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Abstract. An algorithm for computing ice drift from pairs of
synthetic aperture radar (SAR) images covering a common
area has been developed at FMI. The algorithm has been de-
veloped based on the C-band SAR data over the Baltic Sea. It
is based on phase correlation in two scales (coarse and fine)
with some additional constraints. The algorithm has been
running operationally in the Baltic Sea from the beginning
of 2011, using Radarsat-1 ScanSAR wide mode and Envisat
ASAR wide swath mode data. The resulting ice drift fields
are publicly available as part of the MyOcean EC project.
The SAR-based ice drift vectors have been compared to the
drift vectors from drifter buoys in the Baltic Sea during the
first operational season, and also these validation results are
shown in this paper. Also some navigationally useful sea ice
quantities, which can be derived from ice drift vector fields,
are presented.

1 Introduction

Ice motion is a very important ice parameter for ice naviga-
tion. It can be used to locate the areas of divergence and con-
vergence, and also be used to locate compressive ice fields.
In addition to the ice drift up to the current moment, the fore-
casting of the ice drift is very useful information for ice nav-
igation.

We at FMI have developed a SAR-based sea ice drift esti-
mation algorithm, which is based on phase correlation at two
resolutions. The algorithm is now run operationally as part
of the MyOcean, which is a part of the European Commis-
sion (EC) GMES (Global Monitoring for Environment and
Security) program. The SAR-based ice drift can be used for
validating ice models making forecasts of ice drift based on
numerical weather prediction data. It can also be utilized in
data assimilation into the ice models, and as an additional

information source for SAR-based sea ice classification al-
gorithms. The data used in the FMI Baltic Sea ice drift es-
timation are from both Radarsat-2 and Envisat ASAR in-
struments. Since April 2012, after the breakdown of EN-
VISAT, only RADARSAT data have been used. These in-
struments operate at C-band (wavelength about 5cm). The
ice drift fields for the Baltic Sea are computed for each over-
lapping SAR image pair with a temporal distance less than or
equal to two days. The resulting ice drift or ice displacement
vector fields are delivered in NetCDF format, and are freely
available for all registered MyOcean users (for the product
catalogue, see (MyOcean product catalogue, 2012)).

Motion estimation methods between two co-registered im-
ages can be based on block matching (the similarity is typ-
ically measured by different variations of cross-correlation,
such as phase correlation applied in our algorithm), algo-
rithms estimating optical flow from differential equations
based on partial derivatives of the image signal, such as pre-
sented inHorn and Schunck(1981), and feature-based meth-
ods. In feature-based algorithms, first some local features are
computed and these are then matched based on some crite-
ria (e.g. feature correlations) instead of direct block match-
ing. Correlation (cross-correlation) methods have been uti-
lized in estimation of ice drift, e.g. in (Fily , 1987), where ice
drift was estimated from SAR image pairs using correlation
in multiple resolutions. Other examples of correlation-based
ice drift estimation from SAR are the Radarsat Geophysical
Processor System (RGPS) (Kwok , 1998) and the Arctic and
Antarctic MyOcean SAR ice drift products (MyOcean prod-
uct catalogue, 2012) by Danish Technical University (DTU).
In the RGPS, the correlation approach has been coupled with
a feature-based approach. Correlation-based ice drift estima-
tion methods have also been studied for the Baltic Sea earlier,
e.g. inSun(1994). In this approach also the rotation is esti-
mated by correlating the power spectra, i.e. in this sense this
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algorithm can be considered as a combination of a feature-
based and a correlation method. Optical flow-based ice drift
estimation has been studied, for example for the Baltic Sea
in Sun(1996). A multiresolution phase correlation algorithm
for sea ice drift estimation was presented inThomas et al.
(2004, 2008), and this algorithm has also been tested in the
Bay of Bothnia. These experiments were reported inBerg
and Eriksson(2010). Ice drift estimation based on passive
microwave instruments has been studied, e.g. inLiu and Cav-
alieri (1998); Haarpaintner(2006); the previous is an exam-
ple of a correlation method, and the latter is a more sophisti-
cated approach based on a wavelet decomposition, i.e. anal-
ysis of wavelet coefficients in multiple resolutions. Passive
microwave instruments typically have a large coverage, but
their resolutions are coarse, typically several kilometers, and
only low- or medium-resolution ice drift can be measured
by these instruments. SAR instruments instead have a much
higher spatial resolution. In ScanSAR mode, which com-
bines multiple SAR beams into one wide swath, with a width
up to 400–500 km (ENVISAT ASAR and RADARSAT-1/2),
SAR instruments also have a good spatial cover, with a high
resolution of about 100 m.

