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Abstract. The objective of this paper is to investigate if 1 Introduction
the description of ocean uncertainties can be significantly
improved by applying a local anamorphic transformation to As a result of inescapable inaccuracies or approximations in
each model variable, and by making the assumption of joinithe observations and in the models, uncertainties are inherent
Gaussianity for the transformed variables, rather than for théo any description or simulation of the real ocean. A realistic
original variables. For that purpose, it is first argued that aand efficient modelling of these uncertainties is of key impor-
significant improvement can already be obtained by deriv-tance for many oceanographic applications: (i) to objectively
ing the local transformations from a simple histogram de-check simulation results against independent observations,
scription of the marginal distributions. Two distinctive ad- (ii) to optimally assimilate data, and thus obtain the maxi-
vantages of this solution for large size applications are thenum benefit from an expensive, but incomplete, observing
conciseness and the numerical efficiency of the descriptionsystem, and (iii) to rationaly design future observation net-
Second, various oceanographic examples are used to evaluat®rks. It is thus essential to the production and use of ocean
the effect of the resulting piecewise linear local anamorphicoperational data, as delivered for instance by the MyOcean
transformations on the spatial correlation structure. Theseystent, which is the target application of this study.
examples include (i) stochastic ensemble descriptions of the Ensemble (or Monte Carlo) methods provide a good way
effect of atmospheric uncertainties on the ocean mixed layerpf describing uncertainties in ocean dynamical systems, by
and of wind uncertainties or parameter uncertainties on theexplicitly exploring how uncertainties in the governing laws,
ecosystem, and (ii) non-stochastic ensemble descriptions diarameters or forcings (the prior information) propagate to
forecast uncertainties in current sea ice and ecosystem préhe observed quantities or to the operational prodiRainger
operational developments. The results indicate that (i) theet al, 2005 Lermusiaux 2006. However, even if an ex-
transformation is accurate enough to faithfully preserve theplicit stochastic modelling is used to solve a practical prob-
correlation structure if the joint distribution is already close lem, there is often a strong temptation (in large size appli-
to Gaussian, and (ii) the transformation has the general tencations) to simplify the result using a Gaussian model, be-
dency of increasing the correlation radius as soon as the sp&ause it is much more efficient (i) to describe the uncertain-
tial dependence between random variables becomes nonliriies (by the mean and covariance), and (ii) to assimilate ob-
ear, with the important consequence of reducing the numbesgervations (using linear update formulas, as in the ensemble
of degrees of freedom in the uncertainties, and thus increas<alman filter, seé&vensen and van Leeuwei®96. Without
ing the benefit that can be expected from a given observatiom prior assumption about the shape of the probability distri-
network. bution, large size problems are indeed very complex in gen-
eral van Leeuwen2009 201Q Bocquet et a].2010, mainly
because the size of the sample that is required to identify a
general multivariate distribution increases exponentially with
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the number of dimensions (curse of dimensionality). To cir- rithm (presented in a more deductive way thaB&al et al,
cumvent this difficulty, one possible simplification is to look 2010, with a quantitative discussion of the computational
for univariate nonlinear changes of variables (anamorphocomplexity and accuracy of the approximation (S&kt.

sis transformations) transforming the marginal distribution

of each random variable into a Gaussian distribution. One-

dimensional probability distributions can indeed be identi-2 Anamorphosis transformations

fied with a much smaller sample, and it may well happen ] ] )

that such a separate transformation for each random varil "€ basic problem of the algorithm is to look for a non-
able also helps improving the Gaussianity of their joint dis- IN€ar change of variable transforming a random variable
tribution (although this needs to be checked in every practi-With known cumulative distribution function (cdi (x) =
cal application). This technique originates from geostatistics? (X =< %) into a new random variabl& with the target
(Wackernagel2003 and was first introduced in oceanogra- ¢df G(z) = p(Z <z). Elementary probability calculus (e.g.

phy byBertino et al(2003, in the framework of the ensem- Von Mises 1964) provides a general solution for the forward
ble Kalman filter. and backward transformations:

However, the studies presentedartino et al(2003 and
later in Simon and Berting2009 were directly focused on
the impact that anamorphic transformations may have on thyroviding that F and G are invertible. In particular, if
performance of the ensemble Kalman filter, without much 7 ~ 7/(0,1) is uniformly distributed on the intervdD, 1],
emphasis on the improvements in the multivariate statisticSwith G(z) = z, thenx = F~1(k/q) is thekth g-quantile ofX;

In this context, they also preferred to apply the same transand if Z ~ A/(0,1) is normally distributed, withG(z) =
formation over the whole model domain (but different for %[1+erf(z/ﬁ)], then Eq. {) defines the forward and back-
each model variable), so that a much larger sample is availyard Gaussian anamorphosis transformation of the random
able to identify the transformation function. Yet, if the objec- yariablex (Wackernagel2003 chapter 33).

tive is also to propose a generic method (beyond the Gaus- However, it is important to keep in mind that transforming
sian scheme) to improve the description of the uncertaintiesg|| yariables of a random vector using Etj) ¢an only ensure
which can be spatially inhomogeneous, any practical possithat the marginal distribution of each variable becomes Gaus-
bility of extending this towards local anamorphic transforma- sjan, This does not imply that their joint probability distribu-
tions should be evaluated. Inarecent papésl etal(2019  tion becomes a multivariate Gaussian distribution, which is
proposed a very simple algorithm to obtain such local transthe condition required to apply linear estimation techniques.
formations, and started evaluating its potential for describingas pointed out bywackernage(2003, it is thus important

a 30-day ensemble forecast of the North-Atlantic ecosystemg check in practice that at least bivariate distributions of the
(simulating the effect of wind uncertainties). However, the transformed variables become close to bi-Gaussian, so that
paper was exclusively focused on the improvement of localjinear inference may be close to optimal. It is the purpose
correlations (at given locations) between phytoplankton ancyf the present paper to check this in various oceanic applica-
the other ecosystem compartments (nutrients, zooplankton}jons, by studying how the transformation in Ej),@pplied
inthe perspective of ocean colour data assimilation. Yet, withseparately for every random variable, at every spatial loca-
an algorithm working locally (i.e. transforming each model tion, modifies the spatial correlation structure. But before
grid point with a different anamorphosis function), itis also going to the applications, this section is dedicated to describ-
important to study how the spatial correlations are modified,ing the specific algorithm that we have implemented to ap-

and hopefully improved, by the transformation. proximate Eq. 1) using a limited-size sample of the random
The purpose of the present paper is thus to evaluate th@ariaples.

effect of local anamorphic transformations on spatial corre-

lations for various kinds of ocean uncertainties. The study2.1 Efficient approximate algorithm

includes, on the one hand, the stochastic ensemble descrip-

tion of the ocean mixed layer response to atmospheric forcin the Monte Carlo estimation methods (like the ensemble
ing uncertainties (SecB), the ecosystem response to wind Kalman filter), the prior probability distribution for the con-
uncertainties (i.e. the same application aB&al et al, 201Q trol variables is only approximately described by a finite-
in Sect.4), and the ecosystem response to parameters uncesize sample. The anamorphosis transformation in Bdof
tainties (Sectb). On the other hand, we also show exampleseach control variable can thus only be approximately com-
of anamorphic transformations applied to the non-stochastiputed from the available sample using a nonparametric esti-
ensemble description of forecast uncertainties in current premate F(x) of the exact marginal cdf (x). The most sim-
operational developments for the sea ice component (Mercaple nonparametric estimate of a probability density function
tor system, Secb) and for the ecosystem component (My- (pdf) f(x) = dF(x)/dx is the histogramIgenman 2008
Ocean project, Sect). In addition, before going to the ap- chapter 4): a piecewise constant pfifx), or a piecewise
plications, the paper includes a brief summary of the algo-linear cdf F(x). As a simple choice for the classes of the

Z=G YF(X)] and X=F7G(2)] (1)
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Fig. 1. Approximate piecewise linear Gaussian anamorphosis transformation (thick blue curve), remapping th&;decde200-member
random sample of the Gamma distributibik,0) (top histogram) on the Gaussian decifgs(right histogram), as compared to the exact
transformation (in red) transforming the ex&ak, #) (red curve superposed to the top histogram) ii®, 1) (red curve superposed to the
left histogram).

histogram, we may use prescribed quantigsk =1,...,q zk, k=1,...,q, and interpolates linearly between them. It is

of the input sample, i.e. such thA(%) = rg, for a given set  bijective between the intervat,, x,] and[z1,z,], providing

of rip (0<rr <1,r <ris1). Inthis way, we can control ex- that the quantiles; are distinct:x; # %1 Vk (see Sect2.3

plicitly the fraction of ensemble memberg (1 —r¢) ineach  for a discussion of the degenerate cages x;41, and for

class of the histogram. possible parameterizations of the tails of the probability
Then, with the same level of approximation, we can usedistributions:x ¢ [X1, X, ]).

