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2Mercator-Oćean, Toulouse, France

Correspondence to:J.-M. Brankart (jean-michel.brankart@hmg.inpg.fr)

Received: 20 September 2011 – Published in Ocean Sci. Discuss.: 28 October 2011
Revised: 23 February 2012 – Accepted: 24 February 2012 – Published: 6 March 2012

Abstract. The objective of this paper is to investigate if
the description of ocean uncertainties can be significantly
improved by applying a local anamorphic transformation to
each model variable, and by making the assumption of joint
Gaussianity for the transformed variables, rather than for the
original variables. For that purpose, it is first argued that a
significant improvement can already be obtained by deriv-
ing the local transformations from a simple histogram de-
scription of the marginal distributions. Two distinctive ad-
vantages of this solution for large size applications are the
conciseness and the numerical efficiency of the description.
Second, various oceanographic examples are used to evaluate
the effect of the resulting piecewise linear local anamorphic
transformations on the spatial correlation structure. These
examples include (i) stochastic ensemble descriptions of the
effect of atmospheric uncertainties on the ocean mixed layer,
and of wind uncertainties or parameter uncertainties on the
ecosystem, and (ii) non-stochastic ensemble descriptions of
forecast uncertainties in current sea ice and ecosystem pre-
operational developments. The results indicate that (i) the
transformation is accurate enough to faithfully preserve the
correlation structure if the joint distribution is already close
to Gaussian, and (ii) the transformation has the general ten-
dency of increasing the correlation radius as soon as the spa-
tial dependence between random variables becomes nonlin-
ear, with the important consequence of reducing the number
of degrees of freedom in the uncertainties, and thus increas-
ing the benefit that can be expected from a given observation
network.

1 Introduction

As a result of inescapable inaccuracies or approximations in
the observations and in the models, uncertainties are inherent
to any description or simulation of the real ocean. A realistic
and efficient modelling of these uncertainties is of key impor-
tance for many oceanographic applications: (i) to objectively
check simulation results against independent observations,
(ii) to optimally assimilate data, and thus obtain the maxi-
mum benefit from an expensive, but incomplete, observing
system, and (iii) to rationaly design future observation net-
works. It is thus essential to the production and use of ocean
operational data, as delivered for instance by the MyOcean
system1, which is the target application of this study.

Ensemble (or Monte Carlo) methods provide a good way
of describing uncertainties in ocean dynamical systems, by
explicitly exploring how uncertainties in the governing laws,
parameters or forcings (the prior information) propagate to
the observed quantities or to the operational products (Palmer
et al., 2005; Lermusiaux, 2006). However, even if an ex-
plicit stochastic modelling is used to solve a practical prob-
lem, there is often a strong temptation (in large size appli-
cations) to simplify the result using a Gaussian model, be-
cause it is much more efficient (i) to describe the uncertain-
ties (by the mean and covariance), and (ii) to assimilate ob-
servations (using linear update formulas, as in the ensemble
Kalman filter, seeEvensen and van Leeuwen, 1996). Without
a prior assumption about the shape of the probability distri-
bution, large size problems are indeed very complex in gen-
eral (van Leeuwen, 2009, 2010; Bocquet et al., 2010), mainly
because the size of the sample that is required to identify a
general multivariate distribution increases exponentially with

1http://www.myocean.eu.org/
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the number of dimensions (curse of dimensionality). To cir-
cumvent this difficulty, one possible simplification is to look
for univariate nonlinear changes of variables (anamorpho-
sis transformations) transforming the marginal distribution
of each random variable into a Gaussian distribution. One-
dimensional probability distributions can indeed be identi-
fied with a much smaller sample, and it may well happen
that such a separate transformation for each random vari-
able also helps improving the Gaussianity of their joint dis-
tribution (although this needs to be checked in every practi-
cal application). This technique originates from geostatistics
(Wackernagel, 2003) and was first introduced in oceanogra-
phy byBertino et al.(2003), in the framework of the ensem-
ble Kalman filter.

However, the studies presented inBertino et al.(2003) and
later in Simon and Bertino(2009) were directly focused on
the impact that anamorphic transformations may have on the
performance of the ensemble Kalman filter, without much
emphasis on the improvements in the multivariate statistics.
In this context, they also preferred to apply the same trans-
formation over the whole model domain (but different for
each model variable), so that a much larger sample is avail-
able to identify the transformation function. Yet, if the objec-
tive is also to propose a generic method (beyond the Gaus-
sian scheme) to improve the description of the uncertainties,
which can be spatially inhomogeneous, any practical possi-
bility of extending this towards local anamorphic transforma-
tions should be evaluated. In a recent paper,Béal et al.(2010)
proposed a very simple algorithm to obtain such local trans-
formations, and started evaluating its potential for describing
a 30-day ensemble forecast of the North-Atlantic ecosystem
(simulating the effect of wind uncertainties). However, the
paper was exclusively focused on the improvement of local
correlations (at given locations) between phytoplankton and
the other ecosystem compartments (nutrients, zooplankton),
in the perspective of ocean colour data assimilation. Yet, with
an algorithm working locally (i.e. transforming each model
grid point with a different anamorphosis function), it is also
important to study how the spatial correlations are modified,
and hopefully improved, by the transformation.