Our algorithm is based on computing phase correlation in
two resolutions: in a coarse resolution to estimate the large-
scale drift; and in a fine resolution to refine the coarse-scale
estimates. Because phase correlation is a correlation between
phase information, it is sensitive to edges in the image, and
phase correlation methods are robust against gray level varia-
tion, e.g. due to different incidence angles in the two images,
compared to the common cross-correlation. Phase correla-
tion is also more robust against noise than common cross-
correlation. Using multiple resolutions enables detecting of
larger ice drift in a high resolution defined by the the fine
resolution. The main differences between the earlier phase
correlation algorithm inThomas et al.(2004, 2008) and our
new operational algorithm are (1) our algorithm uses only
two resolutions (coarse and fine); (2) our algorithm per-
forms the motion estimation only for areas containing some
SAR features defined by existence of edges; (3) our algo-
rithm uses a quality measure to measure the reliability of a
drift estimate instead of the correlation value; (4) our algo-
rithm selects the final motion from multiple motion candi-
dates defined by multiple correlation maxima; and (5) our
algorithm applies the vector median filtering (Astola et al.,
1990) to refine the estimation (to produce more coherent vec-
tor fields). According to our experience, the SAR frequency
band does not play a major role in ice drift estimation. The
same features (edges) are visible in L- (FMI has used ALOS-
PALSAR C-band data), C- (RADARSAT, ENVISAT ASAR)
and X-bands (COSMO-SkyMed, TerraSAR-X). In some ar-
eas, there can be some features at L-band, which are not vis-
ible at X- or C-bands, and in these cases ice drift detection
is possible only at L-band. These features are due to the bet-
ter penetration capability of L-band and thus ability to see

deeper within the ice cover than at C- and X-bands. C- and
X-bands mostly represent surface scattering only.

2 SAR Preprocessing

We use both Radarsat-2 and Envisat ASAR data for the Baltic
Sea ice monitoring. We use the wide swath mode (WSM)
data from Envisat ASAR and ScanSAR wide (SCW) mode
data from Radarsat-2. These modes assemble wide SAR im-
ages from several narrower SAR beams, resulting in an im-
age width of 400–500 km, which is a suitable size for oper-
ational sea ice monitoring at the Baltic Sea scale. The SAR
resolution in these modes is still 100–150 m. In the ice drift
estimation, only the horizontally transmitted and horizon-
tally received (HH) polarization channel is used. Radarsat-2
also has a dual-polarized mode in ScanSAR mode, i.e. also
HV (horizontally transmitted, vertically received) channel is
available. Envisat ASAR does not have this possibility, how-
ever. The typical temporal coverage, i.e. a SAR image acqui-
sition using these two instruments over the same area in the
Baltic Sea, ranges from a few hours to three days.

The SAR images are first calibrated to get the logarith-
mic backscattering coefficient values, which are presented
in decibels. The backscattering coefficient,σ 0, describes the
properties of the target area producing the backscatter of each
SAR pixel. Theσ 0 values are then linearly scaled to eight bits
per pixel (8 bpp) images; the scaling interval is from –35dB
to 0 dB. The general calibration equations are

σ 0
=

A2

K
sin(α) =

I

K
sin(α), (1)

σ 0(dB) = 10 log10(σ
0). (2)

K is a SAR calibration coefficient, and typically given in the
SAR metadata;A is the SAR amplitude value, andI = A2

is the SAR intensity value.α is the SAR incidence angle,
which increases from the near range to far range, and typi-
cally varies about in the range of 20–50 degrees.

