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Abstract. Thanks to the abundant observation data, we are
able to deploy the traditional point-to-point comparison and
statistical measures in combination with a comprehensive
model validation scheme to assess the skills of the biogeo-
chemical model ERGOM in providing an operational ser-
vice for the Baltic Sea. The model assessment concludes
that the operational products can resolve the main observed
seasonal features for phytoplankton biomass, dissolved in-
organic nitrogen, dissolved inorganic phosphorus and dis-
solved oxygen in euphotic layers as well as their vertical pro-
files. This assessment reflects that the model errors of the op-
erational system at the current stage are mainly caused by in-
sufficient light penetration, excessive organic particle export
downward, insufficient regional adaptation and some from
improper initialization. This study highlights the importance
of applying multiple schemes in order to assess model skills
rigidly and identify main causes for major model errors.

1 Introduction

Assessment of an operational model is different from val-
idation of a model targeted at a specific research task. An
operational model should serve broader interests than a re-
search model generally does, since the users of the model re-
sults can be interested in various subdomains and processes.
This is especially true during the early development phase of
an operational model to supply biogeochemical information
service. During the preliminary phase, there are no specific
user needs, simply because user groups have not yet been

well developed. Of course, there are general concerns in eco-
logical operational oceanography, e.g. eutrophication, harm-
ful algae blooms and oxygen depletion. Therefore, an oper-
ational model should produce sensible results in the entire
model domain for all targeted state variables. In fact, the de-
velopment of ocean models are endless practices where de-
velopers always do their best to work towards moving targets.
As a goal of this stage, the model is aiming at reproducing the
main observed seasonal features for phytoplankton biomass,
nutrients concentration and dissolved oxygen concentration
in euphotic layers.

Various ecosystem models have been developed for the
Baltic Sea (Neumann, 2000; Edelvang et al., 2005; Savchuk
et al., 2008; Eilola et al., 2009). The biogeochemical model
ERGOM developed by Neumann (2000) and Neumann et
al. (2002) has been applied in a number of investigations of
the Baltic Sea ecosystem. The model inherited the advances
of previous ecological models developed for the Baltic Sea
(Stigebrandt and Wulff, 1987; Fennel, 1995; Fennel and Neu-
mann, 1996) and has been further developed. Fennel and
Neumann (2003) introduced stage-structured copepod mod-
els in order to replace the bulk description of zooplankton
and improve the link to higher trophic levels. In the study
on eutrophication and shifts in nitrogen fixation, Neumann
and Schernewski (2008) introduced iron-phosphate-complex
in combination with Dissolved Inorganic Phosphorus (DIP)
in order to simulate the mineralization of detritus in the sedi-
ment. Kuznetsov et al. (2008) added seven state variables so
as to simulate C, N, P cycling separately. Maar et al. (2011)
added silicate as one more state variable so as to be able to
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model the ecosystem in the entire salinity gradient region
covering the Baltic Sea and the North Sea. Other examples
of ERGOM application studies include the inter-annual vari-
ability in cyanobacteria blooms (Janssen et al., 2004), the
assessment of two nutrient abatement strategies (Neumann
and Schernewski, 2005), and the fate of river-borne nitrogen
(Neumann, 2007).

As one part of the EU projects ECOOP (http://www.
ecoop.eu) and MyOcean (http://www.myocean.eu.org), the
ecosystem model ERGOM (Neumann, 2000; Neumann et
al., 2002) is coupled with the circulation model HBM (https:
//hbmsvn.dmi.dk/) (Berg and Poulsen, 2012) for providing
GMES (Global Monitoring of Environment and Security)
Marine Service in the Baltic Sea. This paper presents an
assessment of the operational model system with focus on
its biogeochemical service, through comparing model results
and observations comprehensively.

2 Models, data and methods

2.1 Physical model

The physical model is the HIROMB-BOOS ocean circula-
tion model (HBM) (Berg and Poulsen, 2012). The core of
the physical model, the circulation model, is based on the
primitive geophysical fluid dynamics equations for the con-
servation of volume, momentum, salt and heat. The circula-
tion model has been coupled to a Hibler-type sea ice model.
The wind, air pressure, air temperature, humidity, evapora-
tion/precipitation and cloud cover are taken into account in
the parameterizations of surface boundary conditions. Water
levels of tides and surges and monthly climatology of tem-
perature and salinity are imposed as outer lateral boundary
conditions. River runoff is included as an inner lateral condi-
tion. The model setup fully covers both the Baltic Sea and the
North Sea with four two-way nested subdomains (Table 1).
Our targeted area is the Baltic Sea (Fig. 1).

The products by the operational weather model High Res-
olution Limited Area Model of the Danish Meteorological
Institute are used to provide atmospheric forcing drivers for
the physical model (She et al., 2007a). The daily river runoffs
are provided by the operational hydrological model HBV
run by the Swedish Meteorological Hydrological Institute
(Bergstr̈om, 1976, 1992) in combination with observations
from theDeutschland Bundesamt für Seeschifffahrt und Hy-
drographie and Klimatologie. The previous versions of HBM
were validated by She et al. (2007a, b). The current ver-
sion was validated in the Scientific Calibration Report V2
for WP6 (http://www.myocean.eu.org/).