The purpose of the present paper is thus to evaluate the
effect of local anamorphic transformations on spatial corre-
lations for various kinds of ocean uncertainties. The study
includes, on the one hand, the stochastic ensemble descrip-
tion of the ocean mixed layer response to atmospheric forc-
ing uncertainties (Sect.3), the ecosystem response to wind
uncertainties (i.e. the same application as inBéal et al., 2010,
in Sect.4), and the ecosystem response to parameters uncer-
tainties (Sect.5). On the other hand, we also show examples
of anamorphic transformations applied to the non-stochastic
ensemble description of forecast uncertainties in current pre-
operational developments for the sea ice component (Merca-
tor system, Sect.6) and for the ecosystem component (My-
Ocean project, Sect.7). In addition, before going to the ap-
plications, the paper includes a brief summary of the algo-

rithm (presented in a more deductive way than inBéal et al.,
2010), with a quantitative discussion of the computational
complexity and accuracy of the approximation (Sect.2).

2 Anamorphosis transformations

The basic problem of the algorithm is to look for a non-
linear change of variable transforming a random variableX

with known cumulative distribution function (cdf)F(x) =

p(X ≤ x) into a new random variableZ with the target
cdf G(z) = p(Z ≤ z). Elementary probability calculus (e.g.
Von Mises, 1964) provides a general solution for the forward
and backward transformations:

Z = G−1[F(X)] and X = F−1[G(Z)] (1)

providing that F and G are invertible. In particular, if
Z ∼ U(0,1) is uniformly distributed on the interval[0,1],
with G(z) = z, thenx = F−1(k/q) is thekth q-quantile ofX;
and if Z ∼ N (0,1) is normally distributed, withG(z) =
1
2[1+erf(z/

√
2)], then Eq. (1) defines the forward and back-

ward Gaussian anamorphosis transformation of the random
variableX (Wackernagel, 2003, chapter 33).

However, it is important to keep in mind that transforming
all variables of a random vector using Eq. (1) can only ensure
that the marginal distribution of each variable becomes Gaus-
sian. This does not imply that their joint probability distribu-
tion becomes a multivariate Gaussian distribution, which is
the condition required to apply linear estimation techniques.
As pointed out byWackernagel(2003), it is thus important
to check in practice that at least bivariate distributions of the
transformed variables become close to bi-Gaussian, so that
linear inference may be close to optimal. It is the purpose
of the present paper to check this in various oceanic applica-
tions, by studying how the transformation in Eq. (1), applied
separately for every random variable, at every spatial loca-
tion, modifies the spatial correlation structure. But before
going to the applications, this section is dedicated to describ-
ing the specific algorithm that we have implemented to ap-
proximate Eq. (1) using a limited-size sample of the random
variables.

2.1 Efficient approximate algorithm

In the Monte Carlo estimation methods (like the ensemble
Kalman filter), the prior probability distribution for the con-
trol variables is only approximately described by a finite-
size sample. The anamorphosis transformation in Eq. (1) for
each control variable can thus only be approximately com-
puted from the available sample using a nonparametric esti-
mateF̃ (x) of the exact marginal cdfF(x). The most sim-
ple nonparametric estimate of a probability density function
(pdf) f̃ (x) = dF̃ (x)/dx is the histogram (Izenman, 2008,
chapter 4): a piecewise constant pdff̃ (x), or a piecewise
linear cdf F̃ (x). As a simple choice for the classes of the
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Fig. 1. Approximate piecewise linear Gaussian anamorphosis transformation (thick blue curve), remapping the decilesx̃k of a 200-member
random sample of the Gamma distribution0(k,θ) (top histogram) on the Gaussian decileszk (right histogram), as compared to the exact
transformation (in red) transforming the exact0(k,θ) (red curve superposed to the top histogram) intoN (0,1) (red curve superposed to the
left histogram).

histogram, we may use prescribed quantilesx̃k, k = 1,...,q

of the input sample, i.e. such thatF̃ (x̃k) = rk, for a given set
of rk (0≤ rk ≤ 1, rk < rk+1). In this way, we can control ex-
plicitly the fraction of ensemble members (rk+1−rk) in each
class of the histogram.

Then, with the same level of approximation, we can use
the same histogram representation of the Gaussian distribu-
tion, i.e. a piecewise linear̃G(z) interpolating the true Gaus-
sian cdf betweenG(zk) = rk, k = 1,...,q, so that the anamor-
phosis transformation in Eq. (1) is also piecewise linear:

ϕforw(x) = G̃−1
[
F̃ (x)

]
= zk +

zk+1−zk

x̃k+1− x̃k

(x − x̃k)

for x ∈ [x̃k,x̃k+1] (2)

ϕback(z) = F̃−1
[
G̃(z)

]
= x̃k +

x̃k+1− x̃k

zk+1−zk

(z−zk)

for z ∈ [z̃k,z̃k+1] (3)

This approximate transformation (heuristically proposed by
Béal et al., 2010) remaps the quantiles̃xk, k = 1,...,q of
the input sample on the corresponding Gaussian quantiles

zk, k = 1,...,q, and interpolates linearly between them. It is
bijective between the interval[x̃1,x̃q ] and[z1,zq ], providing
that the quantiles̃xk are distinct:x̃k 6= x̃k+1 ∀k (see Sect.2.3
for a discussion of the degenerate casesx̃k = x̃k+1, and for
possible parameterizations of the tails of the probability
distributions:x /∈ [x̃1,x̃q ]).

