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Abstract. We consider the estimation of the grazing prefer-
ences parameters of zooplankton in ocean ecosystem mod-
els with ensemble-based Kalman filters. These parameters
are introduced to model the relative diet composition of zoo-
plankton that consists of phytoplankton, small size-classes of
zooplankton and detritus. They are positive values and their
sum is equal to one. However, the sum-to-one constraint can-
not be guaranteed by ensemble-based Kalman filters when
parameters are bounded. Therefore, a reformulation of the
parameterization is proposed. We investigate two types of
variable transformations for the estimation of positive sum-
to-one constrained parameters that lead to the estimation of a
new set of parameters with normal or bounded distributions.
These transformations are illustrated and discussed with twin
experiments performed with the 1-D coupled model GOTM-
NORWECOM with Gaussian anamorphosis extensions of
the deterministic ensemble Kalman filter (DEnKF).

1 Introduction

The development of numerical ocean biogeochemical
models over the last two decades has led to more and
more complex representations of the interactions between
the different trophic levels, notably between different plank-
ton species at the base of the food chain. While the diet of
zooplankton is relatively simply represented in the earliest
NPZD models – the unique zooplankton group (Z) is feeding
only on the unique phytoplankton group (P) (see for example
Evans and Parslow(1985)) – the addition of multiple plank-
ton functional types (PFT) for the phyto- and zooplankton

aiming at representing different plankton functional groups
in the ecosystem (e.g. diatoms, calcifying algae or microzoo-
plankton) leads to more complex diets and grazing prefer-
ences must be added. These parameters are always positive,
and, although not compulsory, usually add up to one. We re-
fer to the review ofGentleman et al.(2003) for more de-
tails concerning the common mathematical formulations of
the zooplankton grazing in ocean biological models and their
impact on model dynamics.

Grazing preferences specify the direction of the feeding in
the space of foods, and so the direction of the transfer from
PFTs (the food) to the zooplankton PFTs (the feeder). There-
fore, their impact on the distribution of the different PFTs
obtained from a model simulation can be significant. For ex-
ample,Buitenhuis et al.(2010) observed in their global bio-
geochemical model that “the phytoplankton functional type
distributions and the proportions of primary production that
are exported or remineralized” were sensitive to the micro-
zooplankton grazing preferences. In the same way,Buiten-
huis et al.(2006) conclude their work by suggesting that
the representation of mesozooplankton would notably ben-
efit from the improvement of their grazing preferences by
taking into account the food quality. For large-scale applica-
tions like configurations covering a whole ocean basin, this
results in the potential need of a fine spatial tuning of the
grazing preferences in order to take into account the adapta-
tion of zooplankton species to their local environments (Gen-
tleman et al., 2003). Direct measurements of grazing prefer-
ences for the different zooplankton species would help to op-
timize the model parameters representing these preferences.
However, field data are sparse; the information provided by

Published by Copernicus Publications on behalf of the European Geosciences Union.



588 E. Simon et al.: Estimation of zooplankton grazing preferences with the DEnKF

the experiments realized in the laboratory does not cover the
large spectrum of conditions found in nature (Buitenhuis et
al., 2010), and available observations might not be consistent
with each other (Buitenhuis et al., 2006).

Multivariate data assimilation methods like ensemble-
based Kalman filters make possible the estimation of vari-
ables and parameters that are not observed. State variables
and parameters can be estimated simultaneously simply by
augmenting the state vector with the parameters to estimate
(Anderson, 2001; Evensen, 2009). However, the efficient ap-
plication of ensemble-based data assimilation methods like
the ensemble Kalman filter (EnKF;Evensen, 1994, 2003) to
ocean ecosystem models is a challenging issue. Beside the
nonlinearity of the model, most variables and parameters are
strictly positive, producing non-Gaussian state and parame-
ter distributions thereby breaking an important assumption
of the linear analysis, and leading to a loss of optimality
of Kalman filters. A solution to perform Kalman filter esti-
mation of non-Gaussian variables is the introduction of non-
linear changes of variables – called anamorphosis functions –
in order to realize the analysis step with Gaussian distributed
transformed variables (Bertino et al., 2003). This approach
has proven to be easily applicable in realistic configurations
(Simon and Bertino, 2009) and allows the estimation of bi-
ased parameters (Doron et al., 2011; Zhou et al., 2011; Simon
and Bertino, 2012).

In this study, we focus on the problem of estimating posi-
tive sum-to-one constrained parameters. Our aim is to assess
the ability of ensemble-based Kalman filters to estimate zoo-
plankton grazing preferences in ocean biogeochemical mod-
els. To overcome the issues that ensemble-based Kalman fil-
ters cannot guarantee the sum-to-one constraint when a con-
straint of positiveness applies on the parameters, we investi-
gate two reformulations for which these two constraints are
implicit.

The outline of the paper is as follows. We present the
different changes of variables for the estimation of positive
sum-to-one constrained parameters in Sect. 2. We describe
our experimental framework in Sect. 3. Results of the meth-
ods are discussed in Sect. 4, and we present our conclusion
in Sect. 5.

2 Estimation of positive sum-to-one constrained
parameters with ensemble-based Kalman filters

In this section, we describe the general problem of es-
timating positive sum-to-one constrained parameters with
ensemble-based Kalman filters and the issues raised by these
constraints. We present a formulation previously suggested
by Gelman (1995) to estimate positive sum-to-one con-
strained parameters in the framework of pharmacokinetics
(Gelman et al., 1996). Since the number of food preferences
that need to be calibrated can be large in complex ocean bio-
logical models (numerous different feeding and fed species),

we aim at reducing the number of parameters to estimate. For
this reason, we suggest a new formulation that introduces a
change of variables based on hyperspherical coordinates.

2.1 Definition of the problem

Let (πi)i=1:N be theN parameters that we wish to esti-
mate. They are positive:

∀i = 1 : N πi > 0, (1)

and their sum is equal to one:

N∑
i=1

πi = 1. (2)

They can be estimated with ensemble-based Kalman filter
by augmenting the analysis state vector with these parame-
ters. Unfortunately, the conservation of linear properties in-
trinsic to the ensemble Kalman filter (Evensen, 2003) is not
guaranteed for the parameters due to the constraint of posi-
tiveness. The truncation of negative values that results from
the Kalman analysis can lead to parameter estimates that
do not respect the linear sum-to-one property (Eq.2). Even
if the Gaussian anamorphosis extension of ensemble-based
Kalman filters makes the estimation possible of positive pa-
rameters (Simon and Bertino, 2012), nonlinear transforma-
tions do not ensure that they still sum to one.