2.2 Ecosystem model

The applied version of ERGOM is close to the original ver-
sion by Neumann et al. (2002). ERGOM originally adopted
Redfield ratio for the phytoplankton stoichiometry. Wan et

Fig. 1.Topography of the Baltic Sea (unit: m) and location of time-
series observational stations A–R (marked with *).

al. (2011) documented that a non-Redfield ratio is more suit-
able in the Baltic Sea than the Redfield ratio. Moreover, Wan
et al. (2012) demonstrated that a spatially variable N / P ratio
is more close to the real phytoplankton stoichiometry in the
Baltic Sea than a fixed non-Redfield ratio does. In the cur-
rent study, the model setup and configuration are the same as
in the MyOcean Scientific Calibration Report V2 for WP6,
but the source code is upgraded to implement the spatially
variable N / P ratio (Wan et al., 2012).

Initial fields for ammonia, nitrate, DIP and Dissolved Oxy-
gen (DO) are set through merging the data from the World
Ocean Atlas 2001 (WOA01, Conkright et al., 2002) and
the data from the International Council for the Exploration
of the Sea (ICES) (http://www.ices.dk/indexfla.asp). Initial
fields for the biological state variables have been adjusted
through repetitive runs. The open boundary conditions for
nitrate, DIP and DO are interpolated from the climatology
of WOA01 data while the remaining state variables are set
to zero. The bioloadings are from the same data sources for
river runoffs mentioned above. The atmospheric nutrient de-
positions are based on Langner et al. (2009) and Eilola et
al. (2009).

2.3 The comprehensive validation scheme

The comprehensive validation scheme makes use of all avail-
able in-situ data in order to reflect the model skill overall,
rather than only at selected stations or over a part of the
spatio-temporal domain. This scheme compares model re-
sults with observations along the specified dimension (e.g.
temporal evolution, vertical profile or horizontal distribu-
tion). For technical details, refer to Wan et al. (2011). In
this study, the 4-dimensional spatiotemporal grid to delimit
data representation has a horizontal resolution of 0.5◦

×0.5◦,
a vertical resolution of 4 m and a temporal resolution of 15
days.
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Table 1.Model grids.

Subdomains Longitude Latitude Lon. Res∗ Lat. Res∗ Lay.∗

North Sea 4◦07′30′′W–11◦57′30′′E 48◦31′30′′–65◦52′30”N 5′ 3′ 50
Danish Straits 9◦20′25′′–14◦49′35′′E 53◦35′15′′–57◦35′45′′N 50′′ 30′′ 75
Wadden Sea 6◦10′50′′–10◦29′10′′E 53◦13′30′′–55◦41′30′′N 1′40′′ 1′ 24
Baltic Sea 14◦37′30′′–30◦17′30′′E 53◦31′30′′–65◦52′30′′N 5′ 3′ 109

∗Abbreviations: Lat. Res for latitude resolution, Lon. Res for longitude resolution, Lay. for number of layers.

2.4 Statistical measures

To assess the model skills we use the following statistical
measures: coefficient of determination (R2), i.e. square of
correlation coefficient, model efficiency (ME) (Nash and Sut-
cliffe, 1970), cost function (CF) (OSPAR Commission, 1998)
and percentage of bias (PB) (Allen et al., 2007). ME is a mea-
sure of the ratio of the model error to the data variability,

ME = 1−

∑
(D − M)2∑(
D − D

)2
, (1)

whereD is the data,M is the corresponding model value,
while the overbar denotes an averaging operation. ME is
cited as a performance indicator:> 0.65 excellent, 0.65–0.5
very good, 0.5–0.2 good,< 0.2 poor (Maŕechal, 2004). CF is
a measure of the “goodness of fit” between model and data,

CF=

∑
|M − D|

nσD
, (2)

whereσD is the standard deviation of data andn is the num-
ber of samples in the dataset. CF is cited as a performance
indicator:< 1 very good, 1–2 good, 2–3 reasonable,> 3 poor
(Radach and Moll, 2006).|PB| is cited as a performance in-
dicator:< 10 excellent, 10–20 very good, 20–40 good,> 40
poor (Maŕechal, 2004) and PB is given,

PB=

∑
(D − M)∑

D
· 100. (3)

2.5 Observations

The observations used for the model assessment are down-
loaded from ICES database. We have used the following ob-
servation types: temperature, salinity, chlorophyll (Chl)a,
Dissolved Inorganic Nitrogen (DIN = ammonia + nitrate
only), dissolved inorganic phosphorous and DO. The data
coverage ranges 10◦–30◦ E and 54◦–66◦ N (Fig. 1) from 1
January 2007 to 31 December 2008. The total record num-
bers for temperature, salinity, Chla, DIN, DIP and DO are
listed in Table 3. The ICES database is searched for monthly
based time-series records. It ends up with 18 stations which
have monthly based time-series records for almost all of the
targeted state variables during 2007 and 2008. The station
locations are shown in Fig. 1.