the same histogram representation of the Gaussian distribu-

tion, i.e. a piecewise lineas (z) interpolating the true Gaus- Example: Figure 1 shows for instance the approxi-

sian cdf betweeG (zx) =rr, k=1,...,q, so thatthe anamor- mate Gaussian anamorphosis transformation that is obtained

phosis transformation in Egl)is also piecewise linear: with Eq. ) using a 200-member random sample of the
Gamma distributionX ~ I'(k,0), with k = 4.236 and
Prorw(x) =G 1 [F(x)] — b T 3 6 = 0.309 (chosen so that the mode is equal to 1, and the
Fht1 = Xk 95 % percentile is equal to 2.5). The classes of the histogram
for xe[Xk, Xxtal (2)  for X are defined using the 10-quantiles (or deciles) of the
sl s o Xkl Xk random sampler;, =k/q, with ¢ =10. They are remapped
¢pack2) = F [G(Z)] =%t Zhal— Tk (=2 on the Gaussian decileg (histogram on the right) using
for zel[Zk,Zis1l (3) the piecewise linear transformation (blue curve), which

is here not far from the exact transformation (red curve),
This approximate transformation (heuristically proposed bygiven by Eq. {). With this definition ofry, there is the
Béal et al, 2010 remaps the quantile®;, k=1,...,q of  same number of random draws in each class of the histogram.
the input sample on the corresponding Gaussian quantiles
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accuracy of the approximation given by E) (mainly de-
Computational complexity: The first reason why such a pends on the accuracy of the histogram descriptiofi(@af,
simple approximation of the Gaussian anamorphosis mayvhich is related to the size of the sample and to the definition
be useful in practical ocean applications is that it can beof the classes of the histogram by the quantilesWith too
performed at a numerical cost that is usually much smallemany quantiles, we are likely to introduce spurious features
than the numerical cost of a Gaussian observational updatm the transformed pdf (not resolved by the available ensem-
(e.g. the analysis step of the ensemble Kalman filter).ble), and with too few quantiles, we will smooth out signifi-
In the identification of the approximate transformation cant features. Thus, for a given distribution and a given sam-
in Eq. @), the main cost is associated to the computationple size, there exists an optimal resolution of the quantiles
of the quantilesy; of the input sample. lin is the size of  giving the best approximation for the transformation.
the sample, this cost is proportional adogm, to sort the For the example of Fig.l, we computed the ap-
sample values. Then, if is the size of the control vector proximate anamorphosis transformation from the same
(i.e. the number of random variables to transform), the total200-member sample and for several resolution of the
computational complexity to identify the functiopg and histogram § = 3 to 50 with regular quantile discretization:

@backin Egs. @) and @) is: re=k/q, k=0,...,q). Then, we transformed the exact
prior distributionI" (k,6) using these various approximations
Cquantiles™ nmlogm (4) and computed the relative entropy (as a measure of the

L . discrepancy between two pdfs, see for instaBoEquet
In addition, in order to perform the observational update, one hancy P q

. et al, 2010 between the resulting transformed pdfs and
must apply the transformation to the ensemble forecast and tﬂwe target transformed pd¥/(0,1). Figure 2 (left panel)

the observations. Each transformation requires localizing theshows that there is indeed an optimal number of quantiles
‘T‘p“t value among the_ quanfcilé;g (with complexity propor- (g =9), which is close to the choice that we made in
tional to log,g with a bissection method), and then applying Fig. 1 (¢ = 10). (Oscillations occur for large because the

the corresponding linear transformation in E2). §.e. about number of ensemble members in each class of the histogram

f opetratlotrrl]s). Tgt)htrta;]nsfo:am the t('ansembllem{:ont(rjo:k:/ ec-th becomes too small to produce an accurate estimation of the
ors, together wi @ observations values, and then the transformation.)

updated ensemble back in the original control space, this cor-

responds to a computational complexity of: Gaussian mixture: Other estimates of the transforma-

) tion function can be obtained using more sophisticated
nonparametric estimates ¢f(x), for instance by approxi-
wherea stands for the relative numerical cost between nu-mating the unknown pdf by a mixture of Gaussian kernels
merical comparisons (needed to localize values in the list ofIzenman 2008 rather than a mixture of uniform kernels
quantiles) and algebraic operations (needed to compute thes in the histogram approximation). A common algorithm
linear transformations). Transforming the observations sim-t0 estimate the Gaussian mixture from the available sample
ply requires applying the observation operator to the quancan be derived from the nearest neighbour method (e.g.
tiles of the control vector, but if some observations are non-Silverman 1986 Izenman 200§: each member of the sam-
linearly linked to the control vector, it may be better to aug- Ple is used as the mean of one of the superposed Gaussian
ment the control vector with these observations (thus producpPdfs, with a variance equal to the variance of theearest
ing a problem with larger) and transform them using their neighbours. As in the histogram approximation, there is an
own anamorphosis transformation. optimal ¢ below which spurious features are introduced in
On the other hand, this simple algorithm does not requirethe pdf estimate, and above which significant features are
a lot of memory or disk space to store the approximate funcﬁmo_o'fhed out. _ _
tions fopy and@pack Only the quantiles of the input en-  Figure2 (middle panel) shows however that this optimal
semblex;, k=1,...,q need to be stored, for a total storage (Minimizing the relative entropy) produces an estimate
of gn real values (i.e. less than the storage of the forecast erPf f(x) that is not better than the best histogram (even if the
semble itself, which requires storimg: real values). See the behaviour as a function af is more regular). Moreover, the
appendix for more details about the practical implementationnumerical cost of the transformation, requiring numerical

Canamorphosis~ (2mn+ p)(3+a log,9)

of the algorithm. root-finding in the integral of the superposed Gaussian pdfs
[to solve the equatiorF (x) = G(z)], would be much too
2.2 Accuracy of the approximation high to be affordable in large size applications.

The second reason why such a simple approximation mayolynomial development: Another way of constructing a
be useful in practical ocean applications is that the accuracylirect approximation of the anamorphosis transformation
of the approximation is generally sufficient to substantially (described inWackernagel 2003 is (i) to approximate
improve the description of the marginal distributions. The F(x) by the cumulative histogramF(x) = «/m for
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Fig. 2. Relative entropy between the transformation of the eXd&td) and A/ (0,1), using various approximations of the transformation
function: the histogram approximation (left panel), as a function of the nugmbéclasses in the histogram, the Gaussian mixture approxi-
mation (middle panel), as a function of the numbef nearest neighbours, the Hermite polynomial development (right panel), as a function

of the numbeyg of superposed polynomials. In all 3 cases, the relative entropy is computed by numerical integration over the same interval
|z| < 2.576, except in the 3rd case (polynomial development) for which the subintervals with zero density (due to the non-bijectivity of the
approximation) have been removed.

X € [x(@) X(@+1] Wherexq), « =1,...,m is the ordered 2.3 Extensions of the algorithm

sample (i.e. a step function instead of a piecewise linear

function in the approximation above), (ii) to deduce the The algorithm described above is sufficient and well-

corresponding transformation @ 1[F(x)] = G~ 1(«/m) conditioned as soon as (i) the cdf(x) of every control

for x € [x(@), X@+1)], OF reciprocally, to construct an empir- variable is invertible (so that the quantiles of the ensemble

ical anamorphosis transformation &5 1[G (z)] = X(q) for are_distin_ct),_ (i_i) the range of possible value__for every control

ze [Gfl(an_—ll)’Gfl(%)] (i.e. again a step function, which variable is finite (l_Jetweem and xp), and (||.|) the sizem

is not bijective by construction), and (iii) to interpolate Of the ensemble is large enough to provide a reasonable

this empirical anamorphosis transformation by a limited @PProximation '(x) of the marginal distributions. ~ The -

development in Hermite polynomials (se&fackernagel ~ Purpose of this section is to examine what may be done if

2003 for more detail about this algorithm). Theth order ~ these 3 conditions are not verified.

