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Abstract. A simple model of the thermohaline circulation
(THC) is formulated, with the objective to represent explic-
itly the geostrophic force balance of the basinwide THC.
The model comprises advective-diffusive density balances
in two meridional-vertical planes located at the eastern and
the western walls of a hemispheric sector basin. Boundary
mixing constrains vertical motion to lateral boundary layers
along these walls. Interior, along-boundary, and zonally inte-
grated meridional flows are in thermal-wind balance. Rossby
waves and the absence of interior mixing render isopycnals
zonally flat except near the western boundary, constraining
meridional flow to the western boundary layer. The model is
forced by a prescribed meridional surface density profile.

This two-plane model reproduces both steady-state den-
sity and steady-state THC structures of a primitive-equation
model. The solution shows narrow deep sinking at the
eastern high latitudes, distributed upwelling at both bound-
aries, and a western boundary current with poleward surface
and equatorward deep flow. The overturning strength has a
2/3-power-law dependence on vertical diffusivity and a 1/3-
power-law dependence on the imposed meridional surface
density difference. Convective mixing plays an essential role
in the two-plane model, ensuring that deep sinking is located
at high latitudes. This role of convective mixing is consis-
tent with that in three-dimensional models and marks a sharp
contrast with previous two-dimensional models.

Overall, the two-plane model reproduces crucial fea-
tures of the THC as simulated in simple-geometry three-
dimensional models. At the same time, the model self-
consistently makes quantitative a conceptual picture of the
three-dimensional THC that hitherto has been expressed ei-
ther purely qualitatively or not self-consistently.

1 Introduction

The oceanic thermohaline circulation (THC), a key agent in
Earth’s climate, has as yet denied researchers important in-
sights into its dynamics. Attempts to capture THC dynam-
ics in a reduced-complexity model (Marotzke et al., 1988;
Wright and Stocker, 1991; Sakai and Peltier, 1995; Wright
et al., 1995) have long disregarded at least one of two fun-
damental observations: that diapycnal mixing, one of the
driving mechanism of the meridional overturning, is essen-
tially confined to lateral boundaries (Munk, 1966; Wun-
sch and Ferrari, 2004) and that the western boundary cur-
rent and, by implication, the zonally integrated thermohaline
overturning are in geostrophic balance (Johns et al., 2005).
Marotzke(1997) presented an analytical THC theory that ad-
heres to these principles but must make several ad-hoc as-
sumptions. The current paper extends theMarotzke(1997)
theory such that THC dynamics are represented in reduced
yet self-consistent form.

Our starting point is the assumption that upwelling from
the abyss and, by implication, total THC strength are limited
by the rate of diapycnal mixing (e.g.Munk, 1966; Wunsch
and Ferrari, 2004). Munk (1966) already conjectured that di-
apycnal mixing might be concentrated near the ocean bound-
aries. Enhanced boundary mixing would make possible a re-
alistic THC strength while accounting for the observed low
diapycnal mixing rates in the ocean interior (e.g.Armi, 1978;
Ledwell et al., 1993; Wunsch and Ferrari, 2004). How-
ever, boundary mixing was not implemented into a primitive-
equation model untilMarotzke(1997), who found flow pat-
terns very similar to the uniform-mixing case, except that
vertical motion was entirely confined to lateral boundary
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regions and that interior flow was more zonal (see alsoScott,
2000, who confirmed the results using improved resolution
and a more realistic isopycnal mixing scheme).

An alternative explanation of the meridional overturning
strength that does not require vigorous diapycnal mixing is
that wind forcing over the Southern Ocean drives the over-
turning (Toggweiler and Samuels, 1995; for theoretical mod-
els implementing this suggestion, seeGnanadesikan, 1999;
Johnson et al., 2007). Here, however, we followMunk’s
(1966) conjecture and work within the boundary-mixing
framework.

The quantitative dependence of the THC strength on di-
apycnal mixing has been confirmed repeatedly to show
a 2/3-power-law (e.g.Marotzke, 1997; Zhang et al., 1999;
Park and Bryan, 2000). This power law complies with
a simple scaling law derived by assuming a unique vertical
scale for thermal-wind balance, the continuity equation, and
advective-diffusive balance (Welander, 1971; Bryan, 1987;
Colin de Verdìere, 1988). This scaling requires the zonal
density difference to scale with the imposed surface meridio-
nal density difference, whichPark and Bryan(2000) showed
to hold true in the parameter range considered, but which
hitherto has remained unexplained.

Another attempt to gain insight into THC dynamics was
the formulation of two-dimensional models. Some of these
(Marotzke et al., 1988; Wright and Stocker, 1991; Sakai and
Peltier, 1995) are based on the zonally averaged momen-
tum equations and a closure assumption relating the merid-
ional flow to the meridional density gradient (Wright et al.,
1998). The model formulation given byWright et al.(1995)
draws on vorticity dynamics; the closure is based on vor-
ticity dissipation in a western boundary layer. All these
two-dimensional models yield density and velocity fields in
qualitative agreement with the zonal averages of primitive-
equation model solutions. The parameters, however, must
be chosen by calibration to these primitive-equation model
solutions.

The closure assumptions relating the meridional flow
to the meridional density gradient (Marotzke et al., 1988;
Wright and Stocker, 1991; Sakai and Peltier, 1995) rely on
a substantial viscous deviation from geostrophy in the west-
ern boundary layer (Wright et al., 1998), although west-
ern boundary currents have been observed to be geostroph-
ically balanced (Johns et al., 2005). The vorticity-based
closure (Wright et al., 1995) is in principle consistent with
a geostrophically balanced western boundary current. How
this balance is affected by their approximations, however, re-
mains unclear.

Another deficiency of these two-dimensional models is
that convective mixing appears to be unimportant for THC
dynamics (Marotzke et al., 1988). When convective mix-
ing is switched off, statically unstable stratification oc-
curs, but the gross density and overturning structures only
change marginally. This marks a sharp contrast with three-
dimensional models that show a reverse cell at high latitudes

and a substantially lower abyssal density when convective
mixing is switched off (Zhang et al., 1992; Marotzke and
Scott, 1999).

Due to their zonally averaged nature, the two-dimensional
models are also incompatible with boundary mixing. When
the temperature and salinity equations are averaged zonally,
vertical eddy diffusivities are assumed to be constant in all
these studies (Marotzke et al., 1988; Wright and Stocker,
1991; Sakai and Peltier, 1995; Wright et al., 1995).