2.6 Simulation

The simulation is the same as the inter-comparison experi-
ment described in the Scientific Calibration Report V2 for
WP6 of the MyOcean project, i.e. a model hindcast for
years of 2007 and 2008. The only difference to that inter-
comparison experiment is using the upgraded source code
with a spatially variable N / P ratio (Wan et al., 2012).

3 Results

Although ERGOM includes nine state variables, we present
the model-observation comparison for only DIN, DIP, Chla

and DO, in consideration of the availability of observations.
Temperature and salinity of the model results are also com-
pared with observations in order to supply information on
the skills of the circulation model. We examine the tem-
poral dynamics in surface and bottom layers at 18 stations
(Figs. 2–12), the vertical profile at Station I in the Gotland
deep (Fig. 13) and the bias distribution along different di-
mensions (Figs. 14–16). The surface/global statistical mea-
sures are listed in Tables 2 and 3, whose performance scores
are listed in Table 4.

Abbreviations: NS for number of samplers, Mean◦ for
mean value of observations, Meanm for mean value of model
results, PB for percentage of bias,R2 for square of corre-
lation coefficient, i.e. coefficient of determination, ME for
model efficiency, CF for cost function.

3.1 Temperature

In the surface layer, the model results fit observations very
well at all the 18 stations in terms of seasonal variability
(Fig. 2). In details, model matches observation best in the
winter months but with more bias in the summer months,
which can be up to 2◦C off. Northeastern Baltic sea coastal
stations (M, O, R) have larger model errors than others. In
statistics using all model-observation pairs in surface layer
(far beyond 18 stations), PB is only−1.1,R2 is up to 0.94,
ME is up to 0.93, and CF is 0.07 (Table 2). It means that the
performance scores are either “excellent” or “very good” in
the surface layer.

In the bottom layer, the seasonal cycle is less visible at wa-
ter depth deeper than 50 m. The model catches the observed
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Fig. 2
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Fig. 2.Seasonal variability of temperature in surface layer. Red solid curve (black dashed cycles) for model results (observations). Unit:◦C.
Panels(A–R) for Stations A–R (Fig. 1), respectively.

Table 2. Statistical measures of model-observation comparison in
the surface layer.

NS Mean◦ Meanm PB R2 ME CF

temperature 2077 9.8 9.7 −1.1 0.94 0.93 0.07
Salinity 2008 9.3 9.2 −1.1 0.96 0.96 0.05
DIN 1548 3.6 1.5 −58 0.10 0.04 19.0
DIP 1551 0.34 0.33 −4.7 0.35 0.33 1.3
Chl a 1291 3.5 3.0 −14 0.06 0.03 6.9
DO 1814 352 337 −4.0 0.34 0.21 1.2

seasonal pattern for the shallow stations in Kattegat, West-
ern Baltic Sea, Bothnian Sea and Bothnian Bay (C, D, N,
P, Q and R) and the deep stations in Central and North
Baltic Proper (F–K), but are rather off for stations A, E, L

(Fig. 3). The temporal evolution of vertical profiles of the
model (Fig. 13a) matches well that of observations in general
(Fig. 13g). There are however some minor errors. For exam-
ple, the model temperature at depth 90–120 m is persistently
higher than observations, and there exists downward temper-
ature gradient in November and December above 40 m in
model results but not in observations which indicates that the
model has less vertical mixing. The spatial mean of obser-
vations is caught well by the corresponding mean of model
results (Fig. 14a). The mean of observations at one depth
plane is also well reproduced by the corresponding model
results (Fig. 15a), but the model errors are larger in lay-
ers below 100 m than above, up to 0.5◦C. The percentage
bias of model to observation is mostly smaller than±10 %
(Fig. 16a). The global statistical measures PB,R2, ME and
CF are 1.2, 0.89, 0.89 and 0.11, respectively (Table 3). It
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Fig. 3
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Fig. 3.Seasonal variability of temperature in bottom layer. Notations same as in Fig. 2.

means that the performance scores are also either “excellent”
or “very good” in the bottom layer.

3.2 Salinity

In the surface layer, the model results reproduce the observed
seasonal variability south of 59◦ N, i.e. stations A–K, where
salinity is higher than 6.0 psu (Fig. 4). No salinity observa-
tions are available at stations L and M. At stations N–R, the
mean values of model results are close to those of observa-
tions, but the model cannot reproduce the fine seasonal dy-
namics which is mostly smaller than 1.0 psu. The surface sta-
tistical measures PB,R2, ME and CF are−1.1, 0.96, 0.96
and 0.05, respectively (Table 2).

In the bottom layer, seasonal cycle is not visible (Fig. 5).
The fit between model results and observations is very much
similar to that in the surface layer (Fig. 5). The temporal pro-

Table 3. Statistical measures of model-observation comparison
overall. Abbreviations same as in Table 2.