Hermite development can be shown to be the ket . ) ) _

order approximation (of the transformation function) in Probability concentrations: A cdf F(x) is not invert-

the least square sens@gckernagel 2003, but nothing  ible if it makes a \_/grtlcal step at some value= X, I.e. if

guarantees that the polynomial interpolation will produce there is a probability concentration far= xc, with finite

a bijective transformation, as it should be, so that ad hod?robability: p(xe) = F(xg) — F(xg). In this case, several

corrections must be supplied if problems occurs. (To avoid€nSemble members may be equalxto[mp(xc) members

this problem,Simon and Bertinp2009 linearly interpolate  IN average] so that a subset of the quantiles (betwgen

the step function instead of the development in Hermite@d *u) may also be equal tac, and the piecewise linear

polynomials.) approximation of the anamorph95|s tran§format|on is no
Figure2 (right panel) shows the relative entropy between More bijective (zero denominator in E3). This occurs very

the transformed pdf obtained with this method and the ex-Often in practice, especially if there is a physical constraint
act pdf, as a function of the truncation ordem the devel-  ON the value of the random variable, so that probability

opment of Hermite polynomials. Again, there exists a bestMay poncer)trate on the constraint: sea temperature equal_ to
truncation ordey = 21, which is not more accurate than the ff€€zing point, zero tracer concentration (see examples in
histogram best estimate (shown on the left panel). These re>€cts4, 5 and?), ice fraction equal to 0 or 1 (see example
sults suggest that, with a moderate size sample (200 membeld Sect.6), ice velocity equal to 0 (no motion),. ..

in this example), it is not easy to do better than the simple The most direct solution to this problem (applied in all
histogram approximation, and that more sophisticated (andPPplications below, except in the Mercator applications in
more expensive) algorithms, like the Gaussian mixture or theS€ct.6) is to transformxc to the middle of the step of the
polynomial development, need a substantial increase in th@i€cewise linear function:G [ F(xo)] = 55 + %). A

spurious discontinuities in the transformed vector (for

instance in the transformed ice concentrations, at the border
of the ice pack in the example of Seé), and it may be
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preferable to restore the bijectivity of the transformation by Simon and Bertin2009 for a Gaussian parameterization
introducing an artificial slope in the function. A simple way (requiring thatemin Or xmax be infinite).
to do it is to replace the quantilgs to x,, (all equal toxc)
by interpolating them betweety_; andx,,1 (betweenxy Sample enrichment: In many practical applications, it
andx, 1 if /=1, or betweeny;,_; andX, if u=g). This may be very expensive to increase the ensemblensiastil
can improve the continuity and the quality of the linear the accuracy of the approximation is sufficient to improve
estimates in the transformed space (see $¢cat the price  (or at least not deteriorate) the Gaussianity of the marginal
of a slight spreading of the backward transform around thedistributions. In such circumstances, and providing that
concentration valuer; (abovexc if [ =1, or belowx if F(x) is slowly varying in space, a better accuracyff) at
u=gq). a given locatiorx can certainly be obtained (for a moderate
size m) by augmenting the sample that is availablexat
Tails of the distribution: Since the range of possible with the samples that are available in the neighbourhood
values for the Gaussian random varialdlés between—oo of x (possibly with a decreasing weight as a function of the
and+oo, the backward transformation in E)(must also  distance fronx). However, the definition of this neighbour-
specify how to transform < z; andz > z,. If the range of  hood (which should decrease witt) introduces a subjective
possible values for the original random varialXeis finite parameter in the algorithm, which can only be optimized
betweenxmin and xmax, and fully resolved by the available by checking the accuracy of the results. This is why no
ensemble (so thaf; = xmin and ¥, = xmax), then we can enrichment of the sample is used in the applications below
be certain that the cumulated probability corresponding to(except in the Mercator application in Seé), where we

7 <z1 andz > z, is concentrated at = xmin andx = xmax, preferred to stick to the theoretical formulation (converging

so that the backward transformation may be written: for m — o0) of separate transformations for distinct random
_ variables WWackernagel2003.

¢pack(z) =x1 for z<z (6) Finally, it is important to remark that such a spatial ex-

tension of the sample is by no way necessary to ensure the
spatial smoothness of the approximate solution described in
Sect.2.1 If all ensemble members,) are spatially smooth,
tIheir guantilesy; and thus the anamorphosis transformation
in Egs. @) and @) will be spatially smooth as well (see ap-
plications below), so that no spurious discontinuity is intro-
duced in the multivariate probability distribution. On the
_contrary, one should certainly be careful enough to check that
the sample extension described above does not smooth out
real discontinuities (or sharp gradients) from the statistics.
Again, what really matters to apply linear estimation meth-
ods is that the joint probability distribution for all control
variables, at every spatial locatianis better described by a
multivariate Gaussian distribution if the nonlinear change of
variables proposed in Eq2)is applied. It is precisely the
purpose of the following examples to show that such local
Porw(x) =21 for x <31 (8) anamorphic transformations may yield a far better model for
various kind of ocean uncertainties.

(Pback(Z) = )zq fOI’ > Zq (7)

But if the range betweernin andxmax (possibly infinite) is
not fully resolved by the available ensemble, a solution mus
be provided to magp—oo,z1] on [xmin, X1], and[z,,00] on
[)zq»xmax]-

The most simple parameterization of the tails Bfx)
(used in all applications below) is to assume zero probabil
ity outside the range of the ensemble forecast (aBéal
et al, 2010. Again, this corresponds to assuming that the
cumulated probability corresponding #6< z1 andz > z, is
concentrated at = xmin andx = xmax, SO that the backward
transformation is approximated by Eg6) énd (7). On the
other hand, any found outside of the intervdly, x,] is
viewed as impossible and transformed as the closest value:

prow(x) =z4 for x>x, 9)
2.4 Effect on correlations

Parameterizing the tails af (x) by probability concentra-
tions atx; andx, means that the resulting transformation However, since the examples given in the following sections
cannot be bijective outside of the interyai, x,]. However,  are mainly dedicated to illustrate the effect of anamorphic
if the available ensemble is large enough and consistentlfransformations on spatial correlations, it is certainly useful
sampled (without bias) from the prior probability distribu- to provide first a summary of the theoretical background ex-
tion, these tails must correspond to a very small cumulatedglaining the effect that can be expected. For that purpose,
probability. Moreover, if little is known about the extreme we assume that we have two non-Gaussian random variables
behaviour of the system, Eq®$)(to (9) may be a safe way X3 and X2 (with marginal cdfsF; and F») that have been
of avoiding any kind of extrapolation outside the range of transformed into the Gaussian variablgsand Z» (with the
values that has been explored by the ensemble. same cdfG). First of all, it is important to remember that,

More sophisticated assumptions about the tailgaf) since the transformations are invertible, there is no loss of
can nevertheless be easily implemented. See for instancaformation induced by the anamorphosis, and the statistical
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dependence (in a general sense) between the random vari- Nevertheless, it is important to stay aware that, in gen-
ables remains unchanged, i.e. the reduction of entropy gainedral, only the marginal distributiongs(Z1) and p(Z,) are
from the knowledge of the other variable (i.e. the mutual in- ensured to be Gaussian, and that assumingttiat, Z») is

formation I) remains the same: bi-Gaussian is only an approximation. This is why, in this
case, it is much more difficult to make general mathematical
1(X1,X2) = H(X2) — H(X2|X1) = H(Z2) — H(Z2|Z1) statements about the transformation of linear correlations. A
= 1(Z1,7Z>») (20) useful way to understand how linear correlations are modi-

fied by the transformatio® 1, Xo — Z1, Z» is to observe that

which can easily be verified by introducing the change ofthe linear coefficient between the transformed variattes
variables in the definition of entropy(X2)] and condi-  andz, corresponds to a nonparametric measure of correla-
tional entropy H(X2|X1)]. Consequently, it is only the tjon petween the original variables, andX», because there
effect of anamorphic transformations bnear correlations  js an abundant statistical literature explaining the advantages
that we are going to investigate, since this is the only kind ofof nonparametric correlations as compared to linear corre-
correlation that can be described by a Gaussian model. lations (Hollander and Wolfe 1973 Corder and Foreman

A first insight into this problem can easily be obtained by 2009. In summary, the two main advantages are (a) that
remarking that, if there exists Separate bijeCtive transformathey are more adequate to see a nonlinear dependence be-
tions for X3 and X transforming their joint non-Gaussian tween random variables (for the same kind of reason as in
distribution into a bi-Gaussian distribution fﬂl and Z, the ideal case described above)' and (b) that they are more ro-
then the anamorphic transformation given by Eb. fro-  pust to the presence of outliers in the data. These two cases
vides the required transformations. This is obvious since the;orrespond to the situations in which the linear correlation
marginal pdfs of a bi-Gaussian distribution are both Gaus-can provide an inaccurate representation of the dependence
sian, and the only backward anamorphosis (except for anyetween the random variables (as illustrated in the examples
unimportant additional linear change of variable) transform-of Anscombe 1973. And the basic reason underlying these
ing the Gaussian marginal pdf faf, and Z3 into the right  two improvements is the derivation of variables that are iden-
marginal pdfs forX; and Xz is the one given by Eq. (1). In tjcally distributed ¢, andZ, are both normal in our case).
this ideal case, the mutual information is related to the linear The oldest and most simple example of a nonparametric
correlation coefficienpz, 7, between the transformed vari- measure of correlation is the rank correlatiddpéarman

ables (e.gCover and Thomag006 chapter 8) by: 1904 Kendall 1962, which is defined as the linear corre-
1 lation between the rank of each member in the ensemble.
[1(X1,X2)=1(Z1,Z2) = ~3 In(1— p%lzz) (12) Hence, this corresponds to computing a linear correlation be-