2.2 Dirichlet distribution and Gelman’s formulation

A prior distribution forN positive random parameters with
the sum-to-one constraint is the Dirichlet distribution of or-
der N . The (πi)i=1:N can be obtained fromN independent
gamma distributed random variables(φi)i=1:N as follows:

∀i = 1 : N,πi =
φi

N∑
k=1

φk

with φi ∼ 0(θi,1). (3)

Then, the parameters(φi)i=1:N are estimated by assimilat-
ing observation with ensemble-based Kalman filters, and the
values of the original parameters(πi)i=1:N are obtained from
equation (3). Because the parameters(φi)i=1:N are not Gaus-
sian distributed, we suggest to transform them with the Gaus-
sian anamorphosis during the analysis.

Another possibility is to substitute the gamma distribu-
tion by the log-normal distribution as suggested byGelman
(1995):

∀i = 1 : N,πi =
eφi

N∑
k=1

eφk

with φi ∼N (θi,6i). (4)
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In that case, the(φi)i=1:N fulfill the Kalman filtering as-
sumption of Gaussian distributed variables and do not require
anamorphosis.

Due to the symmetrical roles played by the parameters
(φi)i=1:N in both formulations, the estimation of the param-
eters(πi)i=1:N is insensitive to the mapping between the
parameters(φi)i=1:N and (πi)i=1:N in the change of vari-
ables. However, these approaches do not allow for param-
eters(πi)i=1:N equal to zero, meaning that one food type
could not be completely removed by assimilation. This might
be undesirable in large-scale configurations for which the
diet composition can significantly change from one region
to another.

2.3 The hyperspherical coordinate system

The(πi)i=1:N can be seen as a position vector in the Carte-
sian coordinates of a pointπ in RN . A natural idea is to rep-
resent this point in another coordinate system. We suggest to
introduceN −1 angles(φi)i=1:N−1 to representπ in the hy-
perspherical coordinate system that generalizes the spherical
coordinate in dimensionN . The use of this coordinate system
to remove constraints of sum has also been introduced for ge-
ometrical applications (Nurmela, 1995). An analogy with a
coordinate system describing a point on a sphere shows that
2 angles, longitude and latitude, are required to characterize
the position of a point on the surface in 3 dimensions.



π1 = cos2(π
2 φ1)

∀i = 2 : N − 1,

πi =

i−1∏
k=1

sin2(
π

2
φk)cos2(

π

2
φi)

πN =

N−2∏
k=1

sin2(
π

2
φk)sin2(

π

2
φN−1)

(5)

with (φi)i=1:N−1 N − 1 random variables distributed on the
segment line[0,1]. By definition, the(πi)i=1:N are positive
and it can be easily shown that their sum is equal to one.

Again, we suggest to transform the parameters
(φi)i=1:N−1 with the Gaussian anamorphosis functions
during the Kalman filter analysis.

One benefit of this approach is the reduction of the number
of parameters to estimate fromN to N − 1, the(φi)i=1:N−1
instead of the(πi)i=1:N . This is certainly useful for com-
plex systems involving numerous unknown parameters to es-
timate. However, the estimated values of the(πi)i=1:N can
be sensitive to the choice of the mapping to the(φi)i=1:N−1
due to the asymmetry of the transformation. For our specific
problem of estimating zooplankton grazing preferences, it
means that the results might depend on the choice of assign-
ing the types of food to the(πi)i=1:N .

2.4 Prior distribution of the (φi)i=1:N−1 in the
hyperspherical coordinate system

A significant issue lies in the choice of the distributions
of the parameters(φi)i=1:N−1. When the distributions of the
parameters(πi)i=1:N are known or samples are available, the
inversion of the hyperspherical coordinate system can pro-
vide prior values for the parameters(φi)i=1:N−1. This can

be done recursively starting fromφ1 =
2

π
arccos(

√
π1) and

so on. This approach can also be applied to estimate posi-
tive sum-to-one constrained state variables evolving in time
accordingly to a model dynamics. The variable transforma-
tions before and after the analysis using the inverse of Eq. (5)
and Eq. (5) guarantee that analyzed variables fulfill both con-
straints.

Another approach consists in focusing on the direct mod-
eling of the(φi)i=1:N−1. This can be an option when too lit-
tle information on the(πi)i=1:N is available. We suggest to
base this choice on the ability to specify prior values and
uncertainties for the(πi)i=1:N – their prior expected value
(E[πi])i=1:N and variance(E[(πi − E[πi])

2
])i=1:N – rather

than focusing on their distributions. This leads to the choice
of prior values and uncertainties of the(πi)i=1:N , for which
the parameters of the distributions of the(φi)i=1:N−1 will
be tuned accordingly. For example, in our particular frame-
work, it would be interesting to start the estimation process
with (πi)i=1:N that have the same expected value1

N
, because

this case corresponds to no particular feeding preferences in
the diet of the zooplankton species.

We assume that the parameters(φi)i=1:N−1 are inde-
pendent and follow marginal distributions(Di(2i))i=1:N−1,
which can differ. The prior values for the expectation and
variances of the parameters(πi)i=1:N are obtained by an ad-
equate tuning of theN − 1 parameter sets(2i)i=1:N−1. Let
(mi)i=1:N and(σ 2

i )i=1:N be the target means and variances
of the (πi)i=1:N . Due to the sum-to-one constrain, the ex-
pected value and variance of one parameter (πN without loss
of generality) are determined by the choice of the values for
theN − 1 other parameters(πi)i=1:N−1.

2.4.1 Specification of the expected values of the
(πi)i=1:N

The specification of the expected values(mi)i=1:N−1 leads
to the resolution ofN − 1 nonlinear equations(Si)i=1:N−1:

Find (2i)i=1:N−1 such that

1

4
(8φ1(π) + 8φ1(−π)) = m1 −

1

2

∀i = 2 : N − 1,
1

4
(8φi

(π) + 8φi
(−π)) =

mi

1−

i−1∑
k=1

mk

−
1

2

(6)
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with 8φi
the characteristic function of the parameterφi .

The derivation of these equations is detailed in
AppendixA.

The existence of solutions to this system of equa-
tions (Si)i=1:N−1 depends on the chosen distributions
(Di)i=1:N−1 and can be found numerically.

2.4.2 Specification of the variances of the(πi)i=1:N

The specification of the variances(σ 2
i )i=1:N−1 leads to the

resolution ofN − 1 nonlinear equations(6i):
Find (2i)i=1:N−1 such that

1

16
(8φ1(2π) + 8φ1(−2π)) =

−
3

8
+ σ 2

1 + m2
1 −

1

4
(8φ1(π) + 8φ1(−π))

∀i = 2 : N − 1,
1

16
(8φi

(2π) + 8φi
(−2π)) = −

3

8
−

1

4
(8φi

(π) + 8φi
(−π))

+
σ 2

i + m2
i

i∑
k=1

(−2)k−1(σ 2
i−k + m2

i−k)

k−1∏
l=1

1

4
(8φi−l

(π) + 8φi−l
(−π))

(7)

with the conventions σ 2
0 + m2

0 = 1 and
0∏

l=1

1

4
(8φi−l

(π) + 8φi−l
(−π)) = 1. The values of

(
1

4
(8φi

(π) + 8φi
(−π)))i=1:N−1 depend on the(mi)i=1:N−1

only and are given by Eq. (6). The derivation of these equa-
tions is detailed in AppendixB.