Example: Figure 1 shows for instance the approxi-
mate Gaussian anamorphosis transformation that is obtained
with Eq. (2) using a 200-member random sample of the
Gamma distributionX ∼ 0(k,θ), with k = 4.236 and
θ = 0.309 (chosen so that the mode is equal to 1, and the
95 % percentile is equal to 2.5). The classes of the histogram
for X are defined using the 10-quantiles (or deciles) of the
random sample:rk = k/q, with q = 10. They are remapped
on the Gaussian decileszk (histogram on the right) using
the piecewise linear transformation (blue curve), which
is here not far from the exact transformation (red curve),
given by Eq. (1). With this definition of rk, there is the
same number of random draws in each class of the histogram.

www.ocean-sci.net/8/121/2012/ Ocean Sci., 8, 121–142, 2012
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Computational complexity: The first reason why such a
simple approximation of the Gaussian anamorphosis may
be useful in practical ocean applications is that it can be
performed at a numerical cost that is usually much smaller
than the numerical cost of a Gaussian observational update
(e.g. the analysis step of the ensemble Kalman filter).
In the identification of the approximate transformation
in Eq. (2), the main cost is associated to the computation
of the quantiles̃xk of the input sample. Ifm is the size of
the sample, this cost is proportional tomlogm, to sort the
sample values. Then, ifn is the size of the control vector
(i.e. the number of random variables to transform), the total
computational complexity to identify the functionsϕforw and
ϕback in Eqs. (2) and (3) is:

Cquantiles∼ nmlogm (4)

In addition, in order to perform the observational update, one
must apply the transformation to the ensemble forecast and to
the observations. Each transformation requires localizing the
input value among the quantilesx̃k (with complexity propor-
tional to log2q with a bissection method), and then applying
the corresponding linear transformation in Eq. (2) (i.e. about
3 operations). To transform the ensemble ofm control vec-
tors, together with thep observations values, and then the
updated ensemble back in the original control space, this cor-
responds to a computational complexity of:

Canamorphosis∼ (2mn+p)(3+α log2q) (5)

whereα stands for the relative numerical cost between nu-
merical comparisons (needed to localize values in the list of
quantiles) and algebraic operations (needed to compute the
linear transformations). Transforming the observations sim-
ply requires applying the observation operator to the quan-
tiles of the control vector, but if some observations are non-
linearly linked to the control vector, it may be better to aug-
ment the control vector with these observations (thus produc-
ing a problem with largern) and transform them using their
own anamorphosis transformation.

On the other hand, this simple algorithm does not require
a lot of memory or disk space to store the approximate func-
tions ϕforw andϕback: only the quantiles of the input en-
semblex̃k, k = 1,...,q need to be stored, for a total storage
of qn real values (i.e. less than the storage of the forecast en-
semble itself, which requires storingmn real values). See the
appendix for more details about the practical implementation
of the algorithm.

2.2 Accuracy of the approximation

The second reason why such a simple approximation may
be useful in practical ocean applications is that the accuracy
of the approximation is generally sufficient to substantially
improve the description of the marginal distributions. The

accuracy of the approximation given by Eq. (2) mainly de-
pends on the accuracy of the histogram description off (x),
which is related to the size of the sample and to the definition
of the classes of the histogram by the quantilesx̃k. With too
many quantiles, we are likely to introduce spurious features
in the transformed pdf (not resolved by the available ensem-
ble), and with too few quantiles, we will smooth out signifi-
cant features. Thus, for a given distribution and a given sam-
ple size, there exists an optimal resolution of the quantiles
giving the best approximation for the transformation.

For the example of Fig.1, we computed the ap-
proximate anamorphosis transformation from the same
200-member sample and for several resolution of the
histogram (q = 3 to 50 with regular quantile discretization:
rk = k/q, k = 0,...,q). Then, we transformed the exact
prior distribution0(k,θ) using these various approximations
and computed the relative entropy (as a measure of the
discrepancy between two pdfs, see for instanceBocquet
et al., 2010) between the resulting transformed pdfs and
the target transformed pdfN (0,1). Figure 2 (left panel)
shows that there is indeed an optimal number of quantiles
(q = 9), which is close to the choice that we made in
Fig. 1 (q = 10). (Oscillations occur for largeq because the
number of ensemble members in each class of the histogram
becomes too small to produce an accurate estimation of the
transformation.)