tween uniform sets of integers between 1 andwhich is
A particular case of this ideal situation occurs if the vari- thus close to computing a linear correlation after a uniform
able X, and X2 are perfectly correlated along a monotonic anamorphosis (i.e. with a uniform target pdf), instead of a
nonlinear curve (i.e. the ideal situation to estim&tefrom Gaussian anamorphosis. (This is only approximate because,
an observation oK1, but in which linear estimation methods unlike uniform anamorphosis, the computation of the rank is
can be very inaccurate). In this case, by transforming the twanot invertible, so that there is a small loss of information in
marginal pdfs into Gaussian pdfs, the anamorphic transforthe operation.) The close similarity between the rank corre-
mations also transform the nonlinear curve into a straight linelation betweerX; and X, and the linear correlation between
(so that the two marginal pdfs can be simultaneously GausZ1 andZ, was already discussed Beal et al.(2010, and it
sian). The nonlinear dependence betw&erand X, (result- s further illustrated here in the example of Set(Fig. 6).
ing from their non-Gaussian behaviour) is fully transformed This property that the linear correlation coefficient 7, be-
into a linear dependence, which is then perfectly describedween the transformed variables corresponds to a nonpara-
by the bi-Gaussian pdf (i.e. linear estimation methods be-metric measure of correlation between the original variables
come truly optimal). In this particular case, the linear corre- (similar to the rank correlation) is the fundamental reason ex-
lation coefficient, which only imperfectly described the per- plaining the improvement of the correlation structure that is
fect nonlinear dependence betweéénandX,, is always am-  described in the rest of the paper. By this, we will always
plified by the transformation fx, x,| < |pz,z,| 1), asadi-  mean that the resulting nonparametric measure of correla-
rect consequence of the transformation of the nonlinear curvéion is more adequate to see a nonlinear dependence between
into a straight line. This first explanation thus covers all situ- the random variables and more robust to the presence of out-
ations in whichlpz, z,| is close to 1, because this means thatliers in the data (as already observed in other applications
all transformed values are aligned close to a straight line (a®f anamorphosis in Geostatistics, $gbiles and Delfiner
a result of the transformation of a nonlinear regression curvel999.
into a straight line). This kind of behaviour is what is ob-
served for spatial correlations in most examples described in
Sects3to7.
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Fig. 3. SST horizontal correlation structure with respect to SST af WI4° N (Eastern Equatorial Pacific), without anamorphosis (left
panel), and after local anamorphosis transformations (right panel).

3 Mixed layer response to atmospheric forcing Figure 3 shows for instance the resulting ensemble corre-
uncertainties lation structure with respect to SST at 234 0° N (East-

ern Equatorial Pacific), without anamorphosis (left panels),
As a first example, we study the stochastic response of th@nd after local anamorphosis transformations (right panels)
ocean mixed layer to uncertainties in the atmospheric parampased on the deciles of the ensemble forecast (as inlJig.
eters that are used to define the surface boundary conditiogvhat we observe is that the SST horizontal correlation struc-
of the ocean model (i.e. the momentum, heat and fresh wategre is (almost) not modified by the local transformations.
fluxes). In many respects, the ensemble model forecast thathis occurs here because the ensemble model response to
we use here to illustrate the effect of anamorphosis transforGaussian parameter perturbations is already very close to
mations is similar to the ensembles that are useBkan-  Gaussian, so that the ensemble deciles for SST, at every lo-
drani et al (2009 to estimate corrections in the atmospheric cation, are all remapped on the deciles/6t0,1) along a
parameters using oceanic observations (without anamorphastraight line. Conversely, this means that the approximate
sis), because (i) we use the same low resolution global oceagigorithm described in Sec?, with piecewise linear trans-
configuration (ORCA2) of the NEMO-OPA modeliedec  formations based on a histogram description of the proba-
and Imbard 1996, with a 2 x 2° ORCA type horizontal  ility distributions, is accurate enough (with 200 members)
grid and 31 z-coordinate levels along the vertical, and (i) theto faithfully preserve the linear correlation structure between
random parameters perturbations are drawn from a Gaussia@ndom variables that are already close to Gaussian. This
probability distribution with zero mean and a covariance de-Gaussian behaviour is also the reason \@kgandrani et al.
rived from their natural variability. However, the ensemble (2009 were able to infer relevant parameter corrections from
that we describe here (performedMginvielle, 201)) isalso  SST (and SSS) using a Gaussian observational update algo-
somewhat different because (i) the reference atmospheric pgithm (complemented by the truncated Gaussian assumption
rameters are obtained from the ERA-interim dataset insteagf Lauvernet et a).2009 to avoid extreme and nonphysical
of NCEP, with the objective (not discussed here) of esti-corrections).
mating parameter corrections for long term model simula-
tions (The DRAKKAR Group 20079, (ii) the parameter per- However, the situation becomes different if we look at
turbations now include the wind, and are assumed constarthe ensemble model response in terms of MLD. Figéire
over monthly periods, rather than weekly periods (to estimateshows for instance the correlation structure with respect to
lower frequency parameter corrections), and (iii) the covari-MLD at the same location (124V 0° N in Eastern Equato-
ance of the perturbations is set to the covariance of the ERA¥ial Pacific), without anamorphosis (left panel), and with the
interim monthly means (from 1989 to 2007) for the 3 months same local anamorphic transformation as above (right pan-
surrounding the month of interest, rather than the full covari-els). What we observe is that, for both displayed variables
ance of the parameter variability Bkandrani et al(2009. (MLD and SST), the horizontal correlation patterns are not
In the following, we focus our study to the one-month and really altered by the local transformations (same smoothness,
200-member ensemble model forecast that is produced fosame shape, same kind of anisotropy), but the correlation ra-
January 2004, and we look at the mixed layer response, awdius is substantially increased in all directions: the area in-
eraged over the one-month time period, in terms of sea surside which the correlation (or anticorrelation) is above 70 %
face temperature (SST), sea surface salinity (SSS) and mixeig increased by 50 % for MLD and 62 % for SST. This means
layer depth (MLD). that the MLD response to Gaussian parameter perturbations

is not Gaussian, as illustrated in Fi§.(left panel) by a
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Fig. 4. MLD (top panels) and SST (bottom panels) horizontal correlation structure with respect to MLD°aWV1a“N (Eastern Equatorial
Pacific), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).
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Fig. 5. Scatterplot of MLD vs. SST at 124V 0° N (Eastern Equatorial Pacific), without anamorphosis (left panel), and after local anamor-
phosis transformations (right panel).

scatterplot of MLD vs. SST at 124V 0°N. As a conse- line is now close to linear, with the direct consequence of in-
quence, the joint distribution of MLD and SST cannot be bi- creasing the linear correlation coefficient. This phenomenon
Gaussian, as visually obvious from the clear nonlinearity ofexplains why the spatial correlation structure can only be im-
the regression line (i.e. the line of maximum MLD probabil- proved by consistent local anamorphic transformations, even
ity for every given SST). In the transformed variables (Big. if the algorithm is not perfectly accurate (as the piecewise
right panel), even if the marginal distribution for each vari- linear approximation). The improvement of the MLD spatial
able is now close to Gaussian (by construction), the joint dis-correlation structure also suggests that anamorphosis trans-
tribution is still not bi-Gaussian (larger MLD dispersion for formations might be an interesting ingredient to obtain bet-
small SST than for large SST). But at least the regressiorter MLD climatologies, enhancing the accuracy of the linear
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Fig. 6. Deciles of the ensemble for phytoplankton (top panels) corresponding (from left ot right=®.2, 0.5 (median) and @, and
illustration of one of the ensemble members (bottom panels): the phytoplankton map (left panel), the rank in the ensemble (middle panel),
and the transformed map (right panel) after Gaussian anamorphosis.