Again, the existence of solutions to this system of
equations(6i)i=1:N−1 depends on the chosen distributions
(Di)i=1:N−1 and can be found numerically.

2.4.3 Example with the triangular distribution

In order to illustrate the approaches described above, we
specify an equal expected value for the(πi)i=1:N following
§2.4.1. It corresponds to the strategy applied for estimating
the grazing zooplankton preferences in the numerical exper-
iments shown in §3 and §4. First, we must choose a distribu-
tion for the parameters(φi)i=1:N−1 and we assume that they
follow a triangular distribution:

∀i = 1 : N − 1,φi ∼ T (0,1,θi). (8)

with θi ∈ [0,1] the mode of the distribution. The probabil-
ity density function reads

∀i = 1 : N − 1,fφi
(φ) =


2φ

θi

, for 0 6 φ 6 θi

2(1− φ)

1− θi

, for θi 6 φ 6 1

(9)

The characteristic function8φi
is given by

∀i = 1 : N − 1,

∀t ∈ R, 8φi
(t) = −2

(1− θi) − ejθi t + θie
j t

π2θi(1− θi)
,

(10)

with j2
= −1.

Then, a prior equal value for the parameters(πi)i=1:N

is obtained by an adequate tuning of theN − 1 modes
(θi)i=1:N−1. For that particular case, one has

∀i = 1 : N, mi =
1

N
. (11)

And Eq. (6) reads

∀i = 1 : N − 1,

(Si)
cos(πθi) + 2θi − 1

π2θi(1− θi)
+

N − i − 1

2(N − i + 1)
= 0.

(12)

The parameters(φi)i=1:N−1 distributed according to
(T (0,1,θi))i=1:N−1, with the (θi)i=1:N−1 solutions of the
system defined by Eq. (12), lead to equal expected values
for the(πi)i=1:N .

However, it can be shown that solutions exist if and only
if

N − i <
π2

+ 4

π2 − 4
∼ 2.36 (13)

It means that only the equations(SN−1) and(SN−2) admit
a solution. In practice, it will not be possible to obtain equal
prior values of the(πi)i=1:N for N > 4 when using triangular
distributed parameters(φi)i=1:N−1.

Finally, it is worthy to note that it is not possible to choose
the variances of the(πi)i=1:N after having specified their ex-
pected values, because the triangular distribution has only
one parameter: its mode.
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2.5 Truncated Gaussian distribution and linear
inequality constraints

Another strategy to reduce the number of parameters to
estimate consists in formulating the problem simply us-
ing linear inequality constraints. Without loss of general-
ity, we choose to only estimate the firstN − 1 parameters
(πi)i=1:N−1 and the last parameter is given by the sum-

to-one constraint:πN = 1−

N−1∑
i=1

πi . The problem amounts

to estimating the(πi)i=1:N−1 under theN inequality con-
straints∀i = 1 : N,πi > 0.

This can be done with the truncated Gaussian filter sug-
gested byLauvernet et al.(2009) under the assumption that
the(πi)i=1:N−1 have a truncated Gaussian distribution. How-
ever, the application of this filter is not as easy in practice
than the simple variable transformations suggested in the
previous sections and can be computationally expensive for
large systems due to the use of a Gibbs sampler to sample
the truncated-Gaussian distribution and to estimate its loca-
tion vector and scale matrix.

3 Experimental framework

3.1 The 1-D ocean ecosystem model

The experiments were performed in a 1-D vertical config-
uration of the coupled model GOTM-NORWECOM repre-
sentative of the station Mike (66◦ N, 2◦ W) in the North Sea.

The 1-D ocean water column model is the General Ocean
Turbulence Model (GOTM;Burchard et al., 1999, 2005; Um-
lauf and Burchard, 2005) that transports physical quanti-
ties with hydrodynamic primitive equations and turbulence
schemes. A relaxation towards temperature, salinity and hor-
izontal velocity profiles from the TOPAZ1 system (Bertino
and Lisæter, 2008) is used with a relaxation time of 14 days.
The vertical advection velocity is specified to zero. The depth
is 2034 m, and the model uses a Cartesian grid of 55 vertical
levels with a minimum thickness of 1 m at the top level, in-
creasing exponentially towards the bottom.

The NORWegian ECOlogical Model system (NORWE-
COM; Aksnes et al., 1995; Skogen and Søiland, 1998) is cou-
pled to GOTM. The current version of this model includes
two classes of phytoplankton (diatom and flagellates), two
classes of zooplankton (meso- and microzooplankton) de-
rived with the same formulation from the model ECOHAM4
(Pätsch et al., 2009), three types of nutrients (inorganic ni-
trogen, phosphorus and silicon) and detritus (nitrogen, phos-
phorus), biogenic silica, and oxygen, so that the ecosystem
state vector is made of 11 variables. The chlorophylla con-
centration (CHLA) is computed from the model diatoms and

1http://topaz.nersc.no

flagellates concentrations (DIA and FLA) by Eq. (14):

CHLA =
DIA + FLA

0.8
(14)

The constant conversion factor 0.8 mmol N mg−1 Chl a is
added to obtain the chlorophyll concentration in mg m−3, the
standard unit of data produced from satellite, from the phyto-
plankton concentration in mmol N m−3. The mesozooplank-
ton (MES) feed on diatoms (one assumes that the flagellates
are too small to be fed on by mesozooplankton), detritus
(DEN) and microzooplankton (MIC). The microzooplank-
ton feed on both classes of phytoplankton (flagellates and
diatoms) and on detritus. Both classes of zooplankton have
the choice of their food among three variables of the model
and compete against each other for feeding on detritus and
diatoms. For both classes of zooplankton, the formulation of
the grazingGi=1:3 on the variablei = 1 : 3 reads

∀i = 1 : 3,Gi = g
πiX

2
i

N∑
k=1

πkXk(Xk + K1/2)

Z (15)

with Z the concentration of meso- or microzooplankton
feeder,(Xk)k=1:3 the concentration of the different variables
they feed on,(πk)k=1:3 the grazing preferences,K1/2 the
half-saturation constant for ingestion by zooplankton and
g the zooplankton maximum growth rate. The second or-
der modified Patankar-Runge-Kutta scheme is used for the
source and sinks dynamics.