Marotzke(1997) proposed an analytical THC theory that
is based on boundary mixing. Motivated by his primitive-
equation model results, he prescribed density structures at
both eastern and western boundaries, allowing him to de-
duce the overturning from vertical advective-diffusive and
thermal-wind balances. Bulk features like the mass and heat
transports’ latitudinal dependence are well captured, and the
THC strength’s scaling can be derived. But the conceptual
disadvantage of his theory is that density structures are pre-
scribed at both boundaries – only a depth scale, the pycno-
cline depth, can be determined as part of the solution. Be-
cause density structures are crucial in setting both shape and
strength of the THC, this is a major drawback. Further-
more,Marotzke(1997) assumed level isopycnals at the east-
ern boundary, which deviates from those found in primitive-
equation model solutions (Marotzke, 1997).

In the present study, we overcome these deficiencies and
extend theMarotzke(1997) theory to a two-plane model
such that self-consistent density and velocity fields can be
deduced from a specified meridional surface density pro-
file. We hence cast THC dynamics based on boundary mix-
ing and geostrophy into a conceptual model capable of ex-
plaining salient features such as narrow high-latitude down-
welling and distinct density structures at eastern and west-
ern boundaries. By formulating and solving the equations of
our model, we make quantitative the purely qualitative con-
ceptual picture put forward byColin de Verdìere(1993) and
Zhang et al.(1992), which, in addition to boundary mixing,
had been the conceptual starting point ofMarotzke(1997).
In turn, we here make theMarotzke(1997) framework fully
self-consistent.

This paper is organized as follows: in Sect.2, the model
formulation is given. Section3 presents model solutions plus
an analysis of parameter dependencies and an assessment of
the role of convective mixing. Section4 draws conclusions
and summarizes the findings in a conceptual picture of the
THC. In the Appendix, we elaborate on the computational
procedure applied to solve the model equations.

2 Model formulation

2.1 The governing equations

The starting point of the model formulation is the geostroph-
ically and hydrostatically balanced Boussinesq system
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(e.g.Vallis, 2006). The horizontal flow then satisfies thermal-
wind balance

f ∂zu = k×∇hb. (1)

Here, u denotes the horizontal part of the velocity field;
b= −gρ′/ρ0 is the buoyancy, whereg is the gravitational
acceleration andρ′ is the small deviation from the reference
densityρ0; f = 2�sinϑ is the Coriolis parameter as a func-
tion of latitudeϑ , where� is Earth’s angular frequency;k
is the upward unit vector;z is the local vertical coordinate;
and∇h is the horizontal part of the gradient operator. In this
approximation, the flow is incompressible and hence satisfies
the continuity equation

∇h ·u+∂zw= 0, (2)

wherew denotes the vertical velocity. The steady-state buoy-
ancy equation reads

u ·∇hb+w∂zb= q, (3)

where q represents sources and sinks due to diapycnal
processes.

Following Sandstr̈om’s theorem (e.g.Defant, 1961;
Huang, 1999; Wunsch and Ferrari, 2004), diapycnal mixing
is believed essential for maintaining an overturning circula-
tion (see alsoWunsch, 2005) and must be parameterized in
these equations. For simplicity, we resort to vertical eddy
diffusion. As buoyancy gradients are expected to be much
smaller in the horizontal than in the vertical direction, the
eddy diffusion’s horizontal component is disregarded. How-
ever crude, this representation of diapycnal mixing proves
useful at this stage of conceptualization as the role of mix-
ing in our model is merely that of transporting buoyancy
across isopycnals. Following the notion of boundary mix-
ing (Marotzke, 1997), we only prescribe nonzero diapycnal
mixing at lateral boundaries.

Another process that is essential for overturning dynamics
is convective mixing (Zhang et al., 1992; Marotzke and Scott,
1999): as the water column becomes statically unstable,
rapid mixing occurs, removing the instability and rendering
the stratification neutral (Marshall and Schott, 1999). This
process is parameterized here by a convective adjustment
scheme, which is discussed in more detail in AppendixA1.
Buoyancy sources and sinks due to convective mixing are
represented byc, and the diapycnal term in Eq. (3) reads

q = kv∂
2
z b+c, (4)

wherekv is the vertical eddy diffusivity.
The model geometry is for simplicity taken to be a hemi-

spheric sector extending from latitudeϑt to ϑp and longi-
tudeλw to λe. The basin’s depthd is taken to be constant.

∆λ ∆λ
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λ

ϑ
z

Fig. 1. Envisioned basin geometry and zonal structures of buoyancy
and zonal velocity as assumed in the model. Note that the spherical
geometry of the model is not represented in this sketch.

2.2 Approximations

To satisfy a no-normal-flow condition at the eastern bound-
ary and still permit buoyancy variations along the wall, the
zonal velocity must turn ageostrophic near the boundary. The
ensuing ageostrophic boundary layer circulation opposes the
geostrophic flow such that the no-normal-flow condition is
satisfied, but is essentially restricted to the zonal-vertical
plane (Cessi and Wolfe, 2009). This is consistent with the
numerical-model result that zonal isopycnal slopes are small
in the eastern boundary layer (Marotzke, 1997; Cessi and
Wolfe, 2009) and with the observation and numerical-model
result that the meridional flow still adheres to the thermal-
wind balance (Johns et al., 2005; Cessi and Wolfe, 2009) –
and consequently essentially vanishes.

We parameterize this eastern boundary layer structure by
assuming the buoyancy to be zonally constant and the zonal
velocity to linearly tend to zero over the width of the eastern
boundary layer1λ (Fig. 1). The associated divergence is en-
tirely compensated by vertical motion; the continuity Eq. (2)
in the eastern boundary layer reads

−
1

acosϑ

ui

1λ
+∂zwe= 0, (5)

whereui is the interior zonal velocity, anda is Earth’s radius.
Note that this renders the eastern vertical velocitywe zonally
constant across the boundary layer.

The buoyancy Eq. (3) at the eastern wall, where not only
meridional, but also zonal advection vanishes, simplifies to

we∂zbe= kv∂
2
z be+ce, (6)

wherebe is the buoyancy at the eastern wall. As discussed
earlier, this boundary buoyancy determines the buoyancy
throughout the boundary layer. The buoyancy balance inside
the boundary layer is hence implicitly assumed between ver-
tical advection and eddy fluxes (cf.Cessi and Wolfe, 2009;
Cessi et al., 2010).
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Fig. 2. Meridional surface buoyancy profileb0(ϑ).