estimation methods and the description of the final productiogeochemical model, with 6 prognostic variables in the eu-
(by the median and a set of quantiles, rather than the usughotic layer: phytoplankton (PHY), zooplankton (ZOO), ni-
minimum variance estimate, which is not really meaningful trate (NG), ammonium, detritus, and semi-labile dissolved
in this case). organic nitrogen; (ii) the ensemble forecast is initialized at
This first example already illustrates the two main con- the beginning of the spring bloom on 15 April 1998, using
clusions of this paper about the effect of local anamorphicthe model simulation described i@@rmieres et al.2009;
transformations on the spatial correlation structure: (i) theand (iii) the random wind perturbations are sampled from
transformation is accurate enough to faithfully preserve thea Gaussian probability distribution, with zero mean and a
correlation structure if the joint distribution is already close covariance derived from the ERA4Q variability (during the
to Gaussian, and (i) the transformation has the general ten3 months centered on 15 April, with a superimposed 4-day
dency of increasing the correlation radius as soon as the spalecorrelation times scale, s@&gal et al, 201Q for more
tial dependence between random variables becomes nonlirgietails). However, whereas the study Bgal et al.(2010
ear. With the next examples, we further investigate the samavas exclusively focused on the multivariate response of the
effects in presence of the more complex and heterogeneowspupled model at given horizontal locations (with or with-
non-Gaussian behaviours that may occur in ecosystem oput anamorphosis transformations, and for several forecast
sea-ice models. timescales between 1 and 30 days), we here complement
their work, by documenting the effect of the local anamor-
phic transformations on the horizontal correlation structure
4 Ecosystem response to wind uncertainties (in the 4-day forecast only).
In the ensemble forecast, the main impact of the random
As a second example, we study the stochastic response afind perturbations on the ecosystem results from the deep-
a coupled physical-biogeochemical model (CPBM) of the ening and shallowing of the mixed layer, which modifies the
North Atlantic to uncertainties in the wind forcing. For that nutrient supply and thus the primary production in the eu-
purpose, we use the same 200-member ensemble forecgshotic layer. This mechanism produces a quite heteroge-
as inBéal et al.(2010: (i) the CPBM (originally devel- nous response in terms of phytoplankton concentration, as
oped byOurmieres et al.2009 couples a 14° resolution illustrated in Fig.6 by three deciles of the ensemble (corre-
circulation model of the North Atlantic (a Drakkar config- sponding to = 0.2, 0.5 and 08, top panels) and one of the
uration of the NEMO/OPA modellhe DRAKKAR Group ensemble members (bottom panels). The wind can indeed
2007 with the LOBSTER (LOcean Biogeochemical Simu- only trigger a large ensemble dispersion (i.e. large differ-
lation Tools for Ecosystem and Resourdesyy et al, 2005 ences between the deciles, in the top panels) in areas where
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Fig. 7. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplanktérifat 37.5
50.8 N (North Atlantic), as obtained for the original variables (left panels), their local rank in the ensemble (middle panels), and the
transformed variables after Gaussian anamophosis (right panels).

the spring bloom has already started, like primarily the Gulf The rank may thus better translate the effect of a homoge-
Stream pathway, the Irminger Sea and the Western half oheous perturbation, which is masked in the original variable
the Labrador Sea, and secondarily, the Northern half of theby the heterogeneity of the ecosystem dynamics. And from
North Sea, the Gulf of Lions and the Bay of Biscay. Con- the local rank (Fig6, bottom middle panel) to the local Gaus-
versely, in the areas where the primary production is weaksian anamorphic transformation of the same ensemble mem-
(as in the subtropical gyre and in the Norwegian Sea), it re-ber (Fig.6, bottom right panel), there is nothing but a global
mains weak, whatever the wind perturbations. anamorphosis transformirdg(0, 1) into A/(0,1). The figure

thus looks very similar, with the same nonlinear change of

Furthermore, one particular ensemble member (Big. yariable at every grid point (we could have kept the same
bottom left panel) may be well below the median in some figyre, with a nonlinear labelling of the colorbar).

regions (e.g. in the Labrador Sea) and well above the median

in other regions (e.g. in the Irminger Sea). This phenomenon Figure7 illustrates the effect of these transformations on
is more obvious if we look at the rank of this ensemble mem-the PHY (top panels) and NQ(bottom panels) horizontal
ber in the ensemble forecast (F&).bottom middle panel). correlation structure with respect to PHY at A% 50.8 N

More precisely, what is shown is the rank divided by the en-(North Atlantic), as obtained for the original variables (left
semble size (to be between 0 and 1), which corresponds tpanels), their local rank in the ensemble (middle panels),
the local anamorphic transformation of the ensemble memand the transformed variables after Gaussian anamophosis
ber using the uniform distributiai (0, 1) as a target distribu-  (right panels), based on the deciles of the ensemble forecast.
tion. For instance, a value below 0.2 means below the secondhe first thing that we observe is that, despite of the deep
decile ¢ =0.2), a value below 0.5 means below the me- changes in the horizontal structure of each ensemble mem-
dian s =0.5), etc. In this figure, we can see immediately ber (illustrated in Fig6, bottom panels), the general shape
where this ensemble member is high or low with respect toof the correlation is still not much altered by the transforma-
the others (compare the rank in the Labrador Sea and in thdons. A linear measure of correlation (Fig.left panels) is
Irminger Sea), even in regions where the dispersion of thealready quite good in this case, because it is not influenced
ensemble is very small, as along the coast of Africa or in theby the heterogeneity of the ensemble variance, which is here
Southern half of the North Sea. See also how the high rankhe main reason for the changes in the horizontal structure
region in the Irminger Sea (i.e. with a production well above of the ensemble members observed in Eigbottom pan-

the ensemble median) embeds indifferently areas of high priels). Going to a nonlinear measure of correlation (like the
mary production and areas of low production, as a result ofrank correlation, in the middle panels of Fif).is only useful

a strongly positive wind anomaly covering the whole region. if the transformation can help linearizing the regression line

Www.ocean-sci.net/8/121/2012/ Ocean Sci., 8, 1242 2012



132 J.-M. Brankart et al.: Effect of local anamorphic transformations on spatial correlations

315° 330° 345° 315° 330° 345"
[ —

—— T e——
-1.0-08-06-04-02 00 0.2 0.4 06 0.8 1.0

30°

315° 330° 345° 315° 330° 345°
[ I — I T ] — | [ — [ T ] — |
-06 -04 -0.2 0.0 0.2 0.4 0.6 -0.6 -04 -0.2 0.0 0.2 0.4 0.6

Fig. 8. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplanRtéhz5°20
(North Atlantic), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

between the two random variables (as illustrated in B)]g. 5 Ecosystem response to ecosystem parameters
The rank correlation was indeed introduced by Spearman (as uncertainties
explained byvon Mises 1964 to produce this effect and thus

to go beyond the linear cprrelation coefficient (of Pearson),AS a third example, we study the stochastic response of the
as a measure of the (nonl!near) dependency between randog&me CPBM to uncertainties in the parameterization of the
variables. Furthermore, since the linear correlation structureecosystem model. For that purpose, we use the 200-member
after a local Gaussian anamorphosis is very similar to rankensemble that ha.s been performe I], on et al.(2011) to
correlation (compare right and middle panels in Fig.this evaluate the potential of ensemble methods to estimate a few

teﬁ( pI;';uns \hoy tht? correlation rad_ltl;]sllsftgener?lIyllncrigshe?hbyecoystem parameters using ocean colour observations (with
€ transformation (compare with left panels, in whic € or without anamorphosis). This ensemble forecast is iden-

area with a correlation above 80 % is about 26 % smaller for,. . . - .
. tical to that described in the previo ection (same model,
PHY and 35% smaller for N§). The same kind of phe- ! sert ! previous section (s

nomenon can be observed in Fiyshowing the same result same forcing, same initial condition), except that the ran-
o dom perturbations are applied to a few ecosystem parame-
at 20 W 35° N, except that the rank correlation is not shown P bp y b

. s al imilar to the li ters rather than to the wind forcing. Three rate parameters
anymore since 1t 1S always very simiflar to the linear orre- 5 . 5sqymed uncertain in the ensemble forecast: (i) the max-

fmum growth rate of phytoplankton, (ii) the maximum graz-

ing rate of phytoplankton by zooplankton, and (iii) the phy-

toplankton mortality rate. The uncertainties for these three

parameters are assumed independent and constant over each
f the 13 North Atlantic biogeochemical provinces (defined

by Longhurst 1995, which makes a total of 8 13=39 in-

can see that here, the NMorizontal correlation structure

(bottom panels) is deeply modified by the transformation,
becoming more similar (in shape and extension, but with
the opposite sign) to the PHY horizontal correlation struc-
ture (top panels). This is also related to the improvement o

the correlation between Nfand PHY at every horizontal lo- S
. . . , dependent random parameters. And the probability distribu-
cation (which was described Béal et al, 2010, and further P P P Hity distribu

. ’ . tion for each of these parameters is assumed to be a Gamma
supports the idea that local anamorphic transformations ma