NS Mean◦ Meanm PB R2 ME CF

temperature 16 534 7.8 7.9 1.2 0.89 0.89 0.11
salinity 16 208 11 11 −2.2 0.98 0.98 0.02
DIN 10 517 3.1 4.6 26 0.07 −0.18 2.24
DIP 10 549 0.90 1.1 −2.2 0.87 0.86 0.22
Chl a 5644 2.3 2.7 −14 0.15 0.11 3.09
DO 14 070 276 290 4.9 0.80 0.77 0.36

file of model results (Fig. 13b) matches that of observations
in general (Fig. 13h). The observed halocline depth is around
60 m, while the modeled one varies between 40 m and 80 m.
The spatial mean of the salinity observations is caught per-
fectly by the model (Fig. 14d). The mean of the observa-
tions at one depth plane is also well reproduced (Fig. 15d).

www.ocean-sci.net/8/683/2012/ Ocean Sci., 8, 683–701, 2012
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Fig. 4
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Fig. 4. Seasonal variability of salinity in surface layer. Red solid curve (black dashed cycles) for model results (observations). Unit: PSU.
Panels(A–R) for Stations A–R (Fig. 1), respectively.

Regarding the spatial distribution of the model errors, the
percentage bias of the model to observation is mostly smaller
than±5 % (Fig. 16d). The model generally has positive bi-
ases in coastal regions, but negative biases in offshore re-
gions. The model bias can be larger than±10 % in the Both-
nian Bay. The global statistical measures PB,R2, ME and CF
are−2.2, 0.98, 0.98 and 0.02, respectively (Table 3).

3.3 DIN

In the surface layer, the model results at all the 18 stations re-
produce the observed seasonal variability, high values during
winter and low values during summer (Fig. 6). For winter
nutrients, the model underestimates the surface DIN in the
western Baltic Sea (stations A–D) and Gulf of Finland (sta-
tions L–O) but with a fine match in the central Baltic Sea (sta-

tions E–K), Bothnian Sea and Bothnian Bay (stations P–R).
Notably, the underestimation of DIN decreases from Eastern
Skagerrek to the Kategatte and Arkona basin (stations A–D).
The timing of abrupt DIN consumption in model results is
consistent with that in observations at the deep water stations
G–K, but later than that of observations in coastal stations A–
F, M–P and R. The surface statistical measures PB,R2, ME
and CF are−58, 0.10, 0.04 and 19, respectively (Table 2).
The performance indicators, however, show the model qual-
ity of surface DIN is “poor” (Table 4) although as shown
above, the modeled surface DIN does reproduce many im-
portant measured features at the 18 stations.

In the bottom layer, the seasonal pattern of DIN varies be-
tween stations (Fig. 7). Clear pattern is found in the stations
north of 59◦ N (L–R), with high values in winter and low
values in summer. No clear seasonal change patterns can be

Ocean Sci., 8, 683–701, 2012 www.ocean-sci.net/8/683/2012/
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Fig. 5
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Fig. 5.Seasonal variability of salinity in bottom layer. Notations same as in Fig. 4.

Table 4.Performance scores: scores are accorded to Nash and Sutcliffe (1970), OSPAR Commission (1998) and Allen et al. (2007).

Surface layer All layers
PB ME CF PB ME CF

DIN Poor Poor Poor Good Poor Reasonable
DIP Excellent Good Very good Excellent Excellent Very good
Chla Very good Poor Poor Very good Poor Poor
DO Excellent Good Very good Excellent Excellent Very good

identified in stations A–K. The model results are close to the
observed seasonal variations at the shallow water stations C,
D, M, O, P and Q, and reproduce the basic seasonal pattern
at stations B, L, N and R, but are rather off at deep stations
A and F–K. It is noted that the overestimation of the bot-
tom DIN is only found in the central Baltic Sea (stations
G–K). At the shallower stations, the model estimates mean

DIN well, except for a underestimation of the winter DIN in
Golf of Finland (stations L–N). The temporal evolution of
the vertical profile at station I shows that the model can re-
flect the observed seasonal variations only in the upper 20 m.
Model results for DIN (Fig. 13c) are much higher than obser-
vations in layers 80 m below (Fig. 13i). The seasonal varia-
tion is less than that of observations (Fig. 14e). The model

www.ocean-sci.net/8/683/2012/ Ocean Sci., 8, 683–701, 2012
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Fig. 6
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Fig. 6.Seasonal variability of DIN in surface layer. Red solid curve (black dashed cycles) for model results (observations). Unit: mmol m−3.
Panels(A–R) for Stations A–R (Fig. 1), respectively.

generally underpredicts DIN above 30 m, but overpredicts
below 60 m (Fig. 15e). The model bias has a clear horizon-
tal pattern (Fig. 16e). Negative model bias mainly appears in
the Danish Straits, the Polish coasts, the Gulf of Finland and
the Finland coasts, while large positive model bias appears in
the western Baltic proper and the western Bothnian Sea. The
global statistical measures PB,R2, ME and CF are 26, 0.07,
−0.18 and 2.24, respectively (Table 3), which is “poor” for
ME, “reasonable” for CF and “good” for PB (Table 4).

