behaviour is very dif-
ferent. Thus, over most of the range the Digoel River ampli-
tude is above two; it also shows very strong peaks near 7 and
14 radians per day and a weaker broader one near 27 radians
per day.

The Karumba amplitude shows a small peak near 1.5 radi-
ans per day, a second one near 6 radians per day, but at higher
angular velocities the amplitude is much reduced. There is a
broad low peak around 13 radians per day and a further one

www.ocean-sci.net/8/733/2012/ Ocean Sci., 8, 733–750, 2012
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Fig. 5. Amplitude and Phase of the response functions between zero and 30 radians per day for Digoel River (blue) , Karumba (red) and
Yaboomba Island (green).

around 30 radians per day, but these are modulated by some
structure which may be correlated with the Yaboomba Island
response.

The Yaboomba Island station shows a third type of re-
sponse. It starts low, and there is a small maximum near
5.5 radians per day, but after a second maximum near 11.5 ra-
dians per day, the amplitude stays high and is comparable to
that at Digoel River.

The phase plots provide a different insight, in that each of
the three curves tends to have a constant slope over all of
the frequency range considered. There are changes in slope
on the scale of the width of the peaks in the amplitude plot,
but except for these features the slope remains remarkably
constant.

One possible way to understand this behaviour is to con-
sider the response of a simple travelling wave,

ψ = Aexp(ikx− iωt) . (10)

Assume that the wave speed is constant so that thek equals
ω/c. Then, if this wave is “forced” so that it has amplitude
one at the “boundary” wherex is zero, then at distancex, the
responseR will be simply:

R(ω) = exp(ikx) , (11)

= exp(i(x/c)ω) . (12)

In this case the gradient of the phase equalsx/c, the time
taken for the wave to propagate from the boundary. Appendix
B considers the case of a channel where the depth is not con-
stant. This also shows that the phase is a linear function ofω

with the slope again depending on the propagation time.
Applying this result to the phases of Fig.5, it implies that

on average incoming waves take about five hours to reach the
Yaboomba Island from the open boundary, about ten hours to
reach Digoel River and twenty-one hours to reach Karumba.
The figures for Yaboomba Island and Karumba are in rough
agreement for what might be expected from the phase lines
of Figs. 2 and3. These indicate that, above 10 radians per

day, the tidal wave takes about four hours to reach Yaboomba
Island and eighteen to twenty-four hours to reach Karumba.

Estimates for Digoel River are complicated by the stand-
ing waves affecting the semi-diurnal tide, but the diurnal tide
indicates about four hours, which is much less than the ten
hours estimated from Fig.5. Thus, the simple idea of a pro-
gressive wave appears to be too simple, and an alternative
picture needs to be developed.

5.3 Resonance circles

Webb(1973b) discusses the form of the ocean’s response to
tidal forcing and shows that it has the form:

ψ(x,ω)=

∑
j

ψj (x)Aj/(ω−ωj ) , (13)

wherex denotes position,ω is the angular velocity, and the
eigenvalueωj is the angular velocity of thej -th resonance.
The eigenfunctionψj (x) describes the spacial structure of
the resonance, andAj depends on how the system is forced.

If the resonances are well separated, then near to each res-
onance the function at a fixed position has the form:

ψ(ω) = Rj/(ω−ωj )+B(ω) . (14)

whereB(ω) is a smooth background, the contribution of dis-
tant resonances.

Letωj have real and imaginary partsωj0 andγj . In phys-
ically realistic systems with friction,γj is negative. Asω
moves along the real axis from minus to plus infinity, the res-
onance term increases from zero to a value ofiRj/γj when
ω equalsωj0, and returns to zero at plus infinity. It is straight-
forward to show (Webb, 2011) that as this happens the real
and imaginary components move anti-clockwise around a
circle that starts at the origin and passes throughiRj/γj at
maximum distance from the origin.

Thus, it may be possible to identify resonances in obser-
vations or model results by plotting the real and imaginary
components against each other and searching for clockwise
circular features. However, ifB(ω) is rapidly varying this
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Fig. 6. Polar diagram showing the response functions between zero
and 30 radians per day for Digoel River (blue), Karumba (red) and
Yaboomba Island (green). The crosses are at intervals of 10 radians
per day.

may be difficult. In particular, circles are also produced by
delays, such as those produced by the propagation of pro-
gressive waves discussed in the last section, but in such cases
the circles are centred on the origin.4

To see how well the approach works for the present results,
the real and imaginary components are plotted against each
other in Fig.6. All three curves start at the point(1.0+ i0.0)
and circle around the origin in an anti-clockwise direction.
However, although it is apparent that there are some underly-
ing structures present in all three curves, only the Yaboomba
Island curve shows anti-clockwise circles, and these are both
very small and only occur at low angular velocities.