In the interior of the basin, where both components of the
flow are geostrophically balanced, the linear vorticity equa-
tion is satisfied:

β∂xb= f 2∂2
zw, (7)

whereβ = 2�cosϑ/a. This equation, combined with the
buoyancy Eq. (3) with zero vertical mixing, has a solution
that consists of a zonally constant buoyancy field – imply-
ing zero vertical, zero meridional, and zonally constant zonal
flow. Observational evidence indeed indicates that interior
flow is essentially zonal (Davis, 1998; Hogg and Owens,
1999). To match the eastern boundary buoyancy, we there-
fore assume the buoyancy to equal its eastern boundary value
throughout the interior. The thermal-wind balance for the in-
terior zonal flow hence reads

f ∂zui = −
1

a
∂ϑbe. (8)

At the western boundary, we again apply semigeostrophy:
the zonal velocity tends to zero linearly as over the eastern
boundary layer, and the meridional flow satisfies thermal-
wind balance. Here, however, Rossby waves cannot flatten
isopycnals zonally and a slope persists. We assume this slope
to be zonally constant across the boundary layer (Fig.1),
such that the thermal-wind balance reads

f ∂zvw =
1

acosϑ

be−bw

1λ
, (9)

wherebw is the buoyancy at the western wall and the me-
ridional velocityvw is zonally constant across the boundary
layer.

The continuity equation in the western boundary layer and
the buoyancy equation at the western wall must include the
meridional flow. They hence read, respectively,

1

acosϑ

ui

1λ
+

1

acosϑ
∂ϑ (vwcosϑ)+∂zww = 0 (10)

and
vw

a
∂ϑbw +ww∂zbw = kv∂

2
z bw +cw. (11)

Note that also the western vertical velocityww is zon-
ally constant across the boundary layer. Inside the western
boundary layer, the buoyancy balance is hence implicitly as-
sumed to be between meridional and vertical advection and
eddy fluxes (potentially plus convective mixing).1

The six Eqs. (5), (6), and (8)–(11) constitute a closed set
for determining the quantitiesbw, be, ui , vw,ww, andwe – all
functions of latitude and depth only. We thus need to solve
this set on a meridional-vertical plane extending fromϑt to
ϑp and having constant depthd.

Note that this model formulation does in principle allow
for meridional, but not for zonal variations of topography.
That the latter can be neglected is supported by the finding
that observations around the Mid-Atlantic Ridge are not es-
sential for estimating the meridional overturning, which in-
dicates that buoyancy differences across zonally varying to-
pography are not of first-order importance for THC dynamics
(Kanzow et al., 2007, 2010).

2.3 Boundary conditions

We now turn to boundary conditions, noting that the geo-
strophic approximation already eliminates the possibility of
specifying a wind stress. As noted in the introduction and in
line with Marotzke(1997), we focus on the buoyancy-driven
circulation.

At the surface, buoyancy is prescribed at both eastern
and western boundaries by a meridional profile,bw(ϑ,0)=
be(ϑ,0)= b0(ϑ) for all ϑ . The profile

b0(ϑ)=
1b

2

[
cos

(
π
ϑ−ϑt

ϑp−ϑt

)
+1

]
(12)

represents the observed meridional surface density distribu-
tion dominated by temperature (Fig.2).

Prescribing surface buoyancy does not accurately repre-
sent ocean surface processes. While fixed surface temper-
atures are a passable representation because surface heat
fluxes strongly depend on these temperatures and anoma-
lies are thus rapidly removed (Davis, 1976), surface salin-
ity has essentially no effect on evaporation and precipita-
tion. Surface salinity anomalies can hence persist on much
longer time scales, and a flux boundary condition is gener-
ally preferable (Bryan, 1986). These mixed-type boundary
conditions – prescribed salinity fluxes and fixed tempera-
tures – have a crucial influence on THC stability and allow
for multiple steady states (e.g.Stommel, 1961; Bryan, 1986;
Marotzke et al., 1988; Marotzke and Willebrand, 1991).
This type of analysis is left for further studies; we content
ourselves with representing the salient THC dynamics, for
which fixed surface buoyancy suffices.

1A more realistic boundary-layer representation appears feasi-
ble, for example one that includes friction in the meridional mo-
mentum balance (Robinson, 1970). Nevertheless, to keep the model
formulation as simple as possible, we resort to the representation
given in the text.
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At the basin’s flat bottom, a no-flux condition is applied
for buoyancy. We thus disregard geothermal heating because
associated fluxes are relatively small and the resulting flows
are weak (Huang, 1999; Adcroft et al., 2001; Scott et al.,
2001). We write∂zbw(ϑ,−d)= ∂zbe(ϑ,−d)= 0 for all ϑ .

At the surface, we apply the rigid lid approximation; at the
bottom, we impose a no-normal-flow condition. We hence
require

ww(ϑ,0)= 0, we(ϑ,0)= 0, (13)

ww(ϑ,−d)= 0, we(ϑ,−d)= 0 (14)

for all ϑ . The exclusion of wind forcing, together with the
linear momentum balance, requires the vertically integrated
horizontal flow to vanish.

At both polar and tropical boundaries, we require the me-
ridional flow to be zero:

vw(ϑt ,z)= 0, vw(ϑp,z)= 0 (15)

for all z. These conditions imply, by thermal-wind balance
(Eq.9), that

bw(ϑt ,z)= be(ϑt ,z), bw(ϑp,z)= be(ϑp,z) (16)

for all z. Also, by the respective buoyancy equation, eastern-
and western-boundary vertical velocities must match at me-
ridional boundaries if stratification is not neutral. This in turn
implies that

∂ϑbw(ϑt ,z)+∂ϑbe(ϑt ,z)=0, ∂ϑbw(ϑp,z)+∂ϑbe(ϑp,z)=0

(17)

for all z. This can be seen by combining the thermal-wind
relations (8) and (9) with the continuity Eqs. (5) and (10)
and using the condition (16). Note that condition (17) ne-
cessitates∂ϑb0(ϑt )= ∂ϑb0(ϑp)= 0 for consistency, which is
fulfilled by the surface buoyancy profile (Eq.12).

2.4 The overturning stream function

The sum of continuity Eqs. (5) and (10) for, respectively, the
eastern and western boundaries yields

1

acosϑ
∂ϑ (vwcosϑ)+∂z(ww +we)= 0, (18)

demonstrating that our approximations retain the zonally in-
tegrated flow’s nondivergence. Convergence of vertical ve-
locity thus always occurs in conjunction with divergence of
meridional velocity at the western boundary, and vice versa.

Furthermore, this nondivergence enables us to introduce
a stream functionψ that characterizes the zonally integrated
overturning in the meridional-vertical plane. We defineψ –
up to an additive constant – by

vwacosϑ1λ= −∂zψ (19)

and

(ww +we)acosϑ1λ=
1

a
∂ϑψ. (20)

The arbitrary constant is chosen such thatψ vanishes at the
boundaries of the meridional-vertical domain.