) . . Yistribution, with a mean equal to the default parameter value
substantially increase the benefit that can be expected fro

| b i in th ltivariat imat gﬁ the LOBSTER model, and a 95 % percentile equal to 2.5
:)hcea{l tco c;l:rr] observa ;ons In the multivariate estimation Ol a5 the mode of the distribution (as in Fiy.seeDoron
€ state ot the ecosystem. et al, 2011 for more details). In the following, we de-

scribe the correlation structure of the model response to these
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Fig. 9. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplanktérifat 11.7
36° N (North Atlantic), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

uncertainties after a 1-month ensemble forecast (instead of a Figure 10 shows the same kind of result as Fgjin the
4-day forecast in the previous example). Longhurst province covering the Caribbean Sea and the Gulf
Figure9 shows for instance the PHY (top panels) andNO of Mexico, with a reference point located at’84 23.8 N in
(bottom panels) horizontal correlation structure with respectthe inside of the Loop Current. Here, the impact of advection
to PHY at 11.7W 36° N (in the Longhurst province west is more obvious: (i) along the Eastern coast of Florida, where
of Spain and North Africa), as obtained without anamorpho-the effect of the parameter perturbation inside the Longhurst
sis (left panels) and after local anamorphosis transformationprovince (delimited by the black line) is advected by the Gulf
(right panels), based on the deciles of the ensemble forecasitream, and (ii) in the Gulf of Mexico, where the ecosystem
The first thing to observe is that the correlation is mostly sig-response to the parameters uncertainties decorrelates across
nificant inside the Longhurst province (materialized by the the front defined by the Loop Current. However, even if the
black line) with constant parameters perturbations, whichheterogeneity of the ecosystem behaviour across the Loop
means (i) that the ensemble size is sufficient to decorrelat€urrent is clearly due to differences brought by advection,
independent behaviours, and (ii) that, even after 1 monththe decorrelation across the front also results from the non-
the effect of the parameter uncertainties is here mainly lo-inearity of the ecosystem response to the same parameters
cal (the main exceptions being the intense mesoscale activitperturbations. This is why a nonlinear measure of correla-
in the North-Western corner of the province, and the south-ion (i.e. the linear correlation coefficient for the transformed
ward advection along the coast of Africa). However, inside variables, in the right panels) can be much larger than the lin-
the Longhurst province, the response of the ecosystem tear correlation coefficient (for the original variables, in the
the homogeneous parameters uncertainties is far from bdeft panels), going from below 0.4 to above 0.6 for PHY (the
ing the same everywhere, as a result of the heterogeneity adpposite sign for N@) in a large part of the Gulf of Mex-
the initial condition and physical forcing. It is also clearly ico. It is also interesting to remark the modifications along
nonlinear, in view of the strong impact of the anamorpho-the Western coast of the Gulf of Mexico, where a zero linear
sis transformation on the horizontal correlation structure. Ascorrelation transforms either to (i) a negative correlation with
in Fig. 8, the NG correlation structure becomes very sim- PHY and a positive correlation with NOn the Southern half
ilar (with an opposite sign) to the PHY correlation struc- of the coastal band, (ii) a negative correlation with both PHY
ture (Fig.9, right panels), even though without anamorphosisand NG in the Northern half, or (iii) a positive correlation
(Fig. 9, left panels), the two variables were only weakly cor- with PHY and a negative correlation with N@as in the rest
related. of the domain) at the mouth of the Rio Grande. (Here, it
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Fig. 10. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplankid at 86
23.8 N (Gulf of Mexico), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

must be remembered that, even if these large long-range coeven in such a case, local anamorphic transformations may
relations are certainly meaningful, they cannot be expectede useful to go beyond the Gaussian model.

ribe real model error h rr n . L .
0 des_c be rea odv_e errors, I_Jecause they correspond to a As a first example of this kind, we study the non-stochastic
very simple assumption, in which parameter errors are as-

sumed constant over the whole Gulf of Mexico.) ensemble description of sea-ice forecast uncertainties that

. . : . .. is currently tested for assimilating sea-ice observations in
All these increases of linear correlation (or anticorrelation) .
. L . S the Mercator/MyOcean operational system. To construct
contribute to simplify the Gaussian description of the uncer-

o ) ] - . the ensemble, it is assumed that the forecast uncertainties
tainties (in the transformed variables vs. the original vari- o .
have the same statistics as the combined effect of the for-

ables), by concentrating a larger fraction of the total varlanceward model short term and interannual variabilities. More

in a smaller dimension subspace, thus reducing the number ™ . . o .
S ensio bspace, thus re 9 b recisely, to describe the uncertainties at a given date (e.g.

of degrees of freedom that must be controlled to obtain ) :

. P . 5 June 2011), we sample a past interannual free model sim-
given accuracy. This simplification is one of the main reasonsulation (17 years, between 1991 and 2007) every 3 days in a
for which local anamorphic transformations were so helpful Y ' y Y

in the work of Doron et al.(201]) to estimate the 39 un- running window of+66 days around t_hat date (thus retain-
ing 44 model states, every year), which make an ensemble

known parameters from ocean colour observations (in atwmOf sizem — 17 x 44— 748 model states. This assumption

exper_|ment approach, without localization of the ensemblemeans that we do not try to resolve anything else than the
covariance). . L o .
seasonal cycle in the description of the uncertainties. This
might look quite crude if we forget that this is applied to a
6 Modelling ice forecast uncertainties 1/4° resolution global configuration of the NEMO model,
and already tested with g/12° resolution prototype. The
In this section, we are moving to another class of examplessize of these systems makes truly stochastic solutions (with
in which non-stochastic ensembles are used to describe foresufficient ensemble size) unaffordable with present-day com-
cast uncertainties. In many situations indeed, the forwardputational facilities, so that the above solution can actually
model is too expensive to allow the explicit Monte Carlo ex- be considered as quite sophisticated. In the following, we
ploration of the uncertainties. Assumptions are then neededocus our study on the resulting description of the uncertain-
to produce the required ensemble of model states, using foties (as obtained from the/4° resolution model) for the ice
instance an appropriate sample of the past system variabilityfraction f, which is the (well-observed) model variable giv-
The purpose of this section (and of Seftis to show that, ing the fraction of the ocean that is covered by sea-ice. Itis
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Fig. 11. Probability that the ocean is free of ice([f = 0)], as computed from the non-stochastic ensemble for 15 March (left panel) and
11 September (right panel).

defined in the interval betweef=0 (no ice) andf =1 (no able ensemble. In Fid.1, the resulting probability increases
free water). from p(f =0) =0 in the interior of the ice pack, where a
] . o zero ice concentration is impossible,6f = 0) = 1 outside

Because of this bounded interval, it is already clear thatof the ice pack, where a zero ice concentration is certain (ac-
the Gaussian model is not appropriate to describe uncertainsording to our assumption about the uncertainties). In the
ties in ice concentrations. Moreover, the probability density arctic, it is also generally much larger in September (mini-
function is usually maximum at one of these bounds(&t1  mum ice extension) as compared to March, which shows the
in the middle of the ice pack, or af =0 at the borders),  primary importance of resolving the seasonal cycle in the de-
or even at both (U-shaped pdf), which makes the GaussiaRription of the probability distributions.
model even less appropriate. Furthermore, the two extreme
values (f =0 or f = 1) can often concentrate a finite proba-  Strictly speaking, in presence of such probability concen-
bility, which means that the cdf of ice concentration makes atrations (atf =0 in Fig.11), a Gaussian anamorphosis trans-
step atf =0 or f =1 (as explained in Sec2.3). Figurell formation is not possible, since the cdf in Ed) {s not in-
shows for instance the probability that the ocean is free of icevertible. In our example, this means that several quantiles of
(f =0), as computed from the ensemble for 15 March (leftthe ensemble are equal fo=0, so that the piecewise linear
panel) and 11 September (right panel). In practice, the valu@pproximation in Eq.2) is not defined (zero denominator
of this probability is computed as the fraction of the ensembleif x; = X;11). This is why, in this example, we need to ap-
members for whichf = 0. In this computation, we also ap- ply the approximate solution described in S8, which
plied the sample enrichment method described in S8t.  consists in modifying the quantiles of the ensemble that are
by concatenating in the local description of the probability equal to 0, by interpolating them betweg¢nr= 0 and the first
distribution all ice concentration values in a window ot 9 non-zero quantile. In this particular case, this approxima-
grid points. The total ensemble size at each horizontal lotion amounts to replacing the Dirac gt= 0 in the exact
cation is thus equal te: =81 x 748=60588. The effect pdf by a boxcar function betweefi=0 and the first non-
of this enrichment of the ensemble is to slightly smooth thezero quantile, cumulating the same total probability as the
probability maps displayed in Fid.1, but in view of the ap-  Dirac. (Any other function to approximate the Dirac is pos-
proximations that are made in the construction of the originalsible by modifying the interpolation of the quantiles.) In this
ensemble, there was no reason here to stay perfectly localyay, we restore the applicability of anamorphosis by trans-
while the enrichment may be a good way of mitigating the forming the non-invertible cdf into an invertible cdf, at the
inaccuracies that are related to the limited size of the availprice of a slight spreading of the probability that is actually
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Fig. 12. Ice concentration horizontal correlation structure with respect to a reference locatichvet7E3 N (black dot) for 15 March (top
panels) and 11 September (bottom panels), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

concentrated af = 0. It would of course be better to avoid tal correlation structure for ice concentration with respect to
any kind of approximation and to keep the exact descrip-a reference location at 18V 75° N (North-East of Green-
tion of the probability concentrations, but this is impossible land). In the figure, we observe first that the correlation struc-
with anamorphic transformations, and it is anyway useful forture is very anisotropic, as a consequence of the southward
data assimilation to find new variables for which the Gaus-ice flow along the coast of Greenland, and that the correla-
sian model is (at least approximately) valid, because it makesion distance is larger in March (Fig2, top panels) as com-
the observational update of the prior probability distribution pared to September (Fid2, bottom panels), as a result of
(with linear formulas) numerically much more efficient. And the larger extension of the ice pack (see Hif). However,
to describe the marginal probability distributions for ice con- in both cases, the effect of anamorphosis (in the right panels)
centrations, the above approximation is certainly much betteis mainly to increase the correlation distance. In March, the
than using a Gaussian model for the original variables (i.ecorrelation radius mainly increases in the cross-flow direc-
without anamorphic transformations). tion, because it is across the front that nonlinear dependences
Now, as in the previous examples, we turn to evaluatingPetween the variations of ice concentrations mainly occur.
the effect of these local anamorphic transformations on theAnd in September, the correlation radius mainly increases in

joint probability distribution by looking at the linear corre- the direction of the ice flow, because the reference point is
lation structure. F|gure_2 shows for instance the horizon- then located close to the southmost edge of the ice extension.
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Fig. 13. Time variability of the ensemble decileg =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 at 20 W 35° N (black dot in Fig.14), as
obtained for phytoplankton (left panels) and nitrate (right panels) close to the surface (top panels) and at 41 m depth (bottom panels). The
further from the mediarv{ = 0.5, thick central curve), the thinner the curve.