The main feature of the Karumba curve is that it circles
the origin, initially at approximately unit distance, but finally
it converges towards the origin. Thus, as discussed before it
appears to be primarily a progressive wave which is damped
at higher angular velocities.

The Digoel River curve also circles the origin but at a dis-
tance which is much greater than one, so this cannot be a
simple delay. However, in the absence of an alternative ex-
planation, it is possible that the resonances which produce
the peaks of Fig.5 are overlapping or combining in such a
way as to produce an effective delay.

Figure7 shows an attempt to remove the background by
adding a linear correction to the phases, such that the total
phase change over the whole band is zero. The transforma-
tion distorts the resonance circles, the distortion being pro-

4In terms of the resonance picture, a progressive wave is the
cumulative result of many overlapping resonances.
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Fig. 7. Polar diagram showing the modified response functions (see
text) between zero and 30 radians per day. Colours as in Fig.6. The
crosses are at intervals of 10 radians per day.

portional to the width of the resonance and the magnitude of
the linear correction (greatest for Karumba), but the effect is
small when the resonances are narrow.

Now all three stations show a series of loops with a posi-
tive (anti-clockwise) curvature, as expected from resonances.
Karumba and Yaboomba Island both show some small kinks
with negative curvature, but these will have been produced
by the transformation.

5.4 Analysis of real data

The results of this section show that analysis based on results
with real values of the angular velocity is difficult. Plots of
just the real or imaginary components as a function of angu-
lar velocity are not very useful. Peaks in the amplitude plots
start to indicate the presence of resonances, three or four at
Digoel River and similar numbers at Yaboomba Island and
Karumba but not all at the same angular velocities.

When additional confirmation is looked for in the phases,
the main feature appears to be a steady change in phase in-
dicating not resonances but delays in the system. The final
method, plotting the real and imaginary components against
each other, helps to confirm that resonances are being seen at
Yaboomba Island, but at the other two stations, interpretation
is again difficult.

It is possible that if all we had was data for real values
of angular velocity, then more could be learnt by fitting the
plotted data to a function similar to that of Eqs. (13) or (14).
However, the present model can be run with complex values
of angular velocity, and, as is shown in the next section, this
allows a more complete exploration of the complex plane.
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Fig. 8. Real part of the response function at Digoel River plotted as a function of complex angular velocity over the region enclosed by the
origin and the points(0− 10i), (30− 10i) and 30 radians per day. Axes in red with ticks every unit interval. The origin is on the right with
the real axis extending to the left and the negative imaginary axis extending backwards. The green ticks indicate the long-period, diurnal,
semi-diurnal and higher tidal bands. The blue line is the response at real angular velocities as plotted in Fig.4 but with the direction of the
real axis reversed.

Karumba Yaboomba Island

Fig. 9. Real part of the response functions at Karumba and Yaboomba Island. Details as in Fig.8.

6 The complexω plane

Figures8 and 9 show the real component of the response
at Digoel River, Karumba and Yaboomba Island plotted as a
function of complex angular velocity. The data for the figures

was created by running the model at intervals of 0.1 radians
per day, in both the real and imaginary directions, over the
rectangle whose corners are defined by the origin and the
points(0−10i), (30−10i) and 30 radians per day. The data

Ocean Sci., 8, 733–750, 2012 www.ocean-sci.net/8/733/2012/
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was then plotted in a view which looks beyond the real axis
in the negative imaginary direction.

The values on the real axis are the same as in Fig.4, but the
direction of increasing angular velocity is now towards the
left. As discussed inWebb(1973b), the values in the nega-
tive real direction (not plotted) are the mirror image of those
in the positive direction. This results from the fact that we
are using a complex value response function to represent a
system in which the input and output functions are both real.

The figures show series of mathematical poles at positions
corresponding to the complex angular velocities of the reso-
nances, the termsωj of Eq. (13). Although it is not always
obvious, the poles are at the same positions in each of the
three figures, and, if the resolution was high enough, the re-
sponse functions would be seen to extend to plus and minus
infinity in the neighbourhood of all of the poles.