Table 1. Definitions of nondimensional quantities.

Vertical coordinate ẑ= z/d

Western-boundary buoyancy b̂w = bw/1b

Eastern-boundary buoyancy b̂e= be/1b

Interior zonal velocity ûi = u/U

Western-boundary meridional velocity v̂w = vw/V

Western-boundary vertical velocity ŵw =ww/W

Eastern-boundary vertical velocity ŵe=we/W

Western-boundary convective adjustment̂cw = dcw/(W1b)

Eastern-boundary convective adjustmentĉe= dce/(W1b)

Overturning stream function ψ̂ =ψ/9

Advective meridional buoyancy transportĤ =H/(91b)

Tropical pycnocline depth δ̂= δ/d

2.5 Nondimensionalization

To gain insight into parameter dependence and to facilitate
computational procedures, the Eqs. (5), (6), and (8)–(11) are
nondimensionalized. Guided by the model equations, we de-
fine

U =
d1b

2�a
, V =

d1b

2�a1λ
, W =

d21b

2�a21λ
,

9 =
d21b

2�
(21)

and nondimensionalize using these constants (see Table1).
Note that these do not necessarily represent appropriate
scales (i.e. the resulting nondimensional quantities are not
necessarily of order one); for instance, the vertical scale for
buoyancy variations, the pycnocline depth, is expected to be
much smaller than the basin depthd.

Using carets to denote nondimensional quantities, the
thermal-wind relations (8) and (9) reduce to

sinϑ∂ẑûi = −∂ϑ b̂e, (22)

sinϑ∂ẑv̂w =
1

cosϑ
(b̂e− b̂w), (23)

the continuity Eqs. (5) and (10) to

−
ûi

cosϑ
+∂ẑŵe= 0, (24)

ûi

cosϑ
+

1

cosϑ
∂ϑ (v̂wcosϑ)+∂ẑŵw = 0, (25)

and the buoyancy Eqs. (6) and (11) to

ŵe∂ẑb̂e= κ̂v∂
2
ẑ
b̂e+ ĉe, (26)

v̂w∂ϑ b̂w + ŵw∂ẑb̂w = κ̂v∂
2
ẑ
b̂w + ĉw, (27)

where the nondimensional vertical diffusivity

κ̂v =
2�kv1λ

d1b

a2

d2
(28)
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Table 2. External parameters as employed in the standard setup.

Basin depth d 4500 m
Earth’s radius a 6400 km
Earth’s angular frequency � 7.3×10−5 s−1

Boundary layer width 1λ 4◦

Vertical eddy diffusivity kv 5×10−4 m2 s−1

Meridional buoyancy difference 1b 0.05 m s−2

is the only parameter left in the system. A sensitivity study
thus only needs to consider a one-dimensional parameter
space.

The surface boundary condition on buoyancy (Eq.12)
transforms to

b̂0(ϑ)=
1

2

[
cos

(
π
ϑ−ϑt

ϑp−ϑt

)
+1

]
, (29)

and the defining equations forψ , Eqs. (19) and (20), become

v̂wcosϑ = −∂ẑψ̂,

(ŵw + ŵe)cosϑ = ∂ϑ ψ̂. (30)

2.6 Computational procedure

Since an analytical solution to the set of Eqs. (22)–(27) does
not appear to be known, we resort to numerical approxima-
tions. We discretize the equations on a 128×128 Arakawa
C-grid, reinsert time tendencies into the buoyancy Eqs. (26)
and (27), and numerically integrate (time step1t̂ = 10−2),
starting from an arbitrary initial guess (see AppendixA2),
until a steady state is reached. To ensure numerical stabil-
ity, we introduce artificial diffusion in the meridional direc-
tion. The artificial diffusivityκ̂h is chosen small enough not
to substantially affect the solution. The analysis described in
AppendixA3 suggests that this is the case forκ̂h= 2×10−4.
The time stepping is performed using a time-splitting ap-
proach incorporating a second-order Runge-Kutta method
for the advective terms, a fully implicit scheme for the arti-
ficial meridional diffusion, a Crank-Nicolson scheme for the
vertical diffusion, and a convective adjustment scheme (see
AppendixA1).

3 Results and discussion

3.1 The standard solution

The external parameters used in this standard setup are given
in Table 2; they approximately correspond tôκv = 4.6×

10−5. Here and in all subsequent solutions, the basin is
taken to extend fromϑt = 10◦ to ϑp = 70◦. The Equator is
excluded because thermal-wind balances (22) and (23) can
there not be applied in the present form.
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Fig. 3. Velocity fields of the standard solution:(a) interior zonal
velocity ui (contour interval 0.5 cm s−1), (b) western-boundary
meridional velocityvw (contour interval 1 cm s−1), (c) western-
boundary vertical velocityww (contour interval 0.2×10−5 m s−1),
and (d) eastern-boundary vertical velocitywe (contour interval
0.2×10−5 m s−1 for positive values, 2.0×10−5 m s−1 for nega-
tive values). Red shading indicates positive values; blue shading
indicates negative values.

The steady-state velocity fields show very distinct patterns
at the eastern and western boundaries (Fig.3). At the west-
ern boundary, there is upwelling everywhere; it is strongest
in the upper high-latitude ocean (Fig.3c). At the eastern
boundary, on the other hand, there is downwelling above up-
welling equatorward of 61◦ and strong downwelling reaching
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the bottom poleward of 61◦ (Fig. 3d). Note that deep down-
welling is much greater in magnitude than any upwelling.

Where downwelling exists above upwelling at the eastern
boundary, the zonal flow exhibits a three-layer structure; at
high latitudes, a two-layer structure prevails – consistent with
the vertical divergence of eastern-boundary vertical veloci-
ties (Fig.3a).

At the western boundary, the meridional current comes
into play (Fig.3b). Zonally and vertically convergent wa-
ters near the surface induce a strong poleward current inten-
sifying with latitude. Near the polar boundary, zonal outflow
balances meridional and vertical convergence in the upper
ocean. At depth, the opposite is true near the polar bound-
ary: zonal inflow feeds an equatorward current, supplying
water to upwell or flow east at low latitudes.

The overturning stream function constitutes a single,
hemisphere-wide overturning cell. It has a maximum of
15.1× 106 m3 s−1 that is located at 61◦ and 1600 m depth
(Fig. 4a).