The 8 bpp SAR images are then rectified to Mercator pro-
jection, which is the projection used in nautical charts in the
Baltic Sea. The rectification is performed using a fixed ref-
erence latitudeϕ0 (latitude of true scale) of 61 degrees for
40 min. This parameter has been selected for the compatibil-
ity with the FMI ice charting applications and software on-
board Finnish ice breakers. After rectification, a land mask-
ing to mask off all the land areas is applied.

For some other purposes, such as ice type classification,
we also apply an incidence angle correction (Makynen et al.,
2002), which is based on an empirical linear relationship be-
tween mean sea ice backscattering and incidence angle value.
This correction is, however, not necessary for the ice drift es-
timation.
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For the ice drift application, the two images are co-
registered. This is performed using the georeferenced data
of the rectified images. After co-registration, the common ar-
eas of the two images are cut, and these two cut images are
the inputs of the ice drift algorithm.

3 Algorithm

The algorithm is based on phase correlation computed in two
resolutions. In our approach, the phase correlation computa-
tion is performed for edged areas only, because these typ-
ically are the areas, where reasonable correlations can be
computed. In smooth or random areas, the correlations are
too low for reliable drift detection.

The edges are here detected using the Canny edge detec-
tion algorithm (Canny, 1986), but in practice most of the
edge detection algorithms produce similar results. Typically,
the edge detection is based on gradient magnitude in the
images. After edge detection, we perform a filtering of the
edges, filtering out small edge segments. An edge segment is
here defined as a set of connected edge pixels, in the sense
of the pixel’s 8-neighborhood. All the edge segments smaller
than a given size (an integer number of pixels) are removed
from the edge image. A suitable size threshold for a full-
resolution SAR edge image is five. The small edge segments
are typically due to speckle and do not describe any actual
SAR features.

The ice motion is determined for sampled data windows
from the two images using phase correlation. The window
size isW×W ; we have usedW = 16. The detection of the ice
drift at each resolution is based on the phase correlation. To
compute the phase correlation, the 2-dimensional fast Fourier
transform (2-D FFT) is applied to the data windows sam-
pled from the two co-registered images at the same location.
Then FFT-coefficients of the two image windows are nor-
malized by their magnitudes, and the FFT-coefficients of the
two image windows are multiplied, and the inverse 2-D FFT
is applied. The phase correlation array is computed from the
the normalized cross power spectrum. The best matching dis-
placement in a Cartesian (x,y) coordinate system is defined
by the maximum of the phase correlation, here denoted by
PC:

(dx,dy) = argmax(x,y) {PC(x,y)}

= argmax(x,y)

{
FFT−1

(
(X1

∗(k,l)X2(k,l))
|X1

∗(k,l)X2(k,l)|

)}
,

(3)

Because the FFT assumes the data to be periodic, a Gaus-
sian window is applied to the data windows before the trans-
formation. The drift is estimated in the row-column coordi-
nate system in whole pixels at two resolutions. The displace-
ment vector in the row and column coordinates is denoted
by (dr,dc). In practice, there often occur several correlation
maxima which can be close to each other, and it is reasonable
to use more than just one drift candidate for one window pair,
and make the final decision only at the fine resolution level.

Fig. 1. The low-resolution part of the algorithm. The processing
after down-sampling is shown only for one window pair in the dia-
gram. In the algorithm, this is performed for each window pair with
a grid step of (W/2,W/2) low-resolution pixels.

Two resolutions are used in this approach: first, coarse- or
low-resolution (LR) data are used to locate the large-scale
motion; then fine- or high-resolution (HR) data are used to
refine the motion estimation. Simplified flow diagrams of the
algorithm for the low-resolution and high-resolution parts are
shown in the Figs.1 and2.

For the low resolution, the two co-registered images
are first down-sampled to the given resolution. The down-
sampling rate is a power of two, sayRS = 2n−1. We have
used n = 5, corresponding to a down-samplingRS = 16.
The two low-resolution images are generated by succes-
sively applying a half-band low-pass FIR filter designed for
multi-resolution image processing (Biazzi et al., 1998). Af-
ter down-sampling to the low resolution, we go through the
image in steps ofW/2 in both row and column directions,
and for each of the sampled locations, we make the two
W × W sample windows, and locateM phase correlation
maxima. We have used the parameter valueM = 12 here.
If the zero motion case(dr,dc) = (0,0) is not included in
theM low-resolution drift values indicated by the maxima,
it is included and the drift candidate with the lowest phase
correlation is excluded. In the same way, the low-resolution
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Fig. 2. The high-resolution part of the algorithm. The processing
is shown here only for one window pair. In the algorithm, this is
performed for each window pair with a grid step of (W/2,W/2) high-
resolution pixels.

drift candidates with the highest phase correlations from the
neighboring low-resolution motion grid locations are copied
to the list of M candidates, if they are not included. This
revised list of drift candidates and corresponding phase cor-
relations for each image location is then delivered to the fine-
resolution processing.