3.4 DIP

In the surface layer, the model reproduces the basic seasonal
variation pattern, with high values during winter and low val-
ues during summer at all 18 stations (Fig. 8). The model re-
sults match observations at offshore stations E–K, and can

only follow the basic seasonal pattern but not resolve the de-
tailed variations at the coastal stations M–P. The model errors
of the surface DIP are similar to that of the surface DIN. The
winter DIP peak values are underestimated in coastal stations
A–D and N–O. The surface statistical measures PB,R2, ME
and CF are−4.7, 0.35, 0.33 and 1.3, respectively (Table 2),
which implies that the model quality is “good” to “excellent”
for the surface DIP in terms of the performance indicators in
Table 4.

In the bottom layer, the model results are close to obser-
vations and can reproduce the observed seasonal variability
at most of the stations, except coastal stations A, J, L and R
(Fig. 9). The temporal evolution of vertical profile shows that
the model can reproduce the observed seasonal variability in
the upper 20 m (Fig. 13d, j) and the model results are close
to observations in layers below 80 m. The seasonal pattern of
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Fig. 7
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Fig. 7.Seasonal variability of DIN in bottom layer. Notations same as in Fig. 6.

model results mostly follows that of observations, except that
the model underpredicts DIP during winter (Fig. 14c). The
model results match well the observations in vertical profiles
(Fig. 15c). The horizontal distribution of model bias is fea-
tured with large positive values in the Bothnian Sea and the
Bothnian Bay (Fig. 16c). The highest PB is up to 100 and
even higher. The global statistical measures PB,R2, ME and
CF are−2.2, 0.87, 0.86 and 0.22, respectively (Table 3). This
indicates that overall performance of the model in simulating
DIP is “excellent” (Table 4).

3.5 Chl a

In the surface layer, the model reproduces the basic sea-
sonal variation pattern with 2 or 3 bloom peaks during April
to October and a recession during November to February
(Fig. 10). The model’s bloom peak values are generally larger

than 3 mg m−3 and the recession values are smaller than
1 mg m−3, which are close to those of observations. The sur-
face statistical measures PB,R2, ME and CF are−14, 0.06,
0.03 and 6.9, respectively (Table 2), which gives a “good”
performance in terms of PB and “poor” in ME and CF (Ta-
ble 4).

The model results show that Chla mostly appear in the
upper layer above 30 m (Fig. 13e), in agreement with obser-
vations (Fig. 13k). The temporal evolution of the vertical pro-
file of observations is quite complex, which the model fails to
reproduce. The spatial means show that the general seasonal
evolution of model results is close to that of observations, but
the model underpredicts spring bloom peak, especially in the
year 2008 (Fig. 14b). The overall vertical profile of model re-
sults is quite consistent with that of observations (Fig. 15b).
The model results have positive biases in the Danish Straits,
the Gulf of Finland and the Bothnian Bay, and negative bias

www.ocean-sci.net/8/683/2012/ Ocean Sci., 8, 683–701, 2012
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Fig. 8
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Fig. 8.Seasonal variability of DIP in surface layer. Notations same as in Fig. 6.

in the Baltic proper (Fig. 16b). As Chla appears mainly in
the upper layers above 20 m, the global statistical measures
are close to the surface statistical measures. The global sta-
tistical measures PB,R2, ME and CF are−14, 0.15, 0.11
and 3.09, respectively (Table 3), which means “very good”
in terms of PB, but “poor” in ME and CF.

3.6 DO

In the surface layer, model results are generally consistent
with observations at all 18 stations in terms of seasonal vari-
ability (Fig. 11). The consistency seems to decrease with
salinity. The model has one month advance of the timing of
the seasonal maxima during spring. The surface statistical
measures PB,R2, ME and CF are−4.0, 0.34, 0.21 and 1.2,
respectively (Table 2), with performance scores ranging from
“very good” to “excellent” (Table 4).

In the bottom layer, the model reproduces seasonal varia-
tions at shallow water stations, but is rather off at the deep
water stations E–K (Fig. 12). The temporal evolution of the
vertical profile shows that the model (Fig. 13f) can reproduce
the seasonal variation of observations (Fig. 13l) in the upper
60 m, but diverges in layers 60–120 m. The observed minima
within euphotic layers appear subsurface during summer,
but the corresponding modeled minima appear at the sur-
face. The modeled summer values (June–October) are gen-
erally higher than observations (Fig. 14f). The general verti-
cal profile of model results is close to that of observations,
but the maximum biases appear around the depth 60–100 m
(Fig. 15f). The model errors are mostly smaller than±20 %
(Fig. 16f). Relative large model errors exist in the western
Baltic proper and the western Bothnian Sea. The global sta-
tistical measures PB,R2, ME and CF are 4.9, 0.80, 0.77 and
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Fig. 9
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Fig. 9.Seasonal variability of DIP in bottom layer. Notations same as in Fig. 6.

0.36, respectively (Table 3), with performance scores ranging
from “very good” to “excellent” (Table 4).