The apparent width of each peak depends on the magni-
tude of its residue, i.e. the termψj (x)Aj in Eq. (13). Dif-
ferences between the residues in the three figures is thus a
measure of the changing importance of each resonance in
different locations around the Gulf.

There should be no poles in the positive imaginary direc-
tion as these would correspond to modes which grow in time,
and, as discussed byWebb (1973b) and in more detail by
Nussenzveig(1972), such poles would also break causality.
However, although the finite difference scheme used for the
model is accurate to second order in the grid spacing, it is
not strictly energy conserving, and so it is possible if the er-
ror terms are large that it could generate such modes. For the
Gulf region this was found not to be the case.

The figures emphasise the large number of resonances
found in even a small region of ocean and show that max-
ima on the real axis, i.e. in the real world, may not be due to
an individual resonance but often result from the combined
contributions of a number of resonances.

The figures also show that the resonances fall into two
groups with a boundary near four radians per day. At low
angular velocities there are a large number of tightly packed
resonances, but they have little effect on the response at real
values of angular velocity. In this group the residues are
small, and there is a large range of decay rates, the imagi-
nary components of angular velocity extending to minus ten
and beyond.

Above four radians per day, the resonances are well sepa-
rated and have much larger residues. At the lower (real) an-
gular velocities, the imaginary components are one to two
radians per day, and these increase to three to four radians
per day for the resonances near thirty radians per day.

This second group of resonances is also the one which ap-
pears to have the most influence on the diurnal and semi-
diurnal tides. Table1 contains a list of the resonances closest
to the tidal bands plus resonances with low angular velocities
which appear to have most effect on the low angular velocity
response at Digoel River, Karumba and Yaboomba Island.

6.1 Gravity and rossby waves

Theoretical studies have shown that there are two main
classes of long waves in the ocean. The first contains both
the gravity waves, found at high angular velocities, and the
equatorial and coastal Kelvin waves, which also extend to
low angular velocities. In these waves the primary exchange
is between the kinetic and potential energy of the wave. The
second class of waves consists of the Rossby waves, which
are found only at low angular velocities. In these waves the
primary exchange is between the two horizontal components
of velocity.

Theory also shows that the boundary between the gravity
and Rossby waves occurs at an angular velocity off , the
Coriolis parameter,

f = 2�sin(θ) , (15)

where θ is latitude, and� is the angular velocity of the
Earth. Waves with angular velocities nearf are likely to
show a mixture of both properties (Longuet-Higgins, 1968;
Longuet-Higgins and Pond, 1980).

The Gulf of Carpentaria and the Arafura Sea span latitudes
between 5◦ S and 18◦ S. This corresponds to values of the
Coriolis parameterf , between 1.1 and 3.6 radians per day.
Thus, the change in properties seen near 4 radians per day
can be identified as being due to the change from the Rossby
wave to the gravity wave parts of the spectrum.

If Eq. (1) is used to study the decay of a steady current, it is
easy to show that the decay rate is proportional toκ/h, where
κ is the friction parameter andh the depth.Webb(2011) in-
vestigated gravity wave resonances in a simple 1-D model
with a constant depth continental shelf and showed that the
resonance decay rates, the imaginary parts of the complex
angular velocity, were given by the same equation.

In the present model,κ has the value 0.1 cm s−2, and the
depths range from over 100 m in parts of the Arafura sea and
70 m in the centre of the Gulf of Carpentaria to 20 m and
less near to the coastline. Using the above equation, a depth
of 100 m gives a decay rate of 0.86 day−1 and this increases
to 1.73 day−1 for a depth of 50 m, 3.46 day−1 for 25 m and
8.64 day−1 for 10 m. The gravity wave values of Table 1 are
thus consistent with mean depths of between 25 and 50 m,
values which are not unreasonable.

Rossby waves on a shelf of constant depth are also ex-
pected to have decay rates ofκ/h. Thus, the Rossby wave
resonances of the current model with decay rates of 10 day−1

must be in regions of the shelf where the depth is near 10 m.
There should also be gravity wave resonances with similar
decay rates, but these presumably occur at much higher an-
gular velocities than the range explored here.
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Fig. 10. Amplitude and phase contours for resonances aa and A (Table 1). The phase contours (light) are at intervals of 30 degrees, colour
coded with red in the quadrant−180◦ to −90◦, brown−90◦ to 0◦, green 0◦ to 90◦ and blue 90◦ to 180◦. Amplitude is is in the range 0 to 1,
with contours (heavy) at intervals of 0.2 and darker colours indicating greater amplitude. Amplitude is zero on the open (western) boundary
and at the centre of amphidromes, and has the value 1 at points with maximum amplitude.