At the fine-resolution level, all the displacements from
the low-resolution level, scaled up by the down-sampling
factor, are considered as potential low-resolution ice drift
candidates, and the windows are sampled in aW/2× W/2
pixel grid from the full-scale first image (i.e. the step res-
olution is 800 m for 100 m resolution images). The sam-
pling locations from the second image are defined by theM-
scaled displacements from the low resolution. For each high-
resolution window pair, we also locate multiple drift candi-
dates corresponding toN highest maxima, thus resulting in
M × N drift candidate values for each fine-scale location in
theW/2×W/2 grid. In the current version of the algorithm,
the drift candidate with the highest phase correlation at the
fine-resolution level is selected as the final ice drift candidate.
In another algorithm version, we have also performed some
spatial filtering within a given spatial neighborhood among
all theM ×N candidates at each grid location before select-

ing the final drift candidate. Some geophysical restrictions
can additionally be used, e.g. not allowing too high local con-
vergence values, which can be adjusted by a threshold value.

Finally, a vector median filtering (Astola et al., 1990) is
performed with a given radius to obtain the final motion es-
timate. The size of the filtering is dependent on a quality in-
dex, and is varied from 5× 5 to 11× 11 points in the fine-
resolution motion grid. The algorithm can actually use either
phase correlation or cross-correlation (this can be selected
by the user), but we have used only phase correlation in the
studies presented here and in the operational algorithm.

3.1 Quality Measures

The cross-correlations or the phase correlations are not very
good measures of the quality of the estimates. This is due to
the fact that there often also exist other high correlation val-
ues at different locations between two data windows. And if
there are more than one correlation peak, it is difficult to de-
termine which of these peaks corresponds to the actual mo-
tion and which are due to similarities spatially apart from
each other in the images. Different quality indexes instead of
phase or cross-correlation, taking into account the possible
existence of multiple correlation peaks, have been studied at
FMI. Here are some quality measures, which can be used.
The sub-indexes of the phase correlation (PC) refer to the
sorted (largest first, starting from one) phase correlation val-
ues for one SAR window pair:

Q1 = PC1(1−

n∑
k=2

PCk

PC1
Dk) = PC1 −

n∑
k=2

PCkDk (4)

Q2 = 1−

n∑
k=2

PCk

PC1
Dk (5)

Q3 = PC1 − PC2 (6)

Q4 = PC1 × (PC1 − PC2) (7)

Q5 = PC1/Np (8)

Q6 = 1.0− (PC2/PC1) =
PC1 − PC2

PC1
(9)

Dk are the pairwise distances of the lower (k-th) maxima
from the first maximum. In the quality measures not utiliz-
ing the distance of the maxima, the maxima in the neigh-
borhood of the first maximum are excluded, because typi-
cally the phase- or cross-correlation is also high and near the
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peaks, but this only indicates the same peak value.Np is the
number of PC peaks higher than or equal tofc PC1. We have
typically usedfc = 0.7. This kind of quality index is much
better criterion for including or excluding data than the phase
or cross-correlation. Our current algorithm by default com-
putes the quality measuresQ5 andQ6.