4 Discussions

4.1 Model validity

The comprehensive comparison presented above includes the
model-observation pairs in the order of 104 for almost ev-
ery targeted state variable, thanks to the relatively abundant
observation network in the Baltic Sea. Though the model-
observation comparison is comprehensive, it is not obvi-
ous which aspects of model results are valid as the prod-
ucts of operational oceanography. Literally, model validation
is a general phrase which might generate confusions some-
times and specifically needs clarifications (Rykiel, 1996;

Radach and Moll, 2006). There are no written criteria to
judge whether a model is valid for operational oceanogra-
phy. While we are developing and improving our operational
model system, we follow two criteria: that the quantitative
model skills should be among the right order of this type of
model, and that the model should be able to reproduce major
observed features at interested scales.

As values of ecological parameters can differ a lot across
systems, various statistical measures have been adopted in
assessing model skills in previous studies. The statistical
measures CF, ME and PB are applied in the ecological
model validation studies nearby the Baltic Sea (Radach
and Moll, 2006; Allen et al., 2007; Neumann and Sch-
ernewski, 2008; Lewis and Allen, 2009). According to
these three statistical criteria (Maréchal, 2004; Radach and
Moll, 2006) and the results (Table 3), the model skills for
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Fig. 10.Seasonal variability of Chla in surface layer. Red solid curve (black dashed cycles) for model results (observations). Unit: mg m−3.
Panels(A–R) for Stations A–R (Fig. 1), respectively.

temperature, salinity, DIP and DO are scored either “excel-
lent” or “very good”. The model skill for Chla is only scored
“very good” of PB criterion, but “poor” according to both CF
and ME criteria. The model skill for DIN is scored “good”
of PB criterion, “reasonable” of CF criterion, but “poor” ac-
cording to ME criterion. Although same “scores” do not al-
ways mean same level of model performances, the statistical
measures provide a possibility to inter-compare skills across
models applied in different regions. In comparison with other
models in the Baltic Sea and nearby regions, the overall skills
of this model system are at the same level of these types of
models (Edelvang et al., 2005; Lacroix et al., 2007; Lewis
and Allen, 2009, Almroth and Skogen, 2010).

4.1.1 Model validity of seasonal variability in surface

Observations show spring blooms start in March and last to
late April or early May. The system is featured with abrupt
nutrient consumption for both DIN and DIP and a similar
abrupt increase of phytoplankton biomass. The model cap-
tures these features (Figs. 6, 8, 10), although there is some
timing delay at stations outside of the Baltic proper. After
spring blooms until late October or early November, surface
DIN remains depleted at most of stations, surface DIP how-
ever is only depleted for a rather short duration at the shallow
water stations, but continuously decreases and then gradually
recovers from July at the deep water stations E–K. In autumn,
the system is featured with abrupt nutrient recovery by wind
mixing and autumn blooms of phytoplankton. During win-
ter, nutrient concentrations remain high and phytoplankton
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Fig. 11.Seasonal variability of DO in surface layer. Notations same as in Fig. 6.

biomass remains low. These features are mostly captured by
the model (Figs. 6, 8, 10).

The model-observation biases of Chla in surface layer
seems unusually high in summer at Stations O and P, mean-
while the observed Chl a is unusually low (Fig. 10). The
satellite detected Chla (http://marcoast.dmi.dk/chlorophyll.
php) is used as another reference. The modeled Chla is
compared with the satellite detected Chla (Fig. 17). Both
the modeled and satellite detected Chla are mostly higher
4 mg m−3 in June and July at those two stations, but the ob-
servational Chla is lower than 2 mg m−3, which is unusual
in summer. We think the observations at those two stations
might be problematic. The additional comparison also pro-
vides a reference for stations where in-situ observations are
missed, e.g. at Station Q, and Station E in 2007. All in all, the
modeled Chla is quite consistent with the satellite detected
Chl a, except for winter months. In winter, the satellite de-

tected Chla is generally poor and in much discrepancy with
observations.

4.1.2 Model validity of vertical profile

The model generally reproduces the observed vertical pro-
files except for DIN (Fig. 15). The temporal evolution of ver-
tical profiles at the Gotland Deep station I shows that the
model’s vertical profiles are close to the observed ones, al-
though there is a lot of fine difference (Fig. 13). For example,
the maximum vertical gradient appears at depth of 60 m for
observations (Fig. 13b, c, d, f), but the corresponding model
position is at depth of 80 m (Fig. 13h, i, j, l). It means the
vertical profiles of model at a specific station are not always
consistent with observations, however, the overall pattern of
vertical profiles are generally good. We think that the model
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http://marcoast.dmi.dk/chlorophyll.php
http://marcoast.dmi.dk/chlorophyll.php


696 Z. Wan et al.: Assessment of a physical-biogeochemical coupled model system

Fig. 12

4

670

671

44

Fig. 12.Seasonal variability of DO in bottom layer. Notations same as in Fig. 6.

errors at different horizontal locations probably cancel out
greatly.