The latitudinal dependence of the meridional overturn-
ing is captured by the stream function’s vertical maximum
(Fig. 4b). Fed by upwelling at both boundaries, the overturn-
ing steadily increases with latitude until it reaches its max-
imum at 61◦ and sharply decreases further poleward. The
maximum’s proximity to the polar boundary reflects the nar-
rowness of deep sinking.

The zonally and vertically integrated meridional buoyancy
transport

H(ϑ) =

λe∫
λw

0∫
−d

v(λ,ϑ,z)b(λ,ϑ,z)acosϑdzdλ (31)

=
1

2
acosϑ1λ

0∫
−d

vw(ϑ,z)[bw(ϑ,z)+be(ϑ,z)]dz, (32)

has its maximum at 38◦ (Fig. 4c).
The velocity fields well capture primitive-equation model

results. The solution presented inMarotzke(1997) equally
exhibits upwelling at the western boundary as well as down-
welling above upwelling and deep high-latitude sinking at
the eastern boundary. The overturning stream functions show
much resemblance both in structure and magnitude. That
our model’s overturning is slightly weaker than that found in
Marotzke(1997) can at least partly be attributed to the basin
being slightly smaller.

The steady-state buoyancy distributions exhibit a distinct
pycnocline structure (Fig.5): Throughout the abyss, buoy-
ancy takes a nearly constant value, which is determined by
the least buoyant surface water available. In the upper ocean,
buoyancy drops from its surface value to the abyssal one
within a few hundred meters.

In the western-boundary pycnocline, waters are well strat-
ified – stratification is strongest near the surface – except for
a region in the upper high-latitude ocean (Fig.5a). There,
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Fig. 4. The standard solution’s(a) overturning stream function
ψ (contour interval 2.5× 106 m3 s−1), (b) its vertical maximum
maxzψ , and(c) its advective meridional buoyancy transportH .

the large advective buoyancy transport accomplished by the
poleward surface current destabilizes the water column. As
surface buoyancy is fixed, convective mixing occurs and ad-
justs the entire upper ocean to surface properties. The depth
of this convective layer increases with latitude.

At constant depth, buoyancy decreases with latitude ev-
erywhere at the western boundary. This is not true for the
eastern boundary, where near-surface downwelling advects
relatively buoyant surface waters, resulting in nearly neutral
stratification reaching deeper than at the western boundary
(Fig. 5b). As a consequence, isopycnals slope downward
with latitude before they steeply outcrop, forming a bowl-
type structure. Note that, although stratification is nearly
neutral, convective mixing is not present in this outcropping
region.2

2Artificial horizontal diffusion can also render the stratification
unstable at the eastern boundary. When that occurs, it is compen-
sated for by weak convective mixing. Being a numerical artefact,
this process is disregarded in the discussion.
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Fig. 5. Buoyancy fields of the standard solution:(a) western-
boundary buoyancybw (contour interval 0.5 × 10−2 m s−2),
(b) eastern-boundary buoyancybe (contour interval 0.5 ×

10−2 m s−2), and(c) east-west buoyancy differencebe−bw (con-
tour interval 0.1×10−2 m s−2).

The distinct structures at eastern and western boundaries
result in an east-west buoyancy difference in thermal-wind
balance with the meridional velocity field (Fig.5c). Note that
where the western boundary current transports large amounts
of buoyancy poleward, convective mixing is essential for
maintaining the eastern boundary’s excess in buoyancy, in
turn essential for the western boundary current.

The buoyancy patterns found are in good agreement with
the ones presented inMarotzke(1997), especially in cap-
turing the distinct structure at the different boundaries and
the associated east-west buoyancy difference. The bowl-
type structure prevailing at the eastern boundary, and hence
throughout the interior, was also found by other studies with
primitive-equation and planetary geostrophic models (e.g.
Bryan, 1987; Colin de Verdìere, 1988; Zhang et al., 1992;
Winton, 1996).

Samelson(1998) argued that eastern diapycnal mixing in-
duces zonal buoyancy gradients near the eastern boundary
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Fig. 6. Overturning stream functionŝψ (nondimensional) for
(a) κ̂v = 10−5 (contour interval 1×10−4), (b) κ̂v = 10−4 (contour
interval 5×10−4), and(c) κ̂v = 10−3 (contour interval 20×10−4).

and thus supports an eastern boundary current. To analyze
Samelson’s (1998) eastern-boundary mixing case, we reduce
the western boundary diffusivity by an order of magnitude
and leave everything else as in the standard case. The result-
ing buoyancy fields are similar to the standard solution ones,
except for an approximately 30 % shallower pycnocline (not
shown). The western boundary upwelling is decimated, and
the overturning strength is reduced by approximately 30 %,
but the patterns of all other velocity fields are very similar to
the standard solution ones (not shown). That essentially the
same overturning structure ensues indicates that even in the
eastern-boundary mixing case, an eastern boundary current
is not of first-order importance in overturning dynamics.

3.2 Parameter dependence

To gain insight into the model’s parameter dependence, we
now vary the parameter̂κv over several orders of magni-
tude and analyze the (nondimensional) solution. With in-
creasedκ̂v, the pycnocline broadens and the overturning
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strengthens. The maximum of the overturning stream func-
tion shifts downward and equatorward, which reflects a deep-
ening of the poleward surface western boundary current and
a broadening of the downwelling region (Fig.6).

To quantify this dependence, we consider four character-
istics of the solutions: the maximum value of the overturning
stream functionψ̂max, the maximum value of the advective
meridional buoyancy transport̂Hmax, and the tropical pycno-
cline depth defined in two different ways:

δ̂1 =
b̂(ϑt ,0)

∂ẑb̂(ϑt ,0)
(33)

and, followingPark and Bryan(2000),

δ̂2 = −

0∫
−1
ẑb̂(ẑ,ϑt )dẑ

0∫
−1
b̂(ẑ,ϑt )dẑ

. (34)

Both definitions correspond to thee-folding depth if buoy-
ancy decays exponentially. Note, however, that the first def-
inition is a measure of surface decay, whereas the second
formally requires exponential decay over an infinitely deep
ocean for this correspondence to hold.

All characteristics mentioned above increase with increas-
ing κ̂v (Fig. 7). For κ̂v ≤ 10−3, they follow power laws very
well. Linear fits, excluding the solutions forκ̂v>10−3, yield

ψ̂ ∼ κ̂0.61
v , Ĥ ∼ κ̂0.65

v , δ̂1 ∼ κ̂0.35
v , δ̂2 ∼ κ̂0.38

v . (35)

The second definition of the tropical pycnocline depth yields
a slightly higher exponent in the power law than the first defi-
nition. We argue that the overturing dynamics are determined
in the pycnocline rather than in the abyss. In the following,
we hence resort to the first definition because it better cap-
tures the surface buoyancy structure and does not depend on
the abyssal stratification – and hence is a better measure for
the pycnocline depth.