4 Operational products

The products are computed using a window size of 16× 16
pixels in the Mercator projection, and the computation step
size is 8 pixels in both row and column direction, correspond-
ing to about 800 m for 100 m resolution images. Also, the
nominal product resolution is 800 m. The values used in the
products are the row- and column components of the mo-
tion, phase correlation and the quality valuesQ5 at each
800 m grid cell. In the operational products delivered to My-
Ocean (MyOcean product catalogue, 2012), the drift compo-
nents and the scaled quality value are re-sampled to latitude-
longitude coordinate system with a similar resolution as in
the Mercator coordinates. Bilinear interpolation for the vec-
tor components is used in the re-sampling. The values in
the final product are given as U- (from west to east) and V-
coordinates (from south to north) in meters, i.e. the motion
in pixels is multiplied by the local resolution. The local res-
olutionRL, in the Mercator projection, is computed as

RL =
cos(ϕ0)

cos(ϕ)
R0. (10)

R0 is the true resolution atϕ0 – in our case 100 m.
As a measure of product quality, we have used a scaled

version of the quality measureQ5 in the operational product.
This value is delivered as part of the ice drift product for each
grid point.

The quality measureQ5 is converted to a scaled quality in-
dexQs ranging from one to five using the following thresh-
olds:

Q5 < 1−5
→ Qs = 0 (11)

1−5
≤ Q5 < 1−3

→ Qs = 1

1−3
≤ Q5 < 0.1 → Qs = 2

0.1 ≤ Q5 < 0.2 → Qs = 3

0.2 ≤ Q5 < 0.4 → Qs = 4

Q5 ≥ 0.4 → Qs = 5

The final product is converted into a NetCDF file, with geo-
referencing for the common area of each overlapping SAR
image pair within a mutual temporal distance of two days.

5 Applications

We also compute some derived quantities from the ice drift;
the most important quantities for modeling and navigation

are shortly presented here. First, the mean ice drift veloc-
ity between a SAR image pair can be computed by dividing
by the SAR acquisition time difference. Mean velocity is a
useful value, for example, in ice model validation and assim-
ilation. The mean ice velocity can be computed from the ice
model ice drift velocities by means of numerical integration.

Other useful quantities are divergence, curl and shear, and
quantities derived from these. DivergenceD(F) of a vector
field F = (dr,dc) is defined as

D(F) = ∇ ·F. (12)

dr anddc are the motion in row and column directions. A
simple discrete estimate for divergenceD at location (i,j ) is

D(F) =
1
2[dr(i + 1,j) − dr(i − 1,j)+

dc(i,j + 1) − dc(i,j − 1)].
(13)

The divergence (blue) and convergence (red) for the ice mo-
tion example in Fig.4 are also shown in the vector field part
of the figure.

Curl C of a vector fieldF is

C(F) = ∇ ×F. (14)

And the corresponding discrete estimate for curl at (i,j ) is

C(F) =
1
2[dc(i + 1,j) − dc(i − 1,j)−

dr(i,j + 1) + dr(i,j − 1)].
(15)

The direction of the curl vector is the direction of the nor-
mal of the vector field, and the sign of the curl indicates the
direction (clockwise or counter-clockwise).

ShearS for a vectorF field is

S(F ) =

√(
∂dc

∂c
−

∂dr

∂r

)2

+

(
∂dc

∂r
−

∂dr

∂c

)2

. (16)

In a discrete estimate, we replace the partial derivatives in
Eq.16as follows:

∂dc

∂c
=

1

2
[dc(i,j − 1) − dc(i,j + 1)] (17)

∂dr

∂r
=

1

2
[dr(i − 1,j) − dr(i + 1,j)] (18)

∂dc

∂r
=

1

2
[dc(i − 1,j) − dc(i + 1,j)] (19)

∂dr

∂c
=

1

2
[dr(i,j − 1) − dr(i,j + 1)]. (20)

After computing the discrete estimates for divergence and
shear, the total deformation can then be computed as

DT (F ) =

√
S2 + D2. (21)

One practical application utilizing the ice drift estimation
is locating fast ice. This can be done by finding the areas
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Fig. 3.SAR images from 3 April 2011 at 09:17:34 UTC (Envisat ASAR, ©ESA, left) and 3 April 2011 at 16:12:42 UTC (Radarsat-2, ©MDA,
right) over the Gulf of Bothnia.

where practically no ice motion has occurred within a rela-
tively long time period. In the Baltic Sea, a suitable period
for fast ice detection is two weeks or longer. An example of
a two-week cumulative ice motion magnitude in the Baltic
Sea can be seen in Fig.5. Fast ice areas can be distinguished
from this by applying a threshold, and labeling all the areas
with a cumulative ice motion magnitude below the threshold
as fast ice.