Table 1. Real and Imaginary components of angular velocity (in
radians per day) for some of the key resonances, plus the names
used to refer to them in the text.

Angular velocity Angular velocity

Real Imag. Real Imag.

aa 1.4561 −1.1419 K 15.3736 −1.6588
bb 3.1370 −1.6373 L 16.7251 −2.0066
A 5.8397 −1.1277 M 16.9845 −3.5121
B 7.0215 −1.3056 N 17,4437 −3.2135
C 7.8389 −2.0418 O 18.4964 −2.6164
D 9.5938 −2.0780 P 19.1721 −2.7670
E 10.2025 −2.6180 Q 20.0978 −3.4472
F 11.4272 −1.7270 R 20.4820 −1.8994
G 12.6226 −2.4655 S 20.6322 −3.3178
H 13.3884 −2.2500 T 21.4129 −1.9414
I 14.1413 −2.2405 U 22.5463 −2.6505
J 14.8486 −2.5489

7 The resonances

The angular velocities of the resonances can be found by fit-
ting Eq. (14) to one of the calculated response functions in
the neighbourhood of each resonance. Use was made of the

four nearest calculated values and these were fitted using a
linear background,

ψ(ω) = Rj/(ω−ωj )+A+B ω . (16)

As discussed in Appendix A, this can be converted into a lin-
ear matrix equation and so solved for the unknowns including
the resonance frequencyωj . The results for the main reso-
nances using the data from Digoel River are given in Table1.
The results obtained from using any of the other stations are
essentially the same.

Once the angular velocity of a resonance is known, the
spatial structure, the eigenfunction of the matrix equation,
can be calculated in a similar manner. This time, solutions
to the model equations were obtained for each of the four
angular velocitiesωj ± δω andωj ± ıδω, whereδω equalled
0.1 radian day−1. Because the model uses Dirichlet boundary
conditions, the eigenfunctions are, except for a normalising
constant, independent of the details of the forcing used. Fur-
ther information about the method, which makes use of the
properties of Vandermonde matrices, is given in Appendix A.
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Fig. 11. Amplitude and phase contours for resonances B, C, D and E. Contours as in Fig.10.

7.1 Resonance waveforms

Figures10to 13show the amplitude and phase of some of the
main resonances affecting the diurnal and semi-diurnal tides

in the region. Mode aa is included because it is the funda-
mental quarter-wavelength mode, having a maximum at the
southern limit of the Gulf of Carpentaria. However, it is not
a classical quarter wavelength resonance because its angular
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Fig. 12. Amplitude and phase contours for resonances F and H. Contours as in Fig.10.

velocity is less than the Coriolis parameter everywhere ex-
cept near the northern coastline of the Arafura Sea. As a re-
sult its properties are those of a Rossby wave with only a
small fraction of its energy in the form of potential energy.
Thus, even at low angular velocities it has only a limited ef-
fect on tidal height5.

The remaining resonances illustrated are all primarily
gravity wave modes, and as such each of them might domi-
nate the response with a suitable pattern of forcing. However,
in the present case the forcing is limited to the shelf edge, and
this appears to limit the importance of individual resonances
and the way they interact.

At low angular velocities, resonances “A”, “B” and “C” are
well separated in angular velocity from other resonances and
are relatively weakly damped. As a result one might expect
them to dominate the response in the diurnal tide band, and,
as discussed later, this is the case.

Figures10 and11 show that resonances “A” and “C” are
both primarily progressive waves trapped within the Gulf
of Carpentaria. Their angular velocities appear to be deter-
mined by “A” fitting a single wavelength around a single
amphidrome and “C” two wavelengths around a double am-
phidrome.

In contrast resonance “B” (Fig.11) is primarily a quar-
ter wavelength wave trapped between the shelf edge and the

5Grignon(2005) showed that the fundamental mode of the En-
glish Channel has similar properties

Digoel River. Some energy does propagate into and circu-
late around the Gulf of Carpentaria, but it appears to be the
distance between the shelf edge and the Digoel River which
determines the angular velocity of this mode. The angular
velocities of resonances “B” and “C” are very close, so it is
possible that this results in some mixing of the solutions.