4.2 Model errors and likely causes

4.2.1 Insufficient light penetration

The model underestimates the amplitudes of seasonal vari-
ations for Chla, DIN, DIP and DO (Fig. 14b, c, e, f). In
details, the model underestimates the seasonal maxima for
Chl a, DIN, DIP, but overestimates the seasonal minimum
for DO. We think the insufficient light penetration is the
main cause. The observed DIN is depleted down to 40–60 m
(Fig. 13c), but the model results show DIN depletion is only
down to 30 m and the duration of DIN depletion is shorter.
The insufficient light penetration leads to underestimation
of nutrient uptake and phytoplankton biomass. It means the

primary production is underestimated, thus the maximum
DO concentration during spring blooms is underpredicted
(Fig. 11).

4.2.2 Bottom layer vulnerability in deep water areas

The model results reflect a model vulnerability in bottom
layer in deep water areas, i.e. in the Gotland deep. The first,
the modeled bottom salinity are continuously decreasing at
Stations I and J, but there are no clear decreasing trends
in observations (Fig. 5i, j). The second, the observed bot-
tom DIN at the Gotland deep (Station I) has an obvious in-
creasing trend from May of 2007 to July of 2008, however,
the corresponding model results show a decreasing trend
(Fig. 7i). The likewise model-observation discrepancy oc-
curs as to DIP (Fig. 9i). The third, the observed bottom DO
shows a decreasing trend, however, the corresponding model
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Fig. 13.Temporal evolutions of vertical profile in the Gotland deep at station I. Panels(A–F) for observations of temperature, salinity, DIN,
DIP, Chla, DO, respectively; Panels(G–R) for model results of them. Units: temperature –◦C; Chla – mg m−3; DIN, DIP, DO – mmol m−3.

results show an increasing trend (Fig. 12i). The negative DO
gets larger and larger, meaning hydrogen sulphide was taking
place.

The main cause for this model vulnerability is due to the
improper vertical grid. Although the model has 109 vertical
layers for the Baltic Sea (Table 1), they are arranged: 2 m for
the surface layer, 1 m for each of the following 98 layers, and
3 m, 6 m, 8 m, 16 m, 25 m for the 100–104th layer respec-
tively, and 50 m for each of the rest 5 layers. The thickness
of bottom layer at both Stations I and J are 50 m. At first,
the too thick bottom layer introduced errors in the initializa-

tion, as we see the initial bottom DO was set positive due to
grid interpolation (Fig. 12i). Actually, the initial bottom ni-
trate was also wrongly set much higher than observation for
same reason (not presented). The model results in the bot-
tom layer at Station I reflect that the dead organic detritus
was remineralized first through consuming the positive DO
and then through oxidizing the wrongly initialized high ni-
trate. In fact, the real remineralization was occurring through
oxidizing sulphide, as the negative DO increased. The sec-
ond, the too thick bottom layer diluted the effects of water-
sediment flux on the bottom water. That’s why the modeled
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Fig. 14. Overall pattern of seasonal variability. Red solid curve
(black dashed cycles) for model results (observations). Panels(A–
F) for, temperature, Chla, DIP, salinity, DIN, DO, respectively.
Units same as in Fig. 13.

dynamics in the bottom layer is slow, not comparable to the
observed dynamics. The third, too thick bottom might not ac-
curately reproduce the hydrodynamics, as we see the model-
observation discrepancy for salinity (Fig. 5i, j). Inaccurate
hydrodynamics could also exacerbate the model biases.

If the initialization errors are negligible and the real vari-
ations are not dramatic, the model can follow observations
in the bottom layer in deep water areas, as we see at Sta-
tions J and K (Figs. 7, 9, 12). It means the model does not
include fundamental errors. This supports the speculation
that the model vulnerability failed to recaptured the observed
biogeochemical dynamics at the Gotland deep was mainly
caused by the improperly coarse vertical grid. On the other
hand, there might exist another possibility: the remineraliza-
tion rate under anoxic condition might also be slower than
the reality.

4.2.3 Insufficient regional adaptation

Although the horizontally variable N / P ratio improves the
model adaptation for different regions (Wan et al., 2012), the
model shows better performance in offshore regions than in
coastal regions, and better in the Baltic proper than outside
(Fig. 16). The model shows the best performance for the deep
water stations (F–K). This might be caused by the parameter
values being tuned for the Baltic proper (Neumann, 2000;
Neumann et al., 2002). The model’s regional adaptation can
be further improved by allowing more parameters to vary
regionally and refining the boundary inputs, like river load-
ings. Modeled spring blooms at stations outside of the Baltic
proper occur later than observed. Suspended particles are re-

Fig. 15
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Fig. 15. Overall pattern of vertical profile. Notations same as in
Fig. 14.

ported influential for the timing of spring blooms (Tian et
al., 2009).

4.2.4 Uncertainties in forcing and initialization

One of the major model errors in DIN and DIP occur in
coastal regions influenced by the river runoff (station A–E,
L–O in Figs. 6, 8 and 16). The river nutrient loading used in
this study is based on mainly the HBV model output. Due
to lack of observations, a detailed validation of river loading
may not be feasible. Moreover, only big rivers are included.
Recent study found that small rivers may have a significant
contribution to the total river nutrient loading to the Baltic
Sea (unpublished). For ecological modeling, including nutri-
ent loads from smaller rivers will improve not only the total
amount of nutrient inputs to the Baltic Sea but also the loca-
tions of the riverine nutrient sources.