Replacing the exponents in the power laws (Eq.35) by

simple common fractions, i.e.̂ψ ∼ κ̂v
2
3 , Ĥ ∼ κ̂v

2
3 , and δ̂ ∼

κ̂v
1
3 , yields

ψ ∼

(
a4k2

v1λ
21b

2�

) 1
3

, H ∼

(
a4k2

v1λ
21b4

2�

) 1
3

,

δ ∼

(
2�a2kv1λ

1b

) 1
3

(36)

after restoring dimensions.
Analogous toWelander(1971), the above scaling relations

are now derived, assuming a unique internal depth scaleδ.
But having noted that zonally sloping isopycnals are con-
fined to a western boundary layer, its widtha1λ is taken as
zonal length scale, rather than the basin width. Two further
assumptions must be made:
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Fig. 7. Dependence on̂κv of the four characteristics(a) maximum
value of the overturning stream function̂ψmax, (b) maximum value
of the advective meridional buoyancy transportĤmax, (c) tropi-
cal pycnocline deptĥδ1, and(d) tropical pycnocline deptĥδ2 (all
nondimensional). The red lines are least square fits to the values
for κ̂v ≤ 10−3, the blue lines’ slopes correspond to the theoretical
scaling. The numbers denote the slope of the respective lines.

– the east-west buoyancy difference is assumed to scale
with the imposed meridional surface buoyancy differ-
ence (Marotzke, 1997; Park and Bryan, 2000), and

– vertical advection and diffusion are assumed to be of
the same order of magnitude in the buoyancy equation
(e.g.Welander, 1971; Marotzke, 1997).
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We hence conclude from the thermal-wind balance for the
meridional flow (Eq.9), the continuity equation for the zon-
ally integrated flow (Eq.10), and the buoyancy Eqs. (6)
and (11) that

2�v

δ
∼
1b

a1λ
,

v

a
∼
w

δ
, w∼

kv

δ
. (37)

Combining these yields

v∼

(
kv

a

) 1
3
(

1b

2�1λ

) 2
3

, δ∼

(
2�a2kv1λ

1b

) 1
3

, (38)

and thus, by the definition of the overturning stream function
(Eq.19),

ψ ∼ vδa1λ∼

(
a4k2

v1λ
21b

2�

) 1
3

. (39)

The meridional buoyancy transport then scales like

H ∼ψ1b∼

(
a4k2

v1λ
21b4

2�

) 1
3

. (40)

All assumptions made to derive this simple scaling are a pri-
ori not clear from the model equations. That the model re-
sults reported in Eq. (36) agree with this simple scaling, how-
ever, indicates that the assumptions leading to the scaling are
justified for κ̂v ≤ 10−3.

To explicitly verify that the east-west buoyancy differ-
ence scales with the imposed meridional surface buoyancy
difference (cf.Park and Bryan, 2000), the maximum east-
west buoyancy difference is diagnosed from the model. As
a function ofκ̂v, it shows a near-constant relationship over
the parameter range the scaling holds in (Fig.8). The in-
crease at high values ofκ̂v is due to the emergence of a strong
east-west buoyancy difference in the downwelling region not
present in the low-̂κv regime.

For large values of̂κv, when the bottom of the basin is felt,
the above assumptions must be relaxed. In particular, the as-
sumption of a unique depth scale is not justified anymore.
Indeed, the parameter dependence starts deviating from the
scaling law forκ̂v > 10−3 (Fig. 7). Note that, by the defi-
nition of κ̂v (Eq.28), we require a sufficiently small vertical
diffusivity kv and a sufficiently large imposed meridional sur-
face buoyancy difference1b for a sufficiently small̂κv.

For primitive-equation and planetary geostrophic models
(e.g.Bryan, 1987; Colin de Verdìere, 1988; Marotzke, 1997),
some disagreement concerning the correct power-law depen-
dence of both overturning strength and meridional heat trans-
port on vertical diffusivity prevailed untilPark and Bryan
(2000) consolidated a large portion of these discrepancies.
They pointed out that a restoring boundary condition, as em-
ployed in all these studies, allows for some degree of free-
dom for surface density. Adjusting the restoring time scale
as a function of vertical diffusivity, they found good agree-
ment with theWelander(1971) scaling. Our model’s depen-
dence on vertical diffusivity agrees with the results presented
in Park and Bryan(2000) for all three quantities considered.

TheMarotzke(1997) theory, developed for the boundary-
mixing case, also exhibits a scaling in agreement with both
our model results and the simple arguments presented above.
Our model results thus also substantiate the arguments put
forth to derive theMarotzke(1997) scaling.

Both theMarotzke(1997) theory and the two-plane model
results predict a power-law dependence of all considered
quantities on the imposed surface meridional density differ-
ence. This has not yet been found to correspond to primitive-
equation model solutions.Scott (2000) varied the imposed
surface temperature difference and adjusted the imposed sur-
face salinity difference proportionally. He found a power-law
ψ ∼1T 0.61, where1T is the imposed meridional tempera-
ture difference.Lucas et al.(2006) used purely thermal dy-
namics and varied the shape of the imposed meridional tem-
perature profile. They only found a power-law dependence
when they decreased the equatorial temperature, not when
they increased the polar temperature. Due to the equation
of state’s nonlinearity, the temperature profiles they consid-
ered do not correspond to self-similar density profiles. In
the case of decreased equatorial temperatures, the deviation
from self-similarity is comparatively small; in the case of in-
creased polar temperatures, the deviation from self-similarity
is comparatively large. This might explain why they found
a power-law dependence in the former and not in the latter
case.

3.3 The role of convective mixing

We now examine the role of convective mixing in the over-
turning dynamics by allowing static instability to persist, that
is by switching off convective adjustment. This is certainly
an unrealistic scenario, but it is hoped to reveal – in a di-
alectic sense – the importance of convective mixing in the
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Fig. 9. Overturning stream functionψ (contour interval 2.5×

106 m3 s−1) for the nonconvective case. Red shading indicates pos-
itive values; blue shading indicates negative values.

overturning dynamics.3 All parameters are chosen as in the
standard run.

The most apparent feature of the ensuing steady-state
circulation is a two-cell meridional-overturning structure
(Fig. 9). At the western boundary, near-surface meridional
currents converge around 38◦, and an eastward flow induc-
ing deep sinking at the eastern boundary forms (Fig.10). At
depth, waters flow west, spread out both pole- and equator-
ward at the western boundary, and upwell at both boundaries
to close the respective loop (Fig.10).