At higher angular velocities the structure of the resonances
becomes more complex, and it is more difficult to relate them
to physical features. One exception is resonance “F”, which
appears to be primarily a standing wave trapped between the
northern boundary of the Gulf of Carpentaria and the south-
ern boundary of the Arafura Sea. Another is resonance “I”,
which is a three-quarters wave trapped between Digoel River
and the shelf break. Note that this time there is very little
coupling to the Gulf of Carpentaria.

The remaining resonances have a more irregular structure.
Many of them, like resonance “E”, have maxima in corners
of the Gulf of Carpentaria, but the increasingly complex pat-
tern of phases indicates that their main role is to provide the
complete set of functions required to describe all possible
wave patterns.

7.2 Comparison with a simpler model

Buchwald and Williams(1975) investigated the response of
a simple rectangular gulf at the end of an infinite chan-
nel. They did not include a Coriolis term, but applying their
model to the Gulf of Carpentaria, they found that the lowest
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Fig. 13. Amplitude and phase contours for resonance I. Contours
as in Fig.10.

resonances had periods of 16.4, 10.4 and 7.9 h, correspond-
ing to 9.2, 14.5 and 19.1 radians per day, respectively. The
results were given some support byMelville and Buchwald
(1976), who analysed sea level records from the Gulf of Car-
pentaria.

One might have expected the Buchwald and Williams
(1975) resonances to show similarities with those of the
present study, which are most energetic in the Gulf of Car-
pentaria. The best examples are resonances C and E, but
these have angular velocities of 7.8 and 10.2 radians per day
and do not correspond to any of theBuchwald and Williams
(1975) values. This is most likely due to the lack of a Coriolis
term in the earlier study.

8 Resonances and real angular velocities

The polar plots, discussed earlier, showed that at real val-
ues of the angular velocity the presence of resonances could
be indicated by the presence of tight loops in the response
function. Here, use is made of this property to identify the
resonances responsible for the key features of the response
function in the diurnal and semi-diurnal bands. Over such a
band, it should be possible to expand the response function
R(x,ω) at sitex as:

R(x,ω)=

∑
j

Rj (x)/(ω−ωj )+ c.c.+B(x,ω) , (17)
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Fig. 14. Polar plot of response function (black) at Digoel River, for
the range 0 to 9 radians per day. The black crosses are at intervals
of one radian per day. The contribution of the resonance “B”, and
its conjugate pole (defined in the text), is plotted in green at 5 and
8 radians per day, the conjugate contribution being the smaller. The
residual after subtracting the contribution of resonance “B” and its
conjugate pole is plotted in blue, also for the range 0 to 9 radians
per day.

where the sumj is over a limited number of key resonances,
andB(x,ω) is a smooth background.Rj (x) andwj are the
values calculated in the previous section. The term c.c. rep-
resents the contributions from the conjugate set of poles,
with eigenvalues−ω∗

j and eigenfunctions−R∗

j (x), needed
for symmetry (Webb 1973b, Appendix I).

The choice of key resonances is to a certain extent subjec-
tive. In the examples given here, it was done by finding a set
of resonances which, over the band of real angular veloci-
ties considered, reproduced the main features of the response
function and left a residual which was small and smooth. As
a final check the other nearby resonances were each added in
turn but then left out if they did not significantly smooth or
reduce the residual.

The results are illustrated using the polar form of the re-
sponse function figures. The full response function and the
background term are plotted for the whole band, and the in-
dividual contributions from the selected resonances and their
complex conjugates are plotted at two points within each
band. Because of the difference in angular velocity, the com-
plex conjugate contributions tend to be small except near
zero angular velocity.
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Fig. 15. Polar plot of response function (black) at Karumba, for the
range 0 to 9 radians per day. The black crosses are at intervals of one
radian per day. The contribution of the resonances “aa” (red), “A”
(yellow) and “B” (green), and their conjugate poles, are plotted at 5
and 8 radians per day, the conjugate contribution being the smaller.
The residual, after subtracting the contributions of these resonances
and their conjugates, is plotted in blue, also for the range 0 to 9 ra-
dians per day.

Two bands of angular velocities are considered. The first
extends from zero to nine radians per day. This covers the
diurnal tides and also shows the behaviour at very low val-
ues of angular velocity. The second band extends from ten to
fifteen radians per day and covers the semi-diurnal tides.

8.1 The diurnal band

The result for Digoel River, for the band 0 to 9 radians per
day is shown in Fig.14. The large amplitude loop in the re-
sponse function can all be explained by the changing ampli-
tude and phase of the contribution of resonance “B”, a quar-
ter wavelength resonance. The background term is seen to
grow with angular velocity, reaching an amplitude of two by
8 radians per day, but it still remains much smaller than the
single resonance contribution.