As a secondary effect, the anamorphosis transformations alst/4° resolution CPBM (already described in Seétand5)

tend to remove the spurious correlations with the exterior ofand produce a 9-year reanalysis (from 1998 to 2006) of the
the ice pack (where the probability of a zero ice concentra-North-Atlantic ecosystem. The ensemble is constructed us-
tion is close to 1). In the exterior of the ice pack, nearly all ing the same kind of assumption as in the previous example
ice fractions are indeed equal to zero, so that the scatterpldin Sect.6), by sampling an interannual free model simula-
with a point inside of the ice pack consists in a set of pointstion (7 years, between 1999 and 2005) every 2 days in a run-
aligned atf =0, except for a few outliers, which produce ning window of £30 days around the date of interest (thus
the spurious correlation. The shape of the scatterplot is thusetaining 30 model states, every year), which makes an en-
like the example 4 in Anscombe’s quartéinscombe1973 semble of sizen =7 x 30=210 model states.

Fig. 4), showing the effect of outliers on linear correlations . . )
in this typical case. By replacing the linear correlation by Figure 13 shows the deciles of the resulting ensemble as

a nonparametric correlation, the anamorphic transformation& function of time for phytoplankton (left panels) and nitrate
help producing more robust correlations that are less influ{"ght pane_ls) at 20W 350'\! (black ,dOt n F|g:14). This
enced by the presence of outliers (see S2dj. fully _descrlbes the. approxw_nate piecewise Imear anamor-
Hence, we can conclude that, in addition to significantly phosis transformation for th!s Iocathn, which is q?fmed in
improving the description of the marginal probability dis- £dS- € and @) by a remapping of this set of decilgg on
tributions for ice concentration (in the interval between 0 the corresponding Gaussian decitgsConsistently with our

and 1), local anamorphic transformations are not detrimentafanserf‘ble description of the uncertalntlefs, o_nIy the seasonal
to the description of the horizontal correlation structure, andCYC!€ iS resolved, so that the transformation is kept the same

may even help representing nonlinear dependences betwediP™M Year to year. As in the previous example, the seasonal
distant ice behaviours. cycle is certainly the first thing that needs to be taken into

account in the description of the uncertainties. The figure in-
deed clearly illustrates the extreme seasonal variations in the
7 Modelling ecosystem forecast uncertainties spreading of the ensemble, in relation to the dynamics of the
ecosystem. For instance, close to the surface (Egtop
As a second example of non-stochastic ensemble, we studyanels), large phytoplankton concentrations (left panel) ap-
the description of ecosystem forecast uncertainties that hagear during the spring bloom (around day 90), together with
been used in the MyOcean project (Bgntana et al.2012 larger associated uncertainties. The bloom progressively de-
to assimilate ocean colour data in the NEMO/LOBSTER pletes nitrates (right panel) until the surface concentration
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Fig. 14. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplanktdh38°20
(North Atlantic), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

becomes very low during the whole summer (between dayshe spring bloom is smaller, and nitrate is not fully depleted
180 and 270), together with very low associated uncertain-during summer. This implies that the non-Gaussian descrip-
ties (according to our assumption). To close the annual cytion of the uncertainties must also be very different. See in
cle, larger nitrate concentrations are then restored by verticgbarticular the uncertainty in the nitrate concentration, which
mixing during fall and winter (between days 270 and 45), stays more symmetric around the median for the whole year.
when the primary production is reduced. During the whole Moreover, as soon as the bloom is terminated in the surface
cycle, the uncertainties on both concentrations (which ardayers (around day 180), more light becomes available at that
positive quantities) are clearly non-Gaussian, with the higherdepth, and a secondary bloom can occur during summer, to-
deciles (; > 0.5) being further away from the median than gether with larger phytoplankton uncertainties as compared
the lower deciles #, < 0.5), especially during the transi- to surface layers. The improvement in the local description
tions between high and low concentrations. For instancepf the marginal distributions already explains why the ap-
just before nitrates are fully depleted, the lower deciles andporoximate anamorphosis algorithm described in S2tias
the median are already all close to zero, while the highemeen so useful in the work &ontana et al2012 to improve
deciles are still very significant. These non-Gaussian ef-ocean colour data assimilation.
fects are first-order behaviours of the ecosystem uncertain-
ties, which clearly illustrate the inadequacy of the Gaussian However, it is important to check that this improvement
model, and the usefulness of our approximate piecewisein the description of the marginal probability distributions is
linear anamorphic transformations to improve the descriptionnot done at the expense of the joint probability distribution.
of the marginal probability distributions, as well as their vari- And again, to evaluate if the dependence between random
ations in time along the annual cycle. Moreover, the dynam-Variab|es is better described by a Gaussian model before or
ical characteristics of the spring bloom (amplitude, startingafter the anamorphosis transformations, we look at the modi-
date,...) are known to be very heterogeneous in the ocearfication of the linear correlation coefficient. Figurd shows
so that the associated uncertainties require local transformdor instance the PHY (top panels) and pi(®ottom panels)
tions to be properly described. For instance, E@j(bottom horizontal correlation structure with respect to PHY &t20
panels) shows the seasonal cycle of the ensemble deciles 35° N, as obtained for the original variables (left panels) and
the same horizontal location, but at a different depth (41 mthe transformed variables (right panels), based on the ensem-
depth instead of the first model level). Here, the situationble obtained for 19 April, i.e. the same result as displayed in
is completely changed with respect to the surface, becauskig. 8 for the stochastic ensemble resulting from wind ran-
dom perturbations (described in Sed). Concerning the
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PHY correlation structure, the first thing that we observe isthis ability of the scheme to adjust in space and time to local
the same kind of anisotropy as in FR&.probably reflecting  statistical behaviours is most probably one of the main rea-
some basic horizontal structure of the ecosystem dynamicssons why it has been so helpful in the workFafntana et al.
even if the correlation radius is here much larger, because th€2012 to improve the estimate of N{oconcentrations from
wind variability (which has been used in Setto parameter-  ocean colour observations.
ize the statistics of wind perturbations) has a smaller decor-
relation scale than the ecosystem variability in this region.
But despite of this difference, the effect of anamorphosis is8 Conclusions
the same: a substantial increase of the correlation radius, es-
pecially in the direction in which the correlation radius is the Many kinds of ocean uncertainties cannot be accurately de-
smallest. This reduced anisotropy of the correlation struc-scribed using a Gaussian model. This is particularly obvi-
ture after anamorphosis indicates a nonlinear dependence beus in the examples of ecosystem uncertainties (in Sécts.
tween the ecosystem behaviours across the frontal pattern. 5 and7) and sea ice uncertainties (in Segy. although this
Concerning the N@correlation structure (Fidl4, bottom  may also be true for ocean dynamics uncertainties (as in the
panels), the horizontal pattern is not much changed by the lomixed layer depth example in Se@). On the other hand,
cal anamorphosis transformations, but the value of the crossn these examples, a general non-Gaussian description of the
correlation with PHY is significantly increased. It is interest- joint probability distribution would be impossible to iden-
ing to note that PHY and Ngare here positively correlated tify from a moderate size ensemble, because the uncertain-
(they were anticorrelated in Fi@), which is the sign that, ties occur in too many dimensions (curse of dimensional-
on 19 April (day 109 in Figl3), the short term variability ity). Nevertheless, even with the available ensemble (a few
dominates in the non-stochastic ensemble. This difference ofiundred members in all examples described in the paper), it
behaviour between Fig8.and14 can be better illustrated us- is certainly possible to go beyond the Gaussian assumption
ing scatterplots of PHY at the reference point9(20 35° N) in the description of the marginal distribution for any indi-
vs. NO; at some distance from the reference’(2033° N), vidual random variable (including observation equivalents or
as shown in Figl5for the correlation structure of Fi§.(top indirect operational product). In this paper, we suggested
panels) and Figl4 (bottom panels), without anamorphosis that a very significant improvement can already be obtained
(left panels) and with anamorphosis (right panels). In thewith a very simple non-Gaussian description of the marginal
first situation (corresponding to Fig), the effect of wind  distributions (histograms), based on a few quantiles of the
perturbations is to introduce more or less mixing in the wa-ensemble (typically deciles, as in our examples). It is es-
ter column, so that the resulting perturbation of PHY and pecially interesting for large size applications, because it is
NOj3 tend to be anticorrelated (because of their opposit ver{i) concise (described byn values, ifn is the number of
tical gradient). And in the second situation (correspondingvariables, ang, the number of quantiles), (i) efficient (com-
to Fig. 14), the model variability tends to positively correlate putational complexity proportional temlogm, if m is the
the PHY and NQ@ fluctuations. However, in both cases, we size of the ensemble), and (iii) often more accurate than the
can observe in the scatterplots that the effect of the anamorGaussian description (based on the mean and standard de-
phic transformations (giving the same normalized Gaussiarviation). More importantly, this simple histogram descrip-
distribution to all marginal distributions) is to produce a scat- tion can also directly be used to perform a piecewise linear
terplot with a more elliptical shape, which is a good indica- change of variable (anamorphosis transformation), in such a
tion that the joint distribution is also closer to a bi-Gaussianway that each marginal distribution becomes approximately
distribution. In these cases, it can be seen that the modifiGaussian. In these transformed variables, it is then possible
cation of the scatterplots results from the two properties ofto perform the ensemble observational update consistently
anamorphosis that were introduced in Sect. 2: (a) the lin-with our simple description of the marginal uncertainties,
earization of a nonlinear dependence between the two variby applying the standard Gaussian algorithm, providing that
ables, and (b) the reduction of the effect of outliers (result-the ensemble correlation structure is preserved, or even im-
ing here from occasional extreme behaviours). In both casesroved, by the transformation.
these two properties explain the increase of linear correlation In the paper, various examples were used to evaluate the
from |px, x,| =0.07 to|pz, z,| = 0.43 in the top panels, and effect of these local anamorphic transformations on the spa-
from |px,x,| =0.24 t0]pz,z,| = 0.38 in the bottom panels.  tial correlation structure. The results indicate that (i) the
However, a closer analysis of PHY-N®©ross-correlations  transformation is accurate enough to faithfully preserve the
in the last example shows that they are often changing sigrcorrelation structure if the distribution is already close to
after the bloom event, in a way that is very heterogeneousGaussian, and (ii) the transformation has the general ten-
in space and time. In addition to the improvement of thedency of increasing the correlation radius as soon as the
marginal distributions illustrated in Fig.3 (in particular, the  dependence between random variables becomes nonlinear.
zero probability associated to negative concentrations) and hese effects may be understood by observing that the lin-
to the increase of the correlation radius illustrated in Ey.  ear correlation coefficient (Pearson) between the transformed
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Fig. 15. Scatterplots of PHY at the reference point{20 35° N) vs. NO; at some distance from the reference®®033° N), corresponding