Some of the areas where ice compression occurs can also
be estimated based on ice deformation indicators based on
SAR ice motion, and these indicators are very useful in the
validation of ice models trying to forecast ice compression
for ice navigation.

Some statistics of the measures based on estimated ice mo-
tion can also be used to get at least some qualitative infor-
mation on the ice thickness. From the total ice deformation
computed over e.g. a period of two weeks, we can locate the
areas of high deformation, which typically include thicker ice
than areas of lower deformation.

One feature derived from the ice drift is the ice drift ratio,
denoted byRM at each grid position:

RM(r,c) =

tn∑
i=to

|fi(r,c)|/|
tn∑

i=to

fi(r,c)|. (22)

In the equation,fi(r,c) is the ice motion vector at location
(r,c) at the momenti. In practice, the moment describes the
drift between two adjacent SAR images. The sums are com-
puted over the motion vectors from SAR image pairs during

a certain time period, e.g. one week or two weeks. The sum
in the numerator is the sum of all the drift magnitudes during
the time period, and the sum in the denominator is the abso-
lute value of the cumulative motion.RM is typically higher
in the areas of thicker ice and lower in the areas of thinner
ice. This can be explained such that, in the areas where this
ratio is higher, the motion has not been in a certain direction,
but the motion direction has been oscillating, and in the ar-
eas of low ratio the motion has been more in one direction.
In the fast ice areas (black areas in Fig.6), the ice thickness
can quite accurately be estimated based on a thermodynamic
ice model (Launiainen and Cheng, 1998), and if we also get
a reliable ice thickness distribution from an ice model, we
then can give some ice thickness estimates over the drift ice
areas based on the drift statistics described. The deficiency
of utilization of this kind of statistics is that it requires data
over a time period of some weeks, and thus cannot take into
account faster temporal ice dynamics. This information can,
for example, be used to improve the initial ice thickness fields
in an ice thickness estimation algorithm based on thermody-
namic ice model and SAR data (Karvonen et al., 2008a,b).
In Fig. 6, the total ice deformation, ice drift ratioRM , and
the mean level ice thickness (from FMI ice chart based on
ice analysis from multiple data sources) for 17 March 2011
as an example is given. The thinner ice areas roughly corre-
spond to the areas where the total deformation and the drift
ratio are smaller, excluding the fast ice areas.

The main uses for the Baltic Sea ice drift estimates will
be the ice classification algorithms (ice thickness, ice type

Ocean Sci., 8, 473–483, 2012 www.ocean-sci.net/8/473/2012/
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Fig. 4. The SAR images of Fig.3 after co-registration and land masking (ASAR ©ESA, upper left, and Radarsat-2 ©MDA, upper middle),
and the located edges indicating the edged areas (edges shown in black, upper right). Ice motion vector field between the SAR acquisitions
on 3 April 2011 at 09:17:34 UTC and 3 April 2011 at 16:12:42 UTC over the Gulf of Bothnia (lower left). For better visibility, the motion
vectors are shown in a coarser grid than the nominal resolution and their lengths are scaled. The longest vector corresponds to a motion of
2.83 km; the maximum motion in both row and column directions was 21 100 m pixels. The scaled phase correlation (brighter tone indicates
higher values, lower middle), and the scaled quality indexQ5 (brighter tone indicates higher values, right).

classification), validation of ice models, and data assimila-
tion into ice models.

6 Validation

During the 2011 validation period, i.e. from 1 March to
26 April 2011, a total of 209 SAR-based ice motion estimates
computed for the common areas of SAR image pairs with a
temporal difference were used in the validation. 169 of these
were classified as short drift category (buoy motion less than

500 m) and 40 measurements as long drift category (the rest
of the data). The buoy trajectories during the test period are
shown in Fig.7.