The corresponding result for Karumba is shown in Fig.15.
At low angular velocities it was found necessary to include
resonance “aa” in order to reduce the background at near zero
angular velocity. For the 5 to 8 radians per day region, which
includes the diurnal tides, it was found necessary to include
both “A” and “B” resonances. These both have large ampli-
tudes and phase changes of around 90◦.

More importantly they have approximately opposite
phase. Near 5 radians per day, the contribution from reso-
nance “A” is large and “B” only reduces it slightly. How-
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Fig. 16. Polar plot of response function (black) at Yaboomba Is-
land, for the range 0 to 9 radians per day. The black crosses are at
intervals of one radian per day. The contribution of the resonances
“aa” (red), “A” (yellow), “B” (light green), “D” (dark green), and
“F” (purple), and their conjugate poles, are plotted at 5 and 8 radi-
ans per day, the conjugate contribution being the smaller. The resid-
ual, after subtracting the contributions of these resonances and their
conjugates, is plotted in blue, also for the range 0 to 9 radians per
day.

ever, by 8 radians per day they are effectively cancelling each
other out, and this results in a much lower amplitude response
function. Figures2 and3 show that the semi-diurnal tides at
Karumba are low compared with the diurnal tides, and this
might have been thought to be a result of an increase in the
effect of friction at higher angular velocities. However, in the
present case both modes have similar decay times, and so
the reduction in amplitude is purely an effect of interference
between the two modes.

A further complication is found is found in the results for
Yaboomba Island (Fig.16). The first loop is found to be pri-
marily the effect of the Rossby wave resonance “aa”. Reso-
nances “A” and “B” are also significant. They again show an
approximately 90◦ phase change between 5 and 8 radians per
day, but here they are acting in phase and as a result produce
the increase in amplitude near 5 radians per day. Two more
resonances, “D” and “F”, are also significant, and as the an-
gular velocity increases they grow even larger. From Figs.11
and12, they both involve a standing wave between the south-
ern boundary of the Arafura Sea and the north of the Gulf of
Carpentaria. Together they both contribute towards complet-
ing the second loop of the response function and the further
increase in its amplitude past 8 radians per day.
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Fig. 17. Polar plot of response function (black) at Digoel River, for
the range 10 to 15 radians per day. The black crosses are at inter-
vals of one radian per day. The contribution of the resonances “B”,
“D”, “F”, “H”, “I”, and “P”, and their conjugate poles, are plot-
ted at 11 and 14 radians per day, the conjugate contribution being
the smaller. The residual, after subtracting the contributions of these
resonances and their conjugates, is plotted in blue, also for the range
10 to 15 radians per day.

8.2 The semi-diurnal band

Figure 17 shows the response function at Digoel River in
a range including the semi-diurnal tides. Resonance “B” is
still significant, but it is declining in importance and a large
number of other resonances are now involved. These include
“D”, “F”, “H” and “P”, all of which show noticeable phase
changes between 11 and 14 radians per day, but the largest
contribution is now from “I”, the three-quarter wave reso-
nance trapped between the Digoel River and the shelf edge.

At Karumba, Fig.18, all of the resonances in the range “D”
to “K” now make significant contributions. The largest am-
plitude term is that of “H”, a rather complex resonance con-
fined to the Gulf, but its effect is to a large extent cancelled
out by other resonances. However, its increased amplitude
does seem to be responsible for the second partial loop seen
around 14 radians per day.

Cancellation is also seen within the group of resonances
“E”, “F”, and “G”. Resonances “A”, “B”, and “C” (which for
clarity are not plotted) cancel each other in a similar manner.

In contrast to Digoel River and Karumba, the number of
significant resonances contributing to the response function
at Yaboomba Island has dropped (see Fig.19). “F” is the
largest resonance, responsible for the main loop, and only
two more, “D” and “K”, are required to smooth the back-
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Fig. 18. Polar plot of response function (black) at Karumba, for the
range 10 to 15 radians per day. The black crosses are at intervals of
one radian per day. The contribution of the resonances “D” to “K”,
and their conjugate poles, are plotted at 11 and 14 radians per day,
the conjugate contribution being the smaller. The residual, after sub-
tracting the contributions of these resonances and their conjugates,
is plotted in blue, also for the range 10 to 15 radians per day.

ground. The result confirms that the unusual standing wave
between the southern boundary of the Arafura Sea and the
northern boundary of the Gulf of Carpentaria is a key feature
of the region.