The dynamics of phytoplankton blooms in the first 100 m
in the reference solution is illustrated in Fig.1.

3.2 Data assimilation experiments

In order to assess the performances of the two formula-
tions, twin experiments have been conducted: the true state
and the observations are produced by a deterministic simu-
lation of the model involving meso- and microzooplankton
grazing preferences that differ from equal preferences. The
values of preferences used to build the reference solution will
be called “true” values in the following. These values have
been arbitrary chosen and are summarized in Table1.

The observations are the chlorophyll in the two first layers
of the model and are defined as follows:

yn = Hnxt
n × E, with E ∼ 0(

1

σ 2
o

,σ 2
o ), σo = 0.3 (16)

We construct the observations by multiplying the true surface
chlorophyll with a gamma distributed observation error with
a standard deviation around 30 % (average should be 1).

The observation are assimilated with a Gaussian anamor-
phosis extension of the deterministic ensemble Kalman filter
(DEnKF). This method is based on the DEnKF (Sakov and
Oke, 2008) and consists in introducing Gaussian anamorpho-
sis functions in order to realize the analysis step with Gaus-
sian distributed transformed variables. More details can be

www.ocean-sci.net/8/587/2012/ Ocean Sci., 8, 587–602, 2012
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Chlorophyll

Nitrate

Fig. 1. Reference solution: time evolution of chlorophyll
and nitrate in the upper 100m from 1 January 2000 to 31
December 2004.

true state and the observations are produced by a deter-
ministic simulation of the model involving meso- and
microzooplankton grazing preferences that differ from
equal preferences. The values of preferences used to
build the reference solution will be called ”true” val-
ues in the following. These values have been arbitrary
chosen and are summarized in table 1.

The observations are the chlorophyll in the two first
layers of the model and are defined as follows

yn = Hnxtn×E, with E ∼ Γ(
1
σ2
o

, σ2
o), σo = 0.3(16)

We construct the observations by multiplying the true
surface chlorophyll with a Gamma distributed obser-
vation error with a standard deviation around 30% (av-
erage should be 1).

The observation are assimilated with a Gaussian
anamorphosis extension of the deterministic ensem-
ble Kalman filter (DEnKF). This method is based on
the DEnKF (Sakov and Oke, 2008) and consists in in-
troducing Gaussian anamorphosis functions in order
to realize the analysis step with Gaussian distributed
transformed variables. More details can be found in
Simon and Bertino (2012). The state and parameter

estimations are conducted jointly by augmenting the
state vector with the parameters that are estimated. In
this study, the state vector is made of all the vertical
components of the ten state variables (the oxygen is
not corrected during the analysis) and the parameters
(φi)i=1:n, n depending on the formulation that is cho-
sen. In the Gelman formulation, we take six parame-
ters (three parameters controlling the preferences times
two zooplankton types). In the spherical formulation,
we take four parameters (two parameters controlling
the preferences times two zooplankton types).

The ensemble contains 100 members. The back-
ground state ensemble is generated by adding a
truncated-Gaussian perturbation to the solution x(t =
0).

∀i = 1 : 100, xib = max(0,x(t = 0)× (1+bi))(17)

with b ∼ N (0, σ2
b ). σb is chosen to be equal to 0.3

for all the state variables. In the Gelman formulation,
the parameter ensemble is initialized by assuming that
the parameters (φi)i=1:3 are normally distributed ac-
cording to N (0, σ = 2). In the spherical formulation,
we assume that the parameters (φi)i=1:2 follow a tri-
angular distribution:

∀i = 1 : 2, φi ∼ T (0, 1, θi). (18)

with θi ∈ [0, 1] the mode of the distribution. The
triangular distribution is simulated from the uniform
distribution thanks to the MINMAX method suggested
by Stein and Keblis (2009). The prior values for the
parameters (πi)i=1:3 are obtained by an adequate tun-
ing of the 2 modes (θi)i=1:2. Equal preferences are
obtained by solving the two nonlinear equations:

(S1)
cos(πθ1) + 2θ1 − 1

π2θ1(1− θ1)
+

1
6

= 0.

(S2)
cos(πθ2) + 2θ2 − 1

π2θ2(1− θ2)
= 0.

(19)

A solution to the equations (Si)i=1:2 exists and can
be found numerically: θ1 = 0.8905 and θ2 = 0.5. The
mapping of the preferences in eq. 5 is as follows:
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This choice is motivated by our wish to respect the
symmetry between the two classes of phytoplankton

Fig. 1.Reference solution: time evolution of chlorophyll and nitrate
in the upper 100m from 1 January 2000 to 31 December 2004.

found in Simon and Bertino(2012). The state and parame-
ter estimations are conducted jointly by augmenting the state
vector with the parameters that are estimated. In this study,
the state vector is made up of all the vertical components of
the ten state variables (the oxygen is not corrected during the
analysis) and the parameters(φi)i=1:n, n depending on the
formulation that is chosen. In the Gelman formulation, we
take six parameters (three parameters controlling the prefer-
ences times two zooplankton types). In the spherical formu-
lation, we take four parameters (two parameters controlling
the preferences times two zooplankton types).

The ensemble contains 100 members. The background
state ensemble is generated by adding a truncated-Gaussian
perturbation to the solutionx(t = 0):

∀i = 1 : 100, xi
b = max(0,x(t = 0) × (1+ bi)) (17)

with b ∼N (0,σ 2
b ). σb is chosen to be equal to 0.3 for all

the state variables. In the Gelman formulation, the parame-
ter ensemble is initialized by assuming that the parameters
(φi)i=1:3 are normally distributed according toN (0,σ = 2).
In the spherical formulation, we assume that the parameters
(φi)i=1:2 follow a triangular distribution:

∀i = 1 : 2,φi ∼ T (0,1,θi). (18)

with θi ∈ [0,1] the mode of the distribution. The triangu-
lar distribution is simulated from the uniform distribution
thanks to the MINMAX method suggested byStein and Ke-
blis (2009). The prior values for the parameters(πi)i=1:3 are
obtained by an adequate tuning of the 2 modes(θi)i=1:2.
Equal preferences are obtained by solving the two nonlinear
equations:

(S1)
cos(πθ1) + 2θ1 − 1

π2θ1(1− θ1)
+

1

6
= 0.

(S2)
cos(πθ2) + 2θ2 − 1

π2θ2(1− θ2)
= 0.