Gaussian mixture: Other estimates of the transforma-
tion function can be obtained using more sophisticated
nonparametric estimates off (x), for instance by approxi-
mating the unknown pdf by a mixture of Gaussian kernels
(Izenman, 2008) rather than a mixture of uniform kernels
(as in the histogram approximation). A common algorithm
to estimate the Gaussian mixture from the available sample
can be derived from the nearest neighbour method (e.g.
Silverman, 1986; Izenman, 2008): each member of the sam-
ple is used as the mean of one of the superposed Gaussian
pdfs, with a variance equal to the variance of theq nearest
neighbours. As in the histogram approximation, there is an
optimal q below which spurious features are introduced in
the pdf estimate, and above which significant features are
smoothed out.

Figure2 (middle panel) shows however that this optimalq

(minimizing the relative entropy) produces an estimate
of f (x) that is not better than the best histogram (even if the
behaviour as a function ofq is more regular). Moreover, the
numerical cost of the transformation, requiring numerical
root-finding in the integral of the superposed Gaussian pdfs
[to solve the equationF̃ (x) = G̃(z)], would be much too
high to be affordable in large size applications.

Polynomial development: Another way of constructing a
direct approximation of the anamorphosis transformation
(described inWackernagel, 2003) is (i) to approximate
F(x) by the cumulative histogramF̃ (x) = α/m for
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Fig. 2. Relative entropy between the transformation of the exact0(k,θ) andN (0,1), using various approximations of the transformation
function: the histogram approximation (left panel), as a function of the numberq of classes in the histogram, the Gaussian mixture approxi-
mation (middle panel), as a function of the numberq of nearest neighbours, the Hermite polynomial development (right panel), as a function
of the numberq of superposed polynomials. In all 3 cases, the relative entropy is computed by numerical integration over the same interval
|z| < 2.576, except in the 3rd case (polynomial development) for which the subintervals with zero density (due to the non-bijectivity of the
approximation) have been removed.

x ∈ [x(α),x(α+1)] where x(α), α = 1,...,m is the ordered
sample (i.e. a step function instead of a piecewise linear
function in the approximation above), (ii) to deduce the
corresponding transformation asG−1

[F̃ (x)] = G−1(α/m)

for x ∈ [x(α),x(α+1)], or reciprocally, to construct an empir-
ical anamorphosis transformation asF̃−1

[G(z)] = x(α) for
z ∈ [G−1(α−1

m
),G−1( α

m
)] (i.e. again a step function, which

is not bijective by construction), and (iii) to interpolate
this empirical anamorphosis transformation by a limited
development in Hermite polynomials (seeWackernagel,
2003, for more detail about this algorithm). Theq-th order
Hermite development can be shown to be the bestq-th
order approximation (of the transformation function) in
the least square sense (Wackernagel, 2003), but nothing
guarantees that the polynomial interpolation will produce
a bijective transformation, as it should be, so that ad hoc
corrections must be supplied if problems occurs. (To avoid
this problem,Simon and Bertino, 2009, linearly interpolate
the step function instead of the development in Hermite
polynomials.)

Figure2 (right panel) shows the relative entropy between
the transformed pdf obtained with this method and the ex-
act pdf, as a function of the truncation orderq in the devel-
opment of Hermite polynomials. Again, there exists a best
truncation orderq = 21, which is not more accurate than the
histogram best estimate (shown on the left panel). These re-
sults suggest that, with a moderate size sample (200 members
in this example), it is not easy to do better than the simple
histogram approximation, and that more sophisticated (and
more expensive) algorithms, like the Gaussian mixture or the
polynomial development, need a substantial increase in the
sample size before producing a significant benefit.

2.3 Extensions of the algorithm

The algorithm described above is sufficient and well-
conditioned as soon as (i) the cdfF(x) of every control
variable is invertible (so that the quantiles of the ensemble
are distinct), (ii) the range of possible value for every control
variable is finite (betweenx1 and xp), and (iii) the sizem
of the ensemble is large enough to provide a reasonable
approximationF̃ (x) of the marginal distributions. The
purpose of this section is to examine what may be done if
these 3 conditions are not verified.

Probability concentrations: A cdf F(x) is not invert-
ible if it makes a vertical step at some valuex = xc, i.e. if
there is a probability concentration forx = xc, with finite
probability: p(xc) = F(x+

c )−F(x−
c ). In this case, several

ensemble members may be equal toxc [mp(xc) members
in average] so that a subset of the quantiles (betweenx̃l

and x̃u) may also be equal toxc, and the piecewise linear
approximation of the anamorphosis transformation is no
more bijective (zero denominator in Eq.2). This occurs very
often in practice, especially if there is a physical constraint
on the value of the random variable, so that probability
may concentrate on the constraint: sea temperature equal to
freezing point, zero tracer concentration (see examples in
Sects.4, 5 and7), ice fraction equal to 0 or 1 (see example
in Sect.6), ice velocity equal to 0 (no motion),. . .