For the standard setup, we found that the abyss is filled
with water of the same buoyancy as that of surface waters
at the site of deep sinking (Fig.5). This still holds when
convective mixing is switched off – with the consequence
that abyssal waters are much more buoyant and that the high-
latitude pycnocline is rendered statically unstable (Fig.11).

That this instability is a necessary property of the noncon-
vective solution can readily be explained by considering the
surface buoyancy budget. In a steady state, the integrated sur-
face buoyancy flux must vanish. In the standard run, this is
accomplished by a convective loss of buoyancy at high lat-
itudes, compensating a low-latitude diffusive gain. In the
nonconvective case, however, there must be regions in which
the ocean diffusively transports buoyancy across the surface,
implying statically unstable stratification.

We now argue that, without convective mixing, a one-cell
structure overturning can no longer exist. If it did prevail,
high-latitude downwelling would keep filling the abyss with
the least buoyant surface waters available. At the western
boundary, the surface boundary current, transporting buoy-
ancy poleward, would render the buoyancy stratification stat-
ically unstable. At the eastern boundary, where only verti-
cal advection is possible, downwelling can at most induce
neutral stratification. In effect, buoyancy would be greater

3Cf. Lindzen’s (1990, p. 101) discussion of eddy-free circulation
models of the atmosphere as a means to get insight into the role of
eddies.
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Fig. 10.Velocity fields for the nonconvective case:(a) interior zonal
velocity ui (contour interval 0.5 cm s−1), (b) western-boundary
meridional velocityvw (contour interval 1 cm s−1), (c) western-
boundary vertical velocityww (contour interval 0.2×10−5 m s−1),
and (d) eastern-boundary vertical velocitywe (contour interval
0.2×10−5 m s−1 for positive values, 2.0×10−5 m s−1 for nega-
tive values). Red shading indicates positive values; blue shading
indicates negative values.

at the western than at the eastern boundary, implying an
equatorwardshear. Western upwelling and eastern down-
welling would therefore have to be enhanced in order to en-
sure a poleward surface current. The strength of the associ-
ated zonal circulation, however, has an upper limit. Zonal
shear must comply with thermal-wind balance (Eq.8), and
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Fig. 11. Buoyancy fields for the nonconvective case:(a) western-
boundary buoyancybw (contour interval 0.5 × 10−2 m s−2)
and (b) eastern-boundary buoyancybe (contour interval 0.5 ×

10−2 m s−2).

the meridional gradient of eastern-boundary buoyancy is lim-
ited by the surface boundary condition.

The state the nonconvective system assumes, namely two
overturning cells rotating in opposite directions, advects
comparably little buoyancy meridionally. Ensuring appro-
priate shear of the western boundary current, the strong zonal
overturning is formed in the middle of the basin, where the
meridional gradient of surface buoyancy is greatest.

The overturning’s two-cell structure agrees with the non-
convective case ofMarotzke and Scott(1999). Their over-
turning cells are stronger than in our model, however, and
the site of deep sinking is located further poleward.

The results of the nonconvective case, which are in stark
contrast to the standard solution, underscore the finding that
convective mixing is essential for THC dynamics (Zhang
et al., 1992). It ensures that deep sinking occurs at high lati-
tudes and that the abyss fills with the densest surface waters
available. In contrast,Marotzke et al.(1988) found convec-
tive mixing not to play a crucial role in their zonally averaged
model.Zhang et al.(1992) explained this by pointing out that
the closure employed for the zonal pressure gradient does not
allow for its reversal; but this reversal is crucial in noncon-
vective dynamics.Marotzke and Scott(1999) argued that
all closures employing a local and linear relation between
the meridional pressure gradient and flow strength necessar-
ily yield a collocation of convective mixing and deep sinking
sites. In line with three-dimensional models, our standard
solution involves convective mixing at the western but deep

sinking at the eastern boundary – overcoming a fundamental
deficiency of zonally averaged models.

4 Summary and conclusions

4.1 Main model results

The two-plane model formulated in Sect.2 exhibits a steady-
state THC that shows all salient properties of velocity and
density fields diagnosed from a primitive-equation model
considering the boundary-mixing case (Marotzke, 1997).
In its standard setup the two-plane model yields narrow
deep sinking in the eastern high latitudes and broad up-
welling throughout both eastern and western boundary lay-
ers, as well as a poleward surface and an equatorward deep
western boundary current. A single overturning cell of
strength 15.1× 106 m3 s−1 prevails. The buoyancy fields
show a pycnocline structure with slightly higher values in the
eastern-boundary pycnocline, resulting in a bowl-type struc-
ture there.

Varying the nondimensional parameterκ̂v yields a power-

law dependence of approximatelyψ ∼ kv
2
31b

1
3 for suffi-

ciently low diffusivitieskv and sufficiently large imposed me-
ridional surface buoyancy differences1b. For larger diffu-
sivity, when the pycocline is not small compared to the basin
depth anymore, the model solutions show a notable deviation
from the power-law dependence.

Allowing static instability to persist alters the overturning
substantially. A two-cell structure arises, and downwelling
of relatively buoyant waters occurs at midlatitudes. These
relatively buoyant waters fill the abyss, and an inverse pyc-
nocline forms at high latitudes.

4.2 Conceptual picture of the overturning dynamics

We now give a conceptual picture of the THC dynamics con-
sistent with boundary mixing. Note that causality is not an
appropriate notion here – we rather try to explain the in-
evitable patterns of a self-consistent steady-state circulation.

To start our discussion, we assume a pycnocline structure:
the abyss is filled with the least buoyant surface water avail-
able, and higher buoyancy values are confined to a thin sur-
face layer. This is already where convective mixing comes
into play: it rules out any other abyssal buoyancy by pro-
hibiting static instability.

Diapycnal mixing diffuses buoyancy down the pycnocline,
necessitating advective transports to accomplish steady state.
As zonal buoyancy gradients cannot prevail at the eastern
boundary for dynamical reasons (Rossby wave activity), me-
ridional transports do not enter the balance here. In effect,
upwelling of less buoyant abyssal waters alone counterbal-
ances the downward diffusive transport (Fig.3d).

In the absence of meridional flow, vertical convergence of
upwelling waters at pycnocline-depths must be compensated
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for by westward flow; vertical divergence in the abyss must
be compensated for by eastward flow (Fig.3a). At the west-
ern boundary, near-surface convergence of upwelling waters
is therefore enhanced by zonal inflow at pycnocline-depths,
and a poleward boundary current must result (Fig.3b).