The buoy locations were transmitted only once an hour,
and the temporally nearest buoy locations to the SAR acqui-
sition times were used in the comparison. This temporal in-
accuracy naturally produced some inaccuracies. The scaled
quality Qs for all the long drift data was two. For the short
drift data,Qs varied in the interval 2–4. For the short drift
data, only the motion magnitude was evaluated, because, in
short motion estimates, the SAR registration errors can cause

www.ocean-sci.net/8/473/2012/ Ocean Sci., 8, 473–483, 2012
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Fig. 5. Mean ice motion magnitude for two weeks before
5 March 2010 based on our SAR ice drift algorithm. Bright tones
represent larger motion. The fast ice areas can be derived from these
data. The bright areas in the southern parts of the Baltic Sea are open
water. Open water has been masked off using the method presented
in Karvonen et al.(2005) and set white in the figure.

large relative errors and defining the direction can become
ambiguous. Also for short motion when computing motion
in pixels, the direction is highly quantized increasing the er-
ror. For example, if the estimated drift is one pixel, it can be
only in four directions (left, right, up, down) and thus the di-
rection is quantized into four angles. For the long drift data,
both the magnitude and direction were combined. The vali-
dation results are shown in Figs.8–10.

The coefficient of determination,R2, for the long drift
data magnitude was 0.55 (with one obvious outlier removed,
the outlier buoy motion is more than theoretically possible
to detect using the applied algorithm parameters, i.e. about
18.1 km in diagonal direction), and the mean absolute direc-
tion difference was 15.8 degrees. For the short drift data, we
computed the number of cases where the buoy motion was
over 1000 m, i.e. the magnitude error is already rather large
(over 500 m) and the estimated motion is short (i.e. less than
500 m). This number was 11 of the 168 samples, i.e. 6.5 %.
The mean absolute direction difference for the short motion
was 75.8 degrees. Some computed error measures for the two
cases are tabulated in Tables1 and2.

Table 1.Long motion error statistics: the magnitude errors (except
the RMSE) are in meters.

Quantity L1 err. MSE RMSE bias

Magnitude 847 1333 0.15 -470
Angle 15.8o 21.3o - -

Table 2. Short motion magnitude error statistics (the errors are in
meters).

QualityQs Samples L1 err. MSE bias

2 139 842 1320 790
3 24 144 178 130
4 6 326 368 320

We also computed theL1 error and mean square error
(MSE) for the long motion magnitude and angle, and for
the short motion magnitude for each of the detected quality
classes. In the long motion case, there was only one qual-
ity class (Qs = 2). We also computed the bias (estimated
magnitude–buoy magnitude), and it can be seen that the long
magnitudes are underestimated and the short magnitudes are
overestimated by the algorithm. The relative mean square er-
ror (RMSE) for the long motion magnitude was 0.15 and
for the short motion magnitude 0.49. The direction in the
long motion case was estimated rather well. In comparison
to visual interpretation for some image pairs, the motion es-
timated by the algorithm seemed to correspond to the visual
interpretation.

For the small drift data, the magnitude mean absolute error
was 842 m for the data with the scaled qualityQs = 2 (139
samples), 144 m for the data withQs = 3 (24 samples), and
326 m for the data withQs = 4 (6 samples). It seems based
on this small data set that the estimates are better;Qs higher
than 2 gives better estimates, but the amount of data is still
too small to make final conclusions on this. In general, the
products show that the SAR-based ice drift estimates give
useful estimates of the ice drift; especially the direction of
the drift is estimated well. However, there exist some rela-
tively large errors. We have not yet studied the locations of
the erroneous measurements, but we assume them to be lo-
cated close to edges of large drift and small drift areas. It can
also be expected that the errors for the short drift data are
higher, because the relative errors, due to e.g. image pair reg-
istration and the direction quantization, become larger. This
can be seen especially in the value of the RMSE. Because
the long drift directions are estimated rather well, and also it
is rather well estimated whether the drift magnitude is short
or long, these ice drift estimates are useful in validating ice
models, especially after a visual inspection of the drift es-
timate data and the SAR images in parallel before the vali-
dation process, and leaving out the data that possibly do not
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Fig. 6. Ice total deformation (left), ice motion ratio (middle), and the mean level ice thickness on 17 March 2011. The total deformation and
ice motion ratio are computed over two weeks before 17 March, and the brighter tones indicate higher values.

Fig. 7.Buoy tracks shown with different colors for each buoy.

correspond to the visual interpretation. We have also shown
that this kind of data can successfully be used in improving
SAR-based ice classification algorithms (locating fast ice and
getting information on the degree of deformation).