The most direct solution to this problem (applied in all
applications below, except in the Mercator applications in
Sect.6) is to transformxc to the middle of the step of the
piecewise linear function:G̃−1

[F̃ (xc)] =
1
2(x̃l + x̃u). A

difficulty with this simple scheme is that it can introduce
spurious discontinuities in the transformed vector (for
instance in the transformed ice concentrations, at the border
of the ice pack in the example of Sect.6), and it may be
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preferable to restore the bijectivity of the transformation by
introducing an artificial slope in the function. A simple way
to do it is to replace the quantiles̃xl to x̃u (all equal toxc)
by interpolating them betweeñxl−1 and x̃u+1 (betweenx̃1
and x̃u+1 if l = 1, or betweeñxl−1 and x̃q if u = q). This
can improve the continuity and the quality of the linear
estimates in the transformed space (see Sect.6), at the price
of a slight spreading of the backward transform around the
concentration valuexc (abovexc if l = 1, or belowxc if
u = q).

Tails of the distribution: Since the range of possible
values for the Gaussian random variableZ is between−∞

and+∞, the backward transformation in Eq. (3) must also
specify how to transformz < z1 andz > zq . If the range of
possible values for the original random variableX is finite
betweenxmin andxmax, and fully resolved by the available
ensemble (so that̃x1 = xmin and x̃q = xmax), then we can
be certain that the cumulated probability corresponding to
z < z1 andz > zq is concentrated atx = xmin andx = xmax,
so that the backward transformation may be written:

ϕback(z) = x̃1 for z < z1 (6)

ϕback(z) = x̃q for z > zq (7)

But if the range betweenxmin andxmax (possibly infinite) is
not fully resolved by the available ensemble, a solution must
be provided to map[−∞,z1] on [xmin,x̃1], and[zq ,∞] on
[x̃q ,xmax].

The most simple parameterization of the tails ofF(x)

(used in all applications below) is to assume zero probabil-
ity outside the range of the ensemble forecast (as inBéal
et al., 2010). Again, this corresponds to assuming that the
cumulated probability corresponding toz < z1 andz > zq is
concentrated atx = xmin andx = xmax, so that the backward
transformation is approximated by Eqs. (6) and (7). On the
other hand, anyx found outside of the interval[x̃1,x̃q ] is
viewed as impossible and transformed as the closest value:

ϕforw(x) = z1 for x < x̃1 (8)

ϕforw(x) = zq for x > x̃q (9)

Parameterizing the tails ofF(x) by probability concentra-
tions at x̃1 and x̃q means that the resulting transformation
cannot be bijective outside of the interval[x̃1,x̃q ]. However,
if the available ensemble is large enough and consistently
sampled (without bias) from the prior probability distribu-
tion, these tails must correspond to a very small cumulated
probability. Moreover, if little is known about the extreme
behaviour of the system, Eqs. (6) to (9) may be a safe way
of avoiding any kind of extrapolation outside the range of
values that has been explored by the ensemble.

More sophisticated assumptions about the tails ofF(x)

can nevertheless be easily implemented. See for instance

Simon and Bertino(2009) for a Gaussian parameterization
(requiring thatxmin or xmax be infinite).

Sample enrichment: In many practical applications, it
may be very expensive to increase the ensemble sizem until
the accuracy of the approximation is sufficient to improve
(or at least not deteriorate) the Gaussianity of the marginal
distributions. In such circumstances, and providing that
F(x) is slowly varying in space, a better accuracy ofF̃ (x) at
a given locationx can certainly be obtained (for a moderate
size m) by augmenting the sample that is available atx,
with the samples that are available in the neighbourhood
of x (possibly with a decreasing weight as a function of the
distance fromx). However, the definition of this neighbour-
hood (which should decrease withm) introduces a subjective
parameter in the algorithm, which can only be optimized
by checking the accuracy of the results. This is why no
enrichment of the sample is used in the applications below
(except in the Mercator application in Sect.6), where we
preferred to stick to the theoretical formulation (converging
for m → ∞) of separate transformations for distinct random
variables (Wackernagel, 2003).

Finally, it is important to remark that such a spatial ex-
tension of the sample is by no way necessary to ensure the
spatial smoothness of the approximate solution described in
Sect.2.1. If all ensemble membersx(α) are spatially smooth,
their quantilesx̃k and thus the anamorphosis transformation
in Eqs. (2) and (3) will be spatially smooth as well (see ap-
plications below), so that no spurious discontinuity is intro-
duced in the multivariate probability distribution. On the
contrary, one should certainly be careful enough to check that
the sample extension described above does not smooth out
real discontinuities (or sharp gradients) from the statistics.
Again, what really matters to apply linear estimation meth-
ods is that the joint probability distribution for all control
variables, at every spatial locationx, is better described by a
multivariate Gaussian distribution if the nonlinear change of
variables proposed in Eq. (2) is applied. It is precisely the
purpose of the following examples to show that such local
anamorphic transformations may yield a far better model for
various kind of ocean uncertainties.