This meridional current requires a positive east-west buoy-
ancy difference by thermal-wind balance. Convective mixing
supplies an effective buoyancy sink at the western boundary.
More buoyant waters at the eastern boundary, however, can
only be attained by downwelling of buoyant surface waters,
resulting in a two-layer structure in the eastern-boundary ver-
tical velocity field (Fig.3d) and steep isopycnals (Fig.5b).

The two-layer structure in eastern-boundary vertical ve-
locity corresponds to a three-layer structure in the zonal ve-
locity field. In the west, near-surface zonal outflow in turn
relaxes the need for a boundary current.

The meridional surface current intensifies poleward over
large parts of the basin. Only near the polar boundary, con-
vergence must occur. Here, a strong eastward flow emerges,
feeding the strong downwelling in the eastern high-latitude
ocean. Mass balance at the eastern boundary requires a deep
westward return flow feeding a deep equatorward flow in the
west, closing mass balance there.

To understand why deep downwelling occurs at the east-
ern boundary, again thermal-wind balance can be invoked:
downwelling at the western boundary would advect relatively
buoyant surface waters downward, resulting in a negative
east-west buoyancy gradient – inconsistent with a poleward
shear of the western boundary current.

4.3 Outlook

The applicability of the two-plane model to the real ocean is
constrained by two major omissions. First, the basin is con-
fined to a single hemisphere; and second, temperature and
salinity are not considered separately.

Extending the model equations to an inter-hemispheric
basin should in principle be possible (Marotzke and Klinger,
2000). The breakdown of the geostrophic approximation at
the Equator raises the question of how to incorporate equa-
torial dynamics. Observational studies (Lukas and Firing,
1984), however, have indicated that, for long time scales, the
meridionally differentiated geostrophic balance applies at the
equator, which might be exploited in the two-plane model.
The equatorial thermal-wind relations

β∂zui = −
1

a
∂2
ϑbe, β∂zvw =

1

acosϑ
(∂ϑbe−∂ϑbw), (41)

where all symbols are the same as in Sect.2.2, might hence
successfully be used (Lukas and Firing, 1984). Another
possibility is the inclusion of viscous terms. Eventually,
a representation of the Southern Ocean is highly desirable
(Gnanadesikan, 1999).

Considering two active tracers, temperature and salinity,
and applying mixed boundary conditions is expected to mod-
ify the dynamics of the two-plane model substantially. We

hope to then gain insight into questions of multiple equi-
libria (cf. Stommel, 1961; Bryan, 1986; Marotzke et al.,
1988; Marotzke and Willebrand, 1991; Johnson et al., 2007).
A thermodynamic coupling to a zonally averaged atmosphere
model also appears feasible.

4.4 Conclusions

The dynamics of the THC can be cast into a two-plane
model based on boundary mixing and geostrophy. In a hemi-
spheric sector basin geometry, this two-plane model predicts
self-consistent steady-state density and overturning struc-
tures that resemble primitive-equation model solutions.

The two-plane model confirms the scaling proposed by
the Marotzke(1997) theory. The overturning strength has
a 2/3-power-law dependence on vertical diffusivity and a 1/3-
power-law dependence on the imposed meridional surface
density difference. The dependence on vertical diffusiv-
ity agrees with primitive-equation model results. Adapting
the simple arguments byWelander(1971) to the boundary-
mixing case, this scaling can successfully be explained.

In contrast to previous two-dimensional models but in line
with three-dimensional models, convective mixing is an es-
sential element of the two-plane model. This indicates that
the two-plane model better represents the THC dynamics
than previous two-dimensional models.

Appendix A

Computational procedure

A1 Convective adjustment scheme

Our convective adjustment scheme, similar to those pre-
sented inMarotzke (1991) and Rahmstorf (1993), com-
pletely removes all static instability from the water column.

Proceeding from top to bottom, it is checked if grid cells
have a greater buoyancy than their upper neighbor. If this
is the case, buoyancy of those two cells is adjusted to their
mean. Then it is checked back upwards if this mean is greater
than the buoyancy of the grid cell overlying the now mixed
column. If necessary, it is mixed again and further checked
upward before proceeding downward.

Whenever a surface-bound mixed water column assumes
a buoyancy greater than the surface’s, the column’s buoy-
ancy is adjusted to the surface value in order not to violate
the surface boundary condition. This assumes that surface
processes remove any anomalies associated with convective
mixing and thus reduces the buoyancy of the entire convec-
tively mixed water column.

A problem associated with convective adjustment is that
it in general renders buoyancy fields nondifferentiable at
boundaries of convective regions. Formally, this merely im-
plies that the vertical velocities’ required smoothness needs
to be reduced accordingly. Numerically, however, this causes
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errors as finite differences are taken across the boundaries of
convective regions, resulting in oscillatory vertical velocity
fields, especially at the western boundary. Increasing reso-
lution reduces these oscillations, and we are confident that
convergence is warranted.

A2 Initial guess

Assuming the steady-state solution to be unique, we can pre-
scribe an arbitrary initial guess fulfilling the boundary condi-
tions for the time-stepping scheme. For all results presented
in this paper, the state

bw(ϑ,z,0)= be(ϑ,z,0)= b0(ϑ)exp
z

δ
, (A1)

with δ= 10−3 is used. Starting from initial guesses with dif-
ferent choices ofδ indeed yields the same steady-state solu-
tion, supporting the uniqueness assumption.

Only numerical stability puts certain constraints on the
choice of the initial guess. Certainly, a sensible initial guess
does not differ too much from the expected solution. Never-
theless, even highly irrational initial guesses such as one with
virtually vertical isopycnals prove to converge to the same
solution.

A3 Sensitivity to artificial diffusion and resolution

To assess the solution’s sensitivity to numerical diffusion, we
vary κ̂h between 2×10−4 and 2×10−1.5 for different values
of κ̂v and analyze the solutions in terms of the four character-
istics introduced in Sect.3. We find that the solutions do not
substantially depend on̂κh for κ̂h< 10−3. For our choice of
κ̂h= 2×10−4, the solution has hence sufficiently converged.

In order to provide some indication that the discretization
scheme converges to a unique solution for ever finer grids, we
analyze approximate solutions to the standard setup of var-
ied resolution. The patterns of buoyancy and velocity do not
change substantially when the resolution is varied between
32×32 and 256×256 grid points, but seem to converge to
a unique solution. To quantify this convergence, again the
four characteristics introduced in Sect.3 are analyzed. In-
deed, they all indicate convergence to a definite value.
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