(19)

A solution to the equations(Si)i=1:2 exists and can be
found numerically:θ1 = 0.8905 andθ2 = 0.5. The mapping
of the preferences in Eq. (5) is as follows:

Mesozooplankton Microzooplankton

πDIA = cos2(
π

2
φ1)

πMIC = sin2(
π

2
φ1)cos2(

π

2
φ2)

πDET = sin2(
π

2
φ1)sin2(

π

2
φ2)



πDET = cos2(
π

2
φ1)

πFLA = sin2(
π

2
φ1)cos2(

π

2
φ2)

πDIA = sin2(
π

2
φ1)sin2(

π

2
φ2)

(20)

This choice is motivated by our wish to respect the symme-
try between the two classes of phytoplankton in the defini-
tion of the observed variable (same weight for the FLA and
DIA variables when computing the chlorophyll concentra-
tion). Since mesozooplankton only eat one type of phyto-
plankton (diatoms),π1 is associated withπDIA . The micro-
zooplankton feed on the two classes of phytoplankton respec-
tively; we associateπ2 andπ3 with πDIA andπFLA , respec-
tively. This asymmetry, which appears only in the spherical
formulation, may create a dependence of the results on the
parameter assignment. However, experiments with different
assignments between the microzooplankton grazing prefer-
ences and the(πi)i=1:3 led to similar results (not shown). We
noted a slight decrease (increase) in the RMS errors in the
estimates of the microzooplankton (mesozooplankton) graz-
ing preferences compared to the results shown in the follow-
ing. Nevertheless, the observed robustness of the estimation
to the asymmetry of the transformation could be application-
dependent and further experiments might be required in a dif-
ferent framework.

Gaussian anamorphosis functions are applied to state vari-
ables and parameters except for parameters transformed by
the Gelman formulation. In the latter case, the(φi)i=1:3 are
already normal-distributed and Gaussian anamorphosis is not
necessary (see Sect. 2). The strategy to build the anamor-
phosis functions differs between the chlorophyll and the
other state variables and parameters (if necessary) and is
a variation of the hybrid approach described inSimon and
Bertino (2012). Since the chlorophyll concentration in the
ocean is usually assumed to have a log-normal distribution
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(Campbell, 1995), its anamorphosis function is the logarith-
mic function. For other state variables and the parameters,
anamorphosis functions are built from the empirical marginal
distributions of the variables. The empirical anamorphosis
functions are computed from a sample of the forecast ensem-
ble and are then piecewise linearly interpolated to obtain the
Gaussian anamorphosis functions. Their tails are linear and
their last segments extrapolated towards specified biological
minimum and maximum values. The spherical formulation
introduces parameters that are bounded on both sides and for
which the odds to reach the bounds during the assimilation
are not null. The succession of analysis steps can build-up
discontinuities (“atoms”) of the distribution at the bounds
which are not handled by the piecewise linear anamorphosis
function – zero slopes are not invertible(Simon and Bertino,
2012). Extending the first and last segments until they in-
clude the first values outside of the atoms seems to resolve
the issue. The observation errorεo is assumed to have a log-
normal distribution: log(εo) ∼N (0,σ 2

o ) with σo = 0.3. It re-
sults in a normal-distributed observation error for the trans-
formed observations with a standard deviation equal to 0.3.

The model includes perturbations on the phyto- and zoo-
plankton components of the state variables. Similarly to
the generation of the background state variables, truncated-
Gaussian random variables are added every twelve hours.
The standard deviation of these perturbations decreases lin-
early towards zero in the eight deepest layers in order to
obtain a smooth transition between the deep layers and the
bottom layer where no perturbations are applied. Further-
more, no perturbations are added to the parameters during
the model integration, so they remain constant between two
analysis steps.

Starting from the background state variables and param-
eters, a one-year ensemble simulation is performed with-
out assimilation. Assimilation cycles are then performed
over four years with a frequency of one analysis step every
seven days. This frequency for observing the system is rel-
atively low considering the short time scales of the bloom
phenomenon. Figure2 represents the time evolution of the
chlorophyll concentration in the two first top layers in the
reference solution and in the assimilated observations. We
note that during the blooms the 7-day sampling of the refer-
ence run leads to only one observation during the first peak
(diatom bloom) and only one or two observations during the
second peak (flagellate bloom). Furthermore, the maximum
values reached by the concentrations in the reference solu-
tion during these two peaks are generally not captured by
the observations. Blooms are mostly represented in the ob-
servations as two Dirac pulses with highly uncertain ampli-
tude and timing. This usually results in difficulties for the
ensemble-based Kalman filter methods to correctly estimate
the state of the system, and notably to estimate some param-
eters. This is a real issue for ocean ecosystem models: the
weak production (apart from the bloom periods) results in
low innovations and spread of the chlorophyll concentration

in the ensemble, and weak corrections by the filters during
most of the year. An increase of the sampling frequency to
four days would be enough to obtain a good representation
of blooms in this simple 1-D configuration, more specifically
the transition phases, and potentially improve the quality of
the estimation. Nevertheless, assimilating observations more
frequently might not be affordable in realistic 3-D configura-
tions due to the computational costs that it implies. The use
of an asynchronous version of the EnKF (Sakov et al., 2010)
would be a solution to tackle these issues but is out of the
scope of this study.

In order to check the robustness of the estimation against
random initial conditions and observation errors, we repeated
the experiment 20 times. That is, 20 initial ensembles (com-
bined state-parameter background) and 20 sets of observa-
tions were generated. Nevertheless, the different assimilation
systems used the same state component of the background
ensemble and observations for each of the 20 realizations.
The diagnostics shown in Sect.4 are averaged over these 20
experiments.

4 Data assimilation results

4.1 Overall error evolution

We are interested in the time evolution of the relative root
mean square error (RMS) and the relative ensemble standard
deviations (STD) of the solution of the two different formu-
lations. These diagnostics are averaged over 20 experiments.
The expression at timetn of these two quantities is as fol-
lows:

RMS(tn) =

1

Nexp

Nexp∑
i=1

√∑
k∈�

(xt (tn,k) − x̄(tn,k, i))2

√∑
k∈�

xt (tn,k)2

(21)

STD(tn) =

1

Nexp

Nexp∑
i=1

√√√√ 1

N − 1

∑
k∈�

N∑
m=1

(xm(tn,k, i) − x̄(tn,k, i))2√∑
k∈�

xt (tn,k)2

(22)

where� is the domain of computation,N is the number of
members,xm is the forecast memberm, Nexp is the number
of experiments,xt is the true state, and̄x is the mean of the
forecast ensemble.