2.4 Effect on correlations

However, since the examples given in the following sections
are mainly dedicated to illustrate the effect of anamorphic
transformations on spatial correlations, it is certainly useful
to provide first a summary of the theoretical background ex-
plaining the effect that can be expected. For that purpose,
we assume that we have two non-Gaussian random variables
X1 andX2 (with marginal cdfsF1 andF2) that have been
transformed into the Gaussian variablesZ1 andZ2 (with the
same cdfG). First of all, it is important to remember that,
since the transformations are invertible, there is no loss of
information induced by the anamorphosis, and the statistical
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dependence (in a general sense) between the random vari-
ables remains unchanged, i.e. the reduction of entropy gained
from the knowledge of the other variable (i.e. the mutual in-
formation I) remains the same:

I (X1,X2) = H(X2)−H(X2|X1) = H(Z2)−H(Z2|Z1)

= I (Z1,Z2) (10)

which can easily be verified by introducing the change of
variables in the definition of entropy [H(X2)] and condi-
tional entropy [H(X2|X1)]. Consequently, it is only the
effect of anamorphic transformations onlinear correlations
that we are going to investigate, since this is the only kind of
correlation that can be described by a Gaussian model.

A first insight into this problem can easily be obtained by
remarking that, if there exists separate bijective transforma-
tions for X1 andX2 transforming their joint non-Gaussian
distribution into a bi-Gaussian distribution forZ1 and Z2,
then the anamorphic transformation given by Eq. (1) pro-
vides the required transformations. This is obvious since the
marginal pdfs of a bi-Gaussian distribution are both Gaus-
sian, and the only backward anamorphosis (except for any
unimportant additional linear change of variable) transform-
ing the Gaussian marginal pdf forZ1 andZ2 into the right
marginal pdfs forX1 andX2 is the one given by Eq. (1). In
this ideal case, the mutual information is related to the linear
correlation coefficientρZ1Z2 between the transformed vari-
ables (e.g.Cover and Thomas, 2006, chapter 8) by:

I (X1,X2) = I (Z1,Z2) = −
1

2
ln(1−ρ2

Z1Z2
) (11)

A particular case of this ideal situation occurs if the vari-
ableX1 andX2 are perfectly correlated along a monotonic
nonlinear curve (i.e. the ideal situation to estimateX2 from
an observation ofX1, but in which linear estimation methods
can be very inaccurate). In this case, by transforming the two
marginal pdfs into Gaussian pdfs, the anamorphic transfor-
mations also transform the nonlinear curve into a straight line
(so that the two marginal pdfs can be simultaneously Gaus-
sian). The nonlinear dependence betweenX1 andX2 (result-
ing from their non-Gaussian behaviour) is fully transformed
into a linear dependence, which is then perfectly described
by the bi-Gaussian pdf (i.e. linear estimation methods be-
come truly optimal). In this particular case, the linear corre-
lation coefficient, which only imperfectly described the per-
fect nonlinear dependence betweenX1 andX2, is always am-
plified by the transformation (|ρX1X2| < |ρZ1Z2| ' 1), as a di-
rect consequence of the transformation of the nonlinear curve
into a straight line. This first explanation thus covers all situ-
ations in which|ρZ1Z2| is close to 1, because this means that
all transformed values are aligned close to a straight line (as
a result of the transformation of a nonlinear regression curve
into a straight line). This kind of behaviour is what is ob-
served for spatial correlations in most examples described in
Sects.3 to 7.

Nevertheless, it is important to stay aware that, in gen-
eral, only the marginal distributionsp(Z1) and p(Z2) are
ensured to be Gaussian, and that assuming thatp(Z1,Z2) is
bi-Gaussian is only an approximation. This is why, in this
case, it is much more difficult to make general mathematical
statements about the transformation of linear correlations. A
useful way to understand how linear correlations are modi-
fied by the transformationX1,X2 → Z1,Z2 is to observe that
the linear coefficient between the transformed variablesZ1
andZ2 corresponds to a nonparametric measure of correla-
tion between the original variablesX1 andX2, because there
is an abundant statistical literature explaining the advantages
of nonparametric correlations as compared to linear corre-
lations (Hollander and Wolfe, 1973; Corder and Foreman,
2009). In summary, the two main advantages are (a) that
they are more adequate to see a nonlinear dependence be-
tween random variables (for the same kind of reason as in
the ideal case described above), and (b) that they are more ro-
bust to the presence of outliers in the data. These two cases
correspond to the situations in which the linear correlation
can provide an inaccurate representation of the dependence
between the random variables (as illustrated in the examples
of Anscombe, 1973). And the basic reason underlying these
two improvements is the derivation of variables that are iden-
tically distributed (Z1 andZ2 are both normal in our case).