to the correlation structures that are shown in Bigop panels) and in Fidl4 (bottom panels), without anamorphosis (left panels) and with
anamorphosis (right panels).

variables corresponds to a nonlinear measure of correlatioAppendix A

between the original variables, which is very similar to the

rank correlation (Spearman). On the other hand, even if thémplementation issues

method finds its full justification with a stochastic ensemble

description of the uncertainties, the last two examples shovwAll examples of local anamorphic transformations described
that it may also be useful with the non-stochastic ensemble# this paper have been performed using specific tools that
(resulting for instance from the system past variability) thatwe have implemented in the SESAM public softwarex-

are often used in present-day operational systems to reducgept the example of Sed, which has been perfomed using
the numerical cost of data assimilation (until truly stochastican independent implementation of the algorithm in the Mer-
solutions become affordable). In both cases, the most imporeator assimilation system (SAM2). More specifically, the re-
tant consequence for data assimilation of this increase in théults displayed in FigSto 10, 13and14 have been obtained
correlation magnitude is a significant reduction in the num-using four SESAM tools:

ber of degrees of freedom in the uncertainties (in a Gaussian ) ) )

sense), so that a better estimation accuracy can be obtainedl: COmputation of the quantiles of the input ensemble
from a given observation network. And from a more general ~ With the SESAM commandiine:

point of view, this also means that it may sometimes be re-

warding to put some time and numerical effort to improve the sesam -mode anam -inxbas [ens.dir]

statistical description of the uncertainties, rather than giving -outxbasref  [quant.dir]

too much confidence to oversimplistic assumptions.

where[ensdir] is a directory containing the input en-
semble forecast (as a set of NetCDF files, using the

2http://www-meom.hmg.inpg.fr/SESAM
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SESAM naming conventions), afguant.dir], a direc- sesam -mode corr -inxbas [()eofdir]

tory containing as an input, the definition of the quan- -outvar  [corr file]

tiles (an ASCII file with the, k=1, ...,q). From this, -incfg  [cfg-file]

SESAM computes the (local) quantiles of the ensemble

X, k=1,....q (as asetof NetCDF files, in the directory where[(a)eof dir] is a directory containing the EOFs of
[quantdir]), linearly interpolating between successive the original or transformed ensemble (or the columns
ensemble members, if necessary. of any other square root of the ensemble covariance

matrix), and[cfg_file] is a configuration file describ-

ing the reference variable (an ASCII file, with the name
of the variable, and the grid coordinates). From this,
SESAM computes the multivariate correlation structure

2. Local anamorphic transformation of the input ensem-
ble, with the SESAM commandline:

sesam -mode anam -inxbas [ensdir] with respect to the reference variable (as a NetCDF file
-inxbasref  [quantdir] [corr file] providing the corresponding column of the
-outxbas [aensdir] correlation matrix). This is the kind of result that is
-typeoper + mostly displayed throughout this paper.

o i . . Hence, only four SESAM commandlines have been suffi-
where[ens.dir] is a directory containing the input en-  ¢ient to produce all kinds of result that have been presented
semble forecast, anfduantdir], a directory contain- iy this paper, for a variety of oceanographic applications.
ing the quantilesy, k=1,...,q of the ensemble (as ob-  The first one (1) provides the histogram description of the
tained from the previous tool), and, as an additional in-yarginal uncertainties. This is used by the second one (2) to
put, the quantiles of the target distribution (an ASCIlfile perform the piecewise linear local anamorphic transforma-
with thezx, k=1,...,¢). From this, SESAM computes jon, as a preprocessing to any operation taking profit from
the transformed ensemble (as a set of NetCDF files, ingayssianity, like the computation of EOFs (3), the diagnos-
the directory[aensdir]), by linearly interpolating be-  ic of the linear correlation structure (4) or the linear obser-
tween thez, using Eq. g). In this way, the transforma- yational update (not shown here). In this way, the same study
tion can easily be performed towards any target distri-ca pe easily repeated to any new oceanographic problem, to
bution (by just changing the ASCII file with thg), in  check if the same conclusions apply. In our view, the sim-
particular towards the Gaussian distribution (as in mostyicity and modularity of the implementation is an additional

examples presented in this paper) or towards the unizgyment speaking in favour of the approximate algorithm
form distribution (using the same file for thg and for  jescribed in Sece.

thery) as in the middle panels of Figé.and7. (The

backward transformation of Eq3)can be performed AcknowledgementsThis work was conducted as a contribution to

similarly by replacing thet sign by a— sign in the  the MyOcean and SANGOMA projects funded by the EU (grants

commandline.) FP7-SPACE-2007-1-CT-218812-MYOCEAN and FP7-SPACE-
2011-1-CT-283580-SANGOMA), with additional support from the

3. Computation of the EOFs of the ensembléth the ASSOCO project (ESA/ESRIN Contract Network 22408/09/1-EC)

SESAM commandline: for M. Doron and CNES for M. Meinvielle. The calculations were
performed using HPC resources from GENCI-IDRIS (Grant 2010-
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sesam -mode geof -inxbas [(@)ensdir]

-outxbas  [(a)eof.dir] Edited by: J. Scliter

where[(a)ensdir] is a directory containing the input or
transformed ensemble, from which SESAM computes
the EOFs (as a set of NetCDF files, in the directory
[(@)eof dir]). This tool may be useful to obtain an or-
thogonal basis of the linear subspace spanned by the
(original or transformed) ensemble forecast, or to re- L o

duce the rank of the ensemble covariance matrix (byThe publication of this article is financed by CNRS-INSU.
discarding the directions with negligible variance). No
rank reduction has been performed in the examples de-
scribed in this paper.
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4. Computation of the correlation structyrewith the
SESAM commandline:
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