Figure3 represents the evolution of the relative RMS and
standard deviation over five years for the diatoms, flagellates
and the micro- and mesozooplankton. These diagnostics are
averaged over the whole water column, and� represents the
55 vertical layers. The evolution of the spatial average of the
true state is plotted (green dashed line) in order to provide
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Fig. 2. Time evolution of the chlorophyll concentration at the surface (two first layers) in the reference solution (blue line), in the reference
solution at observation times (green circles) and in the observations (red circles) for one experiment.

information on the yearly dynamics of the variables. No as-
similation is performed during the first year. First, we note
that both formulations lead to a reduction of the RMS error
and the standard deviation for flagellates and their grazers,
the microzooplankton. The peaks in the error for flagellates
occur at the end of the flagellates blooms, which are too short
in the assimilated solution, notably around 25 m depth. The
evolutions of the standard deviation and RMS error are in
agreement during the last bloom both for microzooplankton
and flagellates, which highlights a good representation of the
error by the ensemble during that period. An improvement of
the detritus component of the solutions is also observed (not
shown).

The impact of data assimilation on the diatoms is mixed.
We note a large increase of the standard deviation after all the
diatoms blooms and a large peak in the RMS error during the
first year with assimilation associated with a too long bloom.
The RMS error decreases year after year for both formula-
tions and reaches its lowest values during the fourth year.
However, a large peak is still present in the error during the
final bloom for the spherical formulation. This is due to the
presence of a strong subsurface chlorophyll maximum at a
70 m depth. Because the silica cycle depends only on the
diatom concentration, these large peaks in the error result
in a low increase of the RMS error for both silicate com-
ponents during the bloom every year leading to final error
around 10 % (not shown). In the same way, data assimilation
cannot significantly reduce the RMS errors for the mesozoo-
plankton. On average, the solutions obtained with the Gel-
man formulation present a lower error than the ones obtained
with the spherical formulation. Finally, nitrate and phosphate
are not significantly impacted during the assimilation (not

shown). On average, their RMS errors are low (less than 5 %)
and exhibit low oscillations during the blooms.

4.2 Evolution of the parameters

Figure 4 represents the time evolution of the mean and
standard deviation of the ensemble for the meso- and mi-
crozooplankton grazing preferences. First, we note that both
formulations lead on average to reasonably good final es-
timates of the microzooplankton grazing preferences. The
largest corrections occurring during the first two blooms re-
sult in a convergence of the estimation towards the true val-
ues of the preferences in less than two years for both formu-
lations. However, we note larger corrections during the last
bloom with the Gelman formulation that can be explained
by a larger spread for the preferences in the ensemble in-
herited from the initial ensembles. The Gelman formulation
introduces a distribution with two parameters – the mean and
the variance of the normal distribution (see Eq.4) – which
makes it possible to choose the mean and the standard devi-
ation of the prior preferences. Our use of a distribution with
one parameter – the mode of the triangular distribution (see
Eq.18) – allows only for the choice of the mean for the prior
preferences. In these experiments, the prior variances chosen
for the normal-distributed parameters in the Gelman formu-
lation lead to initial variances for the prior preferences that
are larger than the ones obtained with the spherical formula-
tion.

The mean and standard deviation of the 20 means of the
preferences in the ensemble obtained at the end of the exper-
iments are specified in Table1 and the RMS error in Table2.
On average, the Gelman formulation produces slightly better
estimates of the preferences for diatoms and detritus, while
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Fig. 3. Evolution with time of the relative RMS error and standard deviation computed over the water column and averaged over the 20
experiments. The spatial mean of the reference solution is plotted to highlight the seasonal dynamics (green dashed curve). The black dot
highlights the date of the first analysis.
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Fig. 4. Evolution with time of the averaged mean (black line) and averaged mean plus/minus the standard deviation (shaded area) of the
grazing preferences. The true value is highlighted with a dark dashed-dotted line.
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Table 1. Zooplankton grazing preferences(πi)i=1:3: mean and
standard deviation (computed over the 20 experiments) of the means
of preferences obtained at the final time.

Mesozooplankton

Diet DIA MIC DET

True value 0.6 0.15 0.25
Gelman 0.50± 0.19 0.31± 0.16 0.19± 0.09
Spherical 0.51± 0.19 0.24± 0.11 0.25± 0.13

Microzooplankton

Diet DET FLA DIA

True value 0.15 0.6 0.25
Gelman 0.19± 0.1 0.56± 0.09 0.25± 0.05
Spherical 0.20± 0.09 0.56± 0.10 0.24± 0.05

both formulations lead to the same estimate of the prefer-
ences for flagellates. Both formulations lead to a similar de-
crease of the RMS error in the estimate of the three prefer-
ences. However, the ternary plots of the final estimates of the
preferences for the 20 experiments in Fig.5 show that the
number of experiments, for which the assimilation provides
corrections in the direction of the true value for the three
preferences, is larger with the spherical formulation than
with Gelman’s: only two points do not belong to the shaded
area representing the subspace of preferences defined by
0 6 πDET 6 1/3, 1/3 6 πFLA 6 1 and 06 πDIA 6 1/3 (de-
crease of the preferences for the diatoms and detritus and
increase of the preference for the flagellates) with the spher-
ical formulation compared to four points with the Gelman
formulation.

The estimation of the mesozooplankton grazing prefer-
ences is less successful. On average, we note in Fig.4 that the
corrections are very weak during the first two years of assim-
ilation. The reduction of the standard deviation of the three
preferences is very low for both formulations suggesting a
weaker sensitivity of the surface chlorophyll to the meso-
zooplankton grazing preferences compared to the microzoo-
plankton grazing preferences. This is highlighted in Fig.6
by the Pearson correlation coefficients between the surface
chlorophyll and the microzooplankton that are much larger
than the ones between the surface chlorophyll and the meso-
zooplankton.

On average, the spherical formulation leads to slightly bet-
ter final estimates of the preferences than the Gelman formu-
lation (see Table1). The assimilation tends to strongly cor-
rect the preference for the detritus to the detriment of micro-
zooplankton. It results in larger RMS errors in the final esti-
mates of these two preferences compared to the prior values
(see Table2). The ternary plots in Fig.5 show that in 45 %
of the experiments the estimation with the Gelman formula-
tion does not jointly improve the three preferences. For most
of these experiments, this is due to an erroneous increase

Table 2.Zooplankton grazing preferences(πi)i=1:3: relative RMS
error (computed over the 20 experiments) of the means of prefer-
ences obtained at the final time.