7 Conclusions

We have developed an operational SAR-based sea ice drift al-
gorithm, product generation and delivery chain at FMI. The
products have been generated and delivered operationally
during one Baltic Sea ice season, and also been validated

Fig. 8. Magnitude of the buoy motion and estimated motion for the
long drift data in meters. One outlier with a buoy motion larger than
the maximum algorithm detecting capability is located outside of
the illustrated range.

against some buoy measurements. The algorithm had been
in test use already in the previous ice season 2009–2010.

The algorithm produces reasonable values compared to the
validation data from buoys. However, the validation data are
currently only for the Gulf of Bothnia area, and no validation
data for the Gulf of Finland exist. The ice drift direction is
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Fig. 9. Direction of the buoy motion and the estimated motion in
degrees. The values correspond very well to each other. The high
values of SAR drift directions for the low buoy drift directions are
actually quite close to the buoy drift directions, because the direc-
tion 0 degrees (to north) corresponds to the value 360 degrees.

relatively well estimated for the long ice motion case; the ac-
curacy in the magnitude is worse. For the short motion case,
the estimated motion is also rather short, but the relative er-
rors are rather high. The algorithm also reliably locates the
areas where the ice is moving and the areas of static ice.
These data can be used selectively in ice model validation.
The data have not been used in data assimilation yet, but this
is one potential application for the data. According to our ex-
perience, one very fruitful application for these data is SAR
algorithms estimating the degree of ice deformation and lo-
cating fast ice, based on ice drift statistics for a period rang-
ing from one week to a few weeks. The algorithm works well
for SAR data in cold weather conditions. In the melting sea-
son, the ice cover gets wet and SAR backscattering is attenu-
ated by the wet snow cover, and the sea ice feature detection
becomes more difficult. This leads to poorer ice drift estima-
tion algorithm performance in the wet snow conditions.

One restriction of the algorithm is related to the im-
age size and resolution. Because the pixel size in the low
resolution is 1.6 km and the window size is 16× 16 pix-
els, it is not possible to correctly estimate motions larger
than about 12.8 km in row or column directions, and

√
2×

12.8 km = 18.1 km in diagonal directions. In practice, this
limit is even smaller, because, at the window edges, the Gaus-
sian window multiplication reduces the signal information
content. This parametrization restricts the maximal allowed
temporal difference between the two SAR images in the im-
age pair. However, the window sizes and resolution are also
user-defined parameters and easy to change, if e.g. longer al-

Fig. 10.Magnitude of the buoy drift and estimated ice drift for the
short drift data in meters. The different quality classes are indicated
by colors (Qs = 2 → red,Qs = 3 → green,Qs = 4 → blue).

lowed temporal differences between a SAR image pair acqui-
sitions are required. However, the temporal difference cannot
be increased very much, because with long temporal differ-
ences, more ice deformation occurs and the correlating fea-
tures are lost.

Future improvements for the algorithm will be better tak-
ing into account ice rotations. In our coastal radar ice track-
ing algorithm (Karvonen, 2012), which is based on a similar
phase correlation approach in two resolutions, we have taken
this into account by computing the correlation for windows
slightly rotated with respect to each other to the two direc-
tions in the low resolution, and using these rotations in the
high-resolution motion candidates, i.e. it is not necessary to
compute multiple correlations for different rotations in the
high resolution. We are also going to adapt some image fil-
tering techniques we have found useful in the coastal radar
image ice tracking. Such techniques are computing the mo-
tion estimates only for locations with enough corner points,
and removing small details by spatial edge preserving filter-
ing techniques. Requiring corners reduces the errors caused
by similarities along linear edges, and filtering of small de-
tails reduces the errors caused by these small features, which
can be either SAR noise or actual small-scale ice features.
Small-scale ice features can cause errors, because it is more
likely that there exist multiple such features, and small-scale
features also typically change faster than larger ones as the
ice moves. We are also studying ways how these features can
be taken into account in quality factor values. Currently, we
can say that the quality is increased as a function of increased
number of corner points, and decreased as a function of in-
creased small-scale details.
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