Some impacts from improper initial conditions may last
for quite a long period, even for the whole simulation dura-
tion, especially in deep areas and near bottom. For example,
the large initial errors for bottom DIN and DO at stations G,
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Fig. 16. Horizontal pattern of model’s percentage errors. Panels
(A–F) for temperature, Chla, DIP, salinity, DIN, DO, respectively.
Units %.

J, K last for quite a long period (Figs. 7 and 12). The com-
parison between vertical profiles of model results and those
of observations reflects obvious differences for DIN and DO
at the beginning of simulation. The initial model errors only
decay slowly (Fig. 13c, f, i, l). The strong permanent strati-
fication of salinity of observations is located at the depth of
60 m, while the corresponding stratification of model results
is at the depth of 80 m, none of them even changes at all dur-
ing two years of simulation (Fig. 13b, h). This might reflect
that insufficient vertical mixing slows down the initial errors
decaying.

4.3 Assessment schemes

Statistical measures and point-to-point comparison are the
common schemes to assess model skills (Lacroix et al., 2007;
Lewis and Allen, 2009; Ruzicka, 2011). Statistical measures
can use all available data and avoid subjective involvement in
selecting observed data. However, there are two caveats that
we must be aware of. First, statistical measures cannot ensure
a proper representation for each observed data. For exam-
ple, the statistical measures show the model-observation fit is
rather poor for DIN in surface (Table 2), however, the point-
to-point comparison shows that model results can reflect
the basic seasonal variability (Fig. 6). This inconsistency is
caused by extreme outliers in data set, like the data from
estuaries. In some other cases, equal representation of each
data is not reasonable. For example, two observations respec-
tively from densely and sparsely sampled areas (in time or
space) should not equally contribute to the spatial mean. Sec-
ond, statistical measures are usually used to show the overall

model skill, rather than describe model skills along different
dimensions. The point-to-point comparison is very effective
to analyze the model performance at the selected station, es-
pecially to evaluate model robustness to reproduce a certain
dynamic process, provided time-series of observed data. The
shortcoming of the point-to-point comparison includes the
following four aspects. First, the point-to-point comparison
has a limited representation, as the ecological properties can
differ a lot in various sub-regions. Second, the point-to-point
comparison is limited to the stations with time-series of data,
but other data, e.g. those from cruises will not be used. Third,
it is inevitable to have subjective involvement in selecting
stations and layers, which is necessary for model developer’s
sake of good representation to analyze model performance,
but not appreciable for users/customers who are interested
in an objective assessment of the quality of the operational
products. Finally, it is inconvenient to implement a point-to-
point comparison at too many stations.

The comprehensive comparison scheme (Wan et al., 2011)
uses all available observations in the entire model domain.
This scheme deploys a grid in the spatial-temporal domain
to properly distribute data representations. The gridded data
from all resources makes it possible to analyze the model
skills along different dimensions (Figs. 14, 15, 16). There is
no subjective involvement in selecting data. Thus, the com-
prehensive validation scheme can provide a relatively rigor-
ous and throughout assessment of model skills along dif-
ferent dimensions. However, the comprehensive validation
scheme will only be effective for systems with abundant ob-
servations. Thus, the comprehensive validation cannot re-
place the point-to-point comparison. It is important to de-
ploy the traditional point-to-point comparison and statistical
measures along with the comprehensive validation in order
to assess model skills quantitatively.

5 Summary

Following the inter-comparison experiments of the MyOcean
project, the model system with the latest feature (Wan et
al., 2012) is assessed for its skills in providing biogeochemi-
cal information service. The abundant observation data in the
Baltic Sea allow us to implement a comprehensive model val-
idation scheme, which makes use of all available observation
data to assess model skills along each dimension. The com-
prehensive model validation scheme combined with the tra-
ditional point-to-point comparison and statistical measures
makes it possible to provide a relatively rigorous assessment
of model skills and to identify the major model errors and
the main causes behind. According to criteria used in the
Baltic Sea and nearby regions (Maréchal, 2004; Radach and
Moll, 2006), model skills for temperature, salinity, DIP and
DO is scored either “excellent” or “very good”. The model
skill for Chl a is only scored “very good” on the PB criterion,
but “poor” according to both CF and ME criteria. The model
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Fig. 17.Inter-comparison among modeled, satellite detected and in-situ observed Chla in surface layer. Blue solid curve for satellite detected
results. Other notations same as in Fig. 10.

skill for DIN would be scored “good” on the PB criterion,
“reasonable” on the CF criterion, but “poor” according to the
ME criterion.

This assessment reflects that the model errors are mainly
caused by insufficient light penetration, excessive organic
particle export downward, insufficient regional adaptation
and uncertainties in riverine nutrient loading, physical forc-
ing and initial fields. This study highlights the importance
to apply multiple schemes (the comprehensive validation
scheme, the point-to-point comparison and the statistical
measures) in order to assess model skills rigidly and to iden-
tify main causes for major model errors effectively.
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