The oldest and most simple example of a nonparametric
measure of correlation is the rank correlation (Spearman,
1904; Kendall, 1962), which is defined as the linear corre-
lation between the rank of each member in the ensemble.
Hence, this corresponds to computing a linear correlation be-
tween uniform sets of integers between 1 andm, which is
thus close to computing a linear correlation after a uniform
anamorphosis (i.e. with a uniform target pdf), instead of a
Gaussian anamorphosis. (This is only approximate because,
unlike uniform anamorphosis, the computation of the rank is
not invertible, so that there is a small loss of information in
the operation.) The close similarity between the rank corre-
lation betweenX1 andX2 and the linear correlation between
Z1 andZ2 was already discussed inBéal et al.(2010), and it
is further illustrated here in the example of Sect.4 (Fig. 6).
This property that the linear correlation coefficientρZ1Z2 be-
tween the transformed variables corresponds to a nonpara-
metric measure of correlation between the original variables
(similar to the rank correlation) is the fundamental reason ex-
plaining the improvement of the correlation structure that is
described in the rest of the paper. By this, we will always
mean that the resulting nonparametric measure of correla-
tion is more adequate to see a nonlinear dependence between
the random variables and more robust to the presence of out-
liers in the data (as already observed in other applications
of anamorphosis in Geostatistics, seeChilès and Delfiner,
1999).
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Fig. 3. SST horizontal correlation structure with respect to SST at 114◦ W 0◦ N (Eastern Equatorial Pacific), without anamorphosis (left
panel), and after local anamorphosis transformations (right panel).

3 Mixed layer response to atmospheric forcing
uncertainties

As a first example, we study the stochastic response of the
ocean mixed layer to uncertainties in the atmospheric param-
eters that are used to define the surface boundary condition
of the ocean model (i.e. the momentum, heat and fresh water
fluxes). In many respects, the ensemble model forecast that
we use here to illustrate the effect of anamorphosis transfor-
mations is similar to the ensembles that are used inSkan-
drani et al.(2009) to estimate corrections in the atmospheric
parameters using oceanic observations (without anamorpho-
sis), because (i) we use the same low resolution global ocean
configuration (ORCA2) of the NEMO-OPA model (Madec
and Imbard, 1996), with a 2◦ × 2◦ ORCA type horizontal
grid and 31 z-coordinate levels along the vertical, and (ii) the
random parameters perturbations are drawn from a Gaussian
probability distribution with zero mean and a covariance de-
rived from their natural variability. However, the ensemble
that we describe here (performed byMeinvielle, 2011) is also
somewhat different because (i) the reference atmospheric pa-
rameters are obtained from the ERA-interim dataset instead
of NCEP, with the objective (not discussed here) of esti-
mating parameter corrections for long term model simula-
tions (The DRAKKAR Group, 2007), (ii) the parameter per-
turbations now include the wind, and are assumed constant
over monthly periods, rather than weekly periods (to estimate
lower frequency parameter corrections), and (iii) the covari-
ance of the perturbations is set to the covariance of the ERA-
interim monthly means (from 1989 to 2007) for the 3 months
surrounding the month of interest, rather than the full covari-
ance of the parameter variability inSkandrani et al.(2009).
In the following, we focus our study to the one-month and
200-member ensemble model forecast that is produced for
January 2004, and we look at the mixed layer response, av-
eraged over the one-month time period, in terms of sea sur-
face temperature (SST), sea surface salinity (SSS) and mixed
layer depth (MLD).

Figure3 shows for instance the resulting ensemble corre-
lation structure with respect to SST at 114◦ W 0◦ N (East-
ern Equatorial Pacific), without anamorphosis (left panels),
and after local anamorphosis transformations (right panels)
based on the deciles of the ensemble forecast (as in Fig.1).
What we observe is that the SST horizontal correlation struc-
ture is (almost) not modified by the local transformations.
This occurs here because the ensemble model response to
Gaussian parameter perturbations is already very close to
Gaussian, so that the ensemble deciles for SST, at every lo-
cation, are all remapped on the deciles ofN (0,1) along a
straight line. Conversely, this means that the approximate
algorithm described in Sect.2, with piecewise linear trans-
formations based on a histogram description of the proba-
bility distributions, is accurate enough (with 200 members)
to faithfully preserve the linear correlation structure between
random variables that are already close to Gaussian. This
Gaussian behaviour is also the reason whySkandrani et al.
(2009) were able to infer relevant parameter corrections from
SST (and SSS) using a Gaussian observational update algo-
rithm (complemented by the truncated Gaussian assumption
of Lauvernet et al., 2009, to avoid extreme and nonphysical
corrections).

However, the situation becomes different if we look at
the ensemble model response in terms of MLD. Figure4
shows for instance the correlation structure with respect to
MLD at the same location (114◦ W 0◦ N in Eastern Equato-
rial Pacific), without anamorphosis (left panel), and with the
same local anamorphic transformation as above (right pan-
els). What we observe is that, for both displayed variables
(MLD and SST), the horizontal correlation patterns are not
really altered by the local transformations (same smoothness,
same shape, same kind of anisotropy), but the correlation ra-
dius is substantially increased in all directions: the area in-
side which the correlation (or anticorrelation) is above 70 %
is increased by 50 % for MLD and 62 % for SST. This means
that the MLD response to Gaussian parameter perturbations
is not Gaussian, as illustrated in Fig.5 (left panel) by a
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Fig. 4. MLD (top panels) and SST (bottom panels) horizontal correlation structure with respect to MLD at 114◦ W 0◦ N (Eastern Equatorial
Pacific), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

Fig. 5. Scatterplot of MLD vs. SST at 114◦ W 0◦ N (Eastern Equatorial Pacific), without anamorphosis (left panel), and after local anamor-
phosis transformations (right panel).