Mesozooplankton

Diet DIA MIC DET

Prior (%) 45 120 32
Gelman (%) 35 146.6 44
Spherical (%) 33.3 86.7 48

Microzooplankton

Diet DET FLA DIA

Prior (%) 120 45 32
Gelman (%) 66.7 16.7 20
Spherical (%) 66.7 16.7 20

of the preference for the microzooplankton. The rate of fail-
ure decreases to 30 % of the experiments with the spherical
formulation. For most cases, this is due to an erroneous in-
crease of the preference for the detritus to the detriment of
diatoms. This is also highlighted by the increase of the RMS
error in the final estimate of the preference for the detritus
(see Table2). However, experiments done with different as-
signments of the microzooplankton grazing preferences in
the transformation led to higher RMS errors, notably in the
preference for microzooplankton, and a rate of failure equal
to 45 % (not shown). This suggests that the performances
of both approaches do not significantly differ. Furthermore,
we think that these difficulties faced by the DEnKF to cor-
rectly estimate the mesozooplankton grazing preferences are
related to the configuration of the experiments rather than
the variable transformations. As stated earlier, the surface
chlorophyll seems to be more sensitive to the microzooplank-
ton than to the mesozooplankton in the model. Furthermore,
improvements could be obtained by changing the experimen-
tal framework, for example the observation frequency, the
specified observation error, etc.

5 Conclusions

In this study, we investigated the problem of estimating
N positive sum-to-one constraint parameters with ensemble-
based Kalman filters with the purpose of estimating zoo-
plankton grazing preferences that are commonly used in
ocean ecosystem models.

We have suggested a new formulation of the grazing pref-
erences introducing a change of variables based on the hyper-
spherical coordinate system. This formulation results in the
estimation of a reduced number (N − 1) of bounded param-
eters. Issues raised by estimating non-Gaussian distributed
parameters with Kalman filters can be tackled by using the
Gaussian anamorphosis. Furthermore, the two systems of
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Fig. 5.Ternary plots of the final estimate (mean of the ensemble) of the grazing preferences parameters for the 20 experiments. The estimates
obtained after assimilation are plotted with grey circles, the true set of parameters with a black square and the mean of the background set of
parameters with a black diamond.

N − 1 nonlinear equations to be solved, in order to obtain
target prior values and variances of the preferences, are also
exhibited.

The performances of this approach and the one suggested
by Gelman(1995) based on the Dirichlet distribution have
been assessed in the framework of twin experiments real-
ized in a 1-D configuration of the coupled model GOTM-
NORWECOM. Both approaches lead to improved estimates
of the microzooplankton grazing preferences. They present
the same difficulties to estimate the mesozooplankton graz-
ing preferences that can be explained by the configuration
of the experiments: the observed variable, the chlorophyll,
constitutes only one type of food (diatoms) for the mesozoo-
plankton diet compared to two (diatoms and flagellates) for
the microzooplankton diet. Furthermore, the results obtained
with the spherical formulation for the mesozooplankton are
not significantly better and cannot be guaranteed for more
complex realistic configurations.

Both approaches present theoretical and practical advan-
tages. The Gelman formulation leads to the estimation of
Gaussian distributed parameters, a property that presents the-
oretical advantages in the context of Kalman filtering. Fur-
thermore, this formulation is naturally symmetric with re-
gards to the mapping of parameters. This formulation is

straightforward to apply for any number of preferences.
However, it can require to estimate a large number of param-
eters in complex systems. The spherical formulation reduces
the number of parameters to estimate but can require a choice
of their prior distribution and to solve nonlinear systems of
equations accordingly if the inversion of the hyperspherical
coordinate system cannot be applied.

In this study, we have used the triangular distribution for
its simplicity and its applicability in our ecosystem model.
But this distribution is not suitable to obtain equal prior val-
ues for more than three preferences and does not allow the
tuning of their variances. From five preferences onwards –N

equal four can be solved via the introduction of the Hopf co-
ordinate system – the questions of the choice of the distribu-
tion and the resolution of the systems remain open. However,
the inversion of the hyperspherical coordinate system could
provide a prior ensemble for the(φi)i=1:N−1 if an ensemble
for the preferences is available. This suggests that the Gel-
man formulation is more suitable in the framework of few
zooplankton species with a diet involving numerous types of
food, while the spherical formulation could be more suitable
in the framework of numerous zooplankton species with a
diet involving few types of food.
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Fig. 6. Time evolution of the Pearson correlation coefficients be-
tween the surface chlorophyll and the meso- and microzooplankton
grazing preferences during the first year (no assimilation) and av-
eraged over the 20 experiments, for the spherical formulation. The
evolution of the averaged surface chlorophyll concentration due to
diatoms (resp. flagellates) is plotted with a dark dotted line (resp.
with a dark dash-dotted line).

Appendix A

Derivation of the system of equations(Si)i=1:N−1 to
choose the mean of the preferences(πi)i=1:N

Let (φi)i=1:N−1 be N − 1 independent random variables
following marginal distributions(Di)i=1:N−1 involving a set
of parameters(2i)i=1:N−1 and with a support equal to the
segment line[0,1]. We notefφi

the probability density func-
tion of the parameterφi for all i = 1 : N − 1:

∀i = 1 : N − 1, fφi
: [0,1] → R+

φ 7→ fφi
(φ)

(A1)

Let (πi)i=1:N N random variables defined by Eq. (5). We aim
to choose the values of the set of parameters(2i)i=1:N−1 to

obtain the expected values(mi)i=1:N , with
N∑

k=1

mk = 1, for

the variables(πi)i=1:N :

∀i = 1 : N, E[πi] = mi (A2)

We start with a preliminary calculus. By introducing the rela-

tion cos2(a) =
1+ cos(2a)

2
and using the property of a prob-

ability density functionf :
∫
R

f (φ)dφ = 1, one has

1∫
0

cos2(
π

2
φ)fφi

(φ)dφ =
1

2
+

1

2

1∫
0

cos(πφ)fφi
(φ)dφ (A3)

By introducing cos(a) =
eja

+ e−ja

2
with j2

= −1, it leads
to

1∫
0

cos2(
π

2
φ)fφi

(φ)dφ =
1

2
+

1

4

1∫
0

ejπφfφi
(φ)dφ

+
1

4

1∫
0

e−jπφfφi
(φ)dφ

=
1

2
+

1

4
(8φi

(π) + 8φi
(−π))

(A4)

with 8φi
the characteristic function of the parameterφi . By

defining

∀i = 1 : N − 1, h(2i) =
1

4
(8φi

(π) + 8φi
(−π)) (A5)

The last equation reads

1∫
0

cos2(
π

2
φ)fφi

(φ)dφ =
1

2
+ h(2i) . (A6)

In the same way, one has

1∫
0

sin2(
π

2
φ)fφi

(φ)dφ =
1

2
− h(2i) . (A7)

Now, for i = 1, one has

E[π1] =

1∫
0

cos2(
π

2
φ)fφ1(φ)dφ =

1

2
+ h(21), (A8)

and the Eq. (A2) reads

h(21) = m1 −
1

2
, (A9)

which is equivalent to the equation(S1) defined by Eq. (6).
Now, leti be an integer between 2 andN−1. By definition

of the variables(πi)i=1:N , one has

∀i = 2 : N − 1,

E[πi] =

∫
[0,1]