9 Conclusions

The results demonstrate the advantages of linearised tidal
models which can work with complex values of angular ve-
locity. In reality non-linear processes occur in the ocean, but
although locally they may be important, the large scale re-
sponse of the ocean to tidal forcing is predominantly linear.
Of course the linearisation process needs to be done care-
fully, and if possible validated, but it does provide a different
viewpoint for the study of the ocean.

Tidal models which use a timestepping scheme are limited
to real values of angular velocity. When the present model
was limited in the same way, the results were unsatisfactory.
Plots of the real and imaginary components of the response
function and its amplitude showed peaks that one might be
tempted to attribute to resonances. However, these were not
simple ones that one may expect from a single resonance
and the peaks occurred at different angular velocities in dif-
ferent parts of the study region. Interpretation was further
complicated by the phase plots which indicated that the re-
sponse may be largely in the form of a simple progressive
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Fig. 19. Polar plot of response function (black) at Yaboomba Is-
land, for the range 10 to 15 radians per day. The black crosses are at
intervals of one radian per day. The contribution of the resonances
“D”, “F” and “K”, and their conjugate poles, are plotted at 11 and
14 radians per day, the conjugate contribution being the smaller. The
residual, after subtracting the contributions of these resonances and
their conjugates, is plotted in blue, also for the range 10 to 15 radi-
ans per day.

wave only slightly modified by other processes. The polar
diagrams were more informative as they showed a number
of tight loops with positive curvature. Theory predicts that
isolated resonances will generate such loops.

In principle it should be possible go further by analyti-
cally continuing the response function from the real axis to
complex values of angular velocity. However, such a process
can be affected by numerical noise and so is likely to be prac-
tical only for well separated resonances close to the real axis.

When the restriction was lifted and the model run for com-
plex values of angular velocity, the results were much more
informative, the three dimensional figures showing a com-
plex pattern of resonances. This included a series of poles
with large residues extending from six radians per day to
higher angular velocities. These were identified as the grav-
ity wave resonances of the region. There was also a field of
smaller poles with small real angular velocities but with a
large range of imaginary angular velocities. These were iden-
tified as the Rossby wave modes.

An investigation of the eigenfunctions showed that some
of the gravity modes, especially those with low (real) an-
gular velocities, could be identified as fundamental 1/4 or
3/4 wavelength modes fitting between the shelf edge and the
coast or modes associated with reflection between opposing
boundaries. Others were much more complex, whose main

role may be to contribute to the complete set of modes needed
to describe all possible waveforms within the system.

The Rossby wave modes were not investigated in the same
way, but one of them was found to be a 1/4 wavelength wave
trapped between the shelf edge and the southern boundary of
the Gulf of Carpentaria. With no Coriolis term this would be
the fundamental quarter wavelength mode of the system and
so would have a significant impact on the sea level response.
However, here it is at such a low angular velocity that it is
primarily a Rossby wave and, except near Yaboomba Island
where the other terms are small, it has limited impact on the
sea level response.

These results were then used to reinterpret the response
functions calculated on the real axis. This showed that there
is no band of real angular velocities where the response can
be represented by the contribution from a single resonance.
However, close to the diurnal tidal band there are only a
few resonances, and, although a background term is also re-
quired, these were found to dominate the response within the
band. There are more resonances close to the semi-diurnal
band, and the behaviour there was found to be more compli-
cated.

The results also show that in both bands there are regions
of the continental shelf where the response is strongly influ-
enced by resonances trapped between the shelf edge and the
coast or between two opposing coastlines. Elsewhere the res-
onances often appear to produce cooperative effects, a group
of resonances forming a single “resonant like” loop, can-
celling each others contributions or producing an approxi-
mation to a simple progressive wave.

This apparent cooperation may simply reflect the fact that
in such regions the separation between resonances is less
than their distance from the real axis. Alternatively, it may
be an indication that, where it occurs, the physical process
involved is one for which a simple resonance interpretation
is the wrong one. This should occur, for example, in the case
of a simple progressive wave. The resonance picture may
also be inappropriate for a slowly narrowing channel many
wavelengths long, for which a Wentzel–Kramers–Brillouin
(WKB) type approximation may be more relevant. However,
the fact that the 1/4, 3/4 and other simple resonances stand
out so clearly implies that such resonances are still likely to
be important in other regions of the world’s ocean.