N−1

i−1∏
k=1

sin2(
π

2
φk)cos2(

π

2
φi)f(φl)l=1:N−1(φ)dφ

(A10)
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Because the variables(φl)l=1:N−1 are independent, it leads
to

∀i = 2 : N − 1,

E[πi] =

i−1∏
k=1

1∫
0

sin2(
π

2
φk)fφk

(φ)dφ

1∫
0

cos2(
π

2
φi)fφi

(φ)dφ

(A11)

By introducing Eq. (A6) and Eq. (A7), one obtains

∀i = 2 : N − 1,

E[πi] =

i−1∏
k=1

(
1

2
− h(2k))(h(2i) +

1

2
)

(A12)

It leads to∀i = 2 : N − 1:

E[πi]

E[πi−1]
=

mi

mi−1

⇔

i−1∏
k=1

(
1

2
− h(2k))(h(2i) +

1

2
)

i−2∏
k=1

(
1

2
− h(2k))(h(2i−1) +

1

2
)

=
mi

mi−1

⇔

(
1

2
− h(2i−1))(h(2i) +

1

2
)

(h(2i−1) +
1

2
)

=
mi

mi−1

⇔ h(2i) = −
1

2
+

mi

mi−1

1+ 2h(2i−1)

1− 2h(2i−1)

. (A13)

Finally, we obtain a recurrence between the variables
(h(2i))i=1:N−1:

h(21) = m1 −
1

2

∀i = 2 : N − 1,

h(2i) = −
1

2
+

mi

mi−1

1+ 2h(2i−1)

1− 2h(2i−1)

(A14)

The solution of Eq. (A14) is given by

h(21) = m1 −
1

2

∀i = 2 : N − 1,

h(2i) =
mi

1−

i−1∑
k=1

mk

−
1

2

, (A15)

which corresponds to the system of equations(Si)i=1:N−1.

We must now check that the relation

E[πN ] = mN = 1−

N−1∑
k=1

mk is satisfied.

E[πN ]

E[πN−1]
=

∫
R sin2(π

2 φN−1)fφN−1(φ)dφ∫
R cos2(π

2 φN−1)fφN−1(φ)dφ

=
1− 2h(2N−1)

1+ 2h(2N−1)

=

1−

N−2∑
k=1

mk − mN−1

mN−1

(A16)

Because of E[πN−1] = mN−1, one does have

E[πN ] = mN = 1−

N−1∑
k=1

mk.

Appendix B

Derivation of the system of equations(6i)i=1:N−1 to
choose the variance of the preferences(πi)i=1:N

Let (πi)i=1:N N random variables defined by Eq. (5). We
aim to choose the values of the set of parameters(2i)i=1:N−1
to obtain the variances(σ 2

i )i=1:N of the variables(πi)i=1:N

assuming that their expected values are equal to(mi)i=1:N :

∀i = 1 : N, E[π2
i ] −m2

i = σ 2
i (B1)

We start with preliminary calculus. As previously, one ob-
tains the following by using trigonometric formulas:

1∫
0

cos4(
π

2
φ)fφi

(φ)dφ =
3

8
+

1

2

1∫
0

cos(πφ)fφi
(φ)dφ

+
1

8

1∫
0

cos(2πφ)fφi
(φ)dφ

=
3

8
+ h(2i) + g(2i)

(B2)

with h defined in Eq. (A5) andg as

∀i = 1 : N −1, g(2i) =
1

16
(8φi

(2π) + 8φi
(−2π)). (B3)

In the same way, one has

1∫
0

sin4(
π

2
φ)fφi

(φ)dφ =
3

8
− h(2i) + g(2i) (B4)
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For i = 1 one has

E[π2
1 ] =

1∫
0

cos4(
π

2
φ)fφ1(φ)dφ

=
3

8
+ h(21) + g(21)

= σ 2
1 + m2

1

(B5)

It leads to

g(21) = −
3

8
− h(21) + σ 2

1 + m2
1 (B6)

whereh(21) is given by Eq. (A9). Now, let i be an integer
between 2 andN − 1. One has

E[π2
i ] =

∫
[0,1]

N−1

i−1∏
k=1

sin4(
π

2
φk)cos4(

π

2
φi)f(φl)l=1:N−1(φ)dφ

(B7)

Following the same strategy as in AppendixA, it leads to

E[π2
i ]

E[π2
i−1]

=
σ 2

i + m2
i

σ 2
i−1 + m2

i−1

⇔

i−1∏
k=1

(
3

8
− h(2k) + g(2k))(

3

8
+ h(2i) + g(2i))

i−2∏
k=1

(
3

8
− h(2k) + g(2k))(

3

8
+ h(2i−1) + g(2i−1))

=
σ 2

i + m2
i

σ 2
i−1 + m2

i−1

⇔

(
3

8
− h(2i−1) + g(2i−1))(

3

8
+ h(2i) + g(2i))

(
3

8
+ h(2i−1) + g(2i−1))

=
σ 2

i + m2
i

σ 2
i−1 + m2

i−1

⇔ g(2i) = −
3

8
− h(2i) +

σ 2
i + m2

i

σ 2
i−1 + m2

i−1

3+ 8h(2i−1) + 8g(2i−1)

3− 8h(2i−1) + 8g(2i−1)

(B8)

whereh(2i−1) andh(2i) are given by Eq.A15.
Finally, we obtain a recurrence between the variables

(g(2i))i=1:N−1:

g(21) = −
3

8
− h(21) + σ 2

1 + m2
1

∀i = 2 : N − 1,

g(2i) = −
3

8
− h(2i) +

σ 2
i + m2

i

σ 2
i−1 + m2

i−1

3+ 8h(2i−1) + 8g(2i−1)

3− 8h(2i−1) + 8g(2i−1)

(B9)

The solution of Eq. (B9) is given by the system of equa-
tions(6i)i=1:N−1:

g(21) = −
3

8
− h(21) + σ 2

1 + m2
1

∀i = 2 : N − 1,

g(2i) = −
3

8
− h(2i)

+
σ 2

i + m2
i

i∑
k=1

(−2)k−1(σ 2
i−k + m2

i−k)

k−1∏
l=1

h(2i−l)

(B10)

with the conventionsσ 2
0 + m2

0 = 1 and
0∏

l=1

h(2l) = 1.

The varianceσ 2
N of the preferenceπN cannot be chosen

and depends on the values specified for the preferenceπN−1.
It is given by

σ 2
N = −(1−

N−1∑
i=1

mi)
2

(σ 2
N−1 + m2

N−1)
3− 8h(2N−1) + 8g(2N−1)

3+ 8h(2N−1) + 8g(2N−1)

(B11)
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