Finally, although the study has concentrated on the prop-
erties of the Gulf region, the main implication of the present
study is a more general one. It is that because the tides are
approximately linear and because friction is involved, there
is much to be gained from the use of linearised models to
study the ocean’s response to tidal forcing, especially when
combined with the well known properties of linear operators.
The approach generates accurate resonance eigenvalues and
eigenfunctions, and, as the results presented here show, it can
also provide new insights into the way the resonances inter-
act and the physical processes that they represent.
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Appendix A

Resonance and background

The problem is to fit a series of response function values
R(ωi) for different values ofωi by a single resonance and
a linear background,

R(ωi) = Rj/(ωi −ωj )+P +Qωi . (A1)

P andQ are complex constants,ωj is the complex angu-
lar velocity of the resonance, andRj its residue. This is a
specific form of the more general problem of fitting a set of
valuesyi andxi to an equation of the form:

y = A/(x−B)+

N∑
n=0

Cnx
n . (A2)

Multiplying by (x−B),

y(x−B) = A+

N∑
n=0

(Cnx
n+1

−CnBx
n) , (A3)

yx = A+By−C0B

+

N∑
n=1

(Cn−1 −CnB)x
n
+CNx

N+1 ,

yx = (A−C0B)+By

+

N∑
n=1

(Cn−1 −CnB)x
n
+CNx

N+1 .

This can be written in the form:

yx = D0y+

N+2∑
n=1

Dnx
n−1 . (A4)

This, like Eq. (A2), has N+3 unknowns. If a similar num-
ber of pairs of valuesx andy are available, it gives a matrix
equation which can be solved using standard methods for the
unknownsD. Then

B = D0 , (A5)

CN = DN+2 ,

Cn−1 = Dn+1 +CnB for n= 1 . . . N ,

A = D1 +C0B .

If in Eq. (A1) the angular velocity of the resonanceωj is
known, then Eq. (A2) can be rewritten in the form:

y = A/x′
+

N∑
n=0

C′
nx

′n , (A6)

wherex′ now equals(wi −wj ). Dropping the primes, the
equivalent of Eq. (A4) is:

yx =

N+1∑
n=0

Dnx
n . (A7)

In matrix form, the set of equations become:

MD = F , (A8)

whereM is a matrix, andD andF are vectors,

Mm,n = xnm ,

Fm = ymxm .

M is a Vandermonde matrix.Turner(1966) shows that its
inverse,M−1, contains terms which are simple functions of
the variablesxm. The solution is then given by

D = M−1F . (A9)

The residue of the pole in Eq. (A6) is given byD0. In the
case of four unknowns, if thexis have the values±δ and±iδ,
whereδ is non-zero, then the residue is just the mean value
of the elements ofF .

Appendix B

Shallow water solution in a channel

Consider a channel of constant width where the depthH(x)

varies with distancex along the channel. The shallow water
equations are then:

du/dt = −g dh/dx ,

dh/dt = −d(Hu)/dx , (B1)

whereh is sea level,u is velocity,t is time, andg is gravity. If
the waves have constant angular velocityω, then after elimi-
natingu and dropping the time dependent term, exp(−iωt),

h′′
+ (H ′/H)h′

+ (ω2/(gH))h= 0, (B2)

whereh′ andh′′ represent dh/dx and dh2/dx2. Let k equal
(ω2/(gH))1/2. It has the properties of a local wavenumber.
Then

h′′
− (2k′/k)h′

+ k2h= 0. (B3)

If the depth changes slowly over each wavelength, a
method similar to the WKB approximation can be used (Gill ,
1982). Let

h(x)= A exp(iφ(x)). (B4)

Substitute in Eq. (B3), equate the real and imaginary com-
ponents and simplify:

φ′2
= k2

+ [A′′/A− 2(k′/k)(A′/A)],

2A′k′
= A (2(k′/k)φ′

−φ′′). (B5)

If the amplitude and the depth change slowly so that the
term in square brackets is small,

φ′
≈ ±k,

A ≈ Ck1/2, (B6)
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whereC is a constant. Thus

h(x) ≈ Ck(x)1/2exp(±i
∫
k(x)dx),

≈ Ck(x)1/2exp(±iω
∫
(gH(x))−1/2dx). (B7)

At a fixed point along the channel, the phase of the solution
is linearly proportional to the angular velocity of the wave.
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