scatterplot of MLD vs. SST at 114◦ W 0◦ N. As a conse-
quence, the joint distribution of MLD and SST cannot be bi-
Gaussian, as visually obvious from the clear nonlinearity of
the regression line (i.e. the line of maximum MLD probabil-
ity for every given SST). In the transformed variables (Fig.5,
right panel), even if the marginal distribution for each vari-
able is now close to Gaussian (by construction), the joint dis-
tribution is still not bi-Gaussian (larger MLD dispersion for
small SST than for large SST). But at least the regression

line is now close to linear, with the direct consequence of in-
creasing the linear correlation coefficient. This phenomenon
explains why the spatial correlation structure can only be im-
proved by consistent local anamorphic transformations, even
if the algorithm is not perfectly accurate (as the piecewise
linear approximation). The improvement of the MLD spatial
correlation structure also suggests that anamorphosis trans-
formations might be an interesting ingredient to obtain bet-
ter MLD climatologies, enhancing the accuracy of the linear
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Fig. 6. Deciles of the ensemble for phytoplankton (top panels) corresponding (from left ot right) tork = 0.2, 0.5 (median) and 0.8, and
illustration of one of the ensemble members (bottom panels): the phytoplankton map (left panel), the rank in the ensemble (middle panel),
and the transformed map (right panel) after Gaussian anamorphosis.

estimation methods and the description of the final product
(by the median and a set of quantiles, rather than the usual
minimum variance estimate, which is not really meaningful
in this case).

This first example already illustrates the two main con-
clusions of this paper about the effect of local anamorphic
transformations on the spatial correlation structure: (i) the
transformation is accurate enough to faithfully preserve the
correlation structure if the joint distribution is already close
to Gaussian, and (ii) the transformation has the general ten-
dency of increasing the correlation radius as soon as the spa-
tial dependence between random variables becomes nonlin-
ear. With the next examples, we further investigate the same
effects in presence of the more complex and heterogeneous
non-Gaussian behaviours that may occur in ecosystem or
sea-ice models.

4 Ecosystem response to wind uncertainties

As a second example, we study the stochastic response of
a coupled physical-biogeochemical model (CPBM) of the
North Atlantic to uncertainties in the wind forcing. For that
purpose, we use the same 200-member ensemble forecast
as in Béal et al.(2010): (i) the CPBM (originally devel-
oped byOurmìeres et al., 2009) couples a 1/4◦ resolution
circulation model of the North Atlantic (a Drakkar config-
uration of the NEMO/OPA model,The DRAKKAR Group,
2007) with the LOBSTER (LOcean Biogeochemical Simu-
lation Tools for Ecosystem and Resources,Lévy et al., 2005)

biogeochemical model, with 6 prognostic variables in the eu-
photic layer: phytoplankton (PHY), zooplankton (ZOO), ni-
trate (NO3), ammonium, detritus, and semi-labile dissolved
organic nitrogen; (ii) the ensemble forecast is initialized at
the beginning of the spring bloom on 15 April 1998, using
the model simulation described in (Ourmìeres et al., 2009);
and (iii) the random wind perturbations are sampled from
a Gaussian probability distribution, with zero mean and a
covariance derived from the ERA40 variability (during the
3 months centered on 15 April, with a superimposed 4-day
decorrelation times scale, seeBéal et al., 2010, for more
details). However, whereas the study byBéal et al.(2010)
was exclusively focused on the multivariate response of the
coupled model at given horizontal locations (with or with-
out anamorphosis transformations, and for several forecast
timescales between 1 and 30 days), we here complement
their work, by documenting the effect of the local anamor-
phic transformations on the horizontal correlation structure
(in the 4-day forecast only).

In the ensemble forecast, the main impact of the random
wind perturbations on the ecosystem results from the deep-
ening and shallowing of the mixed layer, which modifies the
nutrient supply and thus the primary production in the eu-
photic layer. This mechanism produces a quite heteroge-
nous response in terms of phytoplankton concentration, as
illustrated in Fig.6 by three deciles of the ensemble (corre-
sponding tork = 0.2, 0.5 and 0.8, top panels) and one of the
ensemble members (bottom panels). The wind can indeed
only trigger a large ensemble dispersion (i.e. large differ-
ences between the deciles, in the top panels) in areas where
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Fig. 7. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplankton at 37.5◦ W
50.8◦ N (North Atlantic), as obtained for the original variables (left panels), their local rank in the ensemble (middle panels), and the
transformed variables after Gaussian anamophosis (right panels).

the spring bloom has already started, like primarily the Gulf
Stream pathway, the Irminger Sea and the Western half of
the Labrador Sea, and secondarily, the Northern half of the
North Sea, the Gulf of Lions and the Bay of Biscay. Con-
versely, in the areas where the primary production is weak
(as in the subtropical gyre and in the Norwegian Sea), it re-
mains weak, whatever the wind perturbations.

Furthermore, one particular ensemble member (Fig.6,
bottom left panel) may be well below the median in some
regions (e.g. in the Labrador Sea) and well above the median
in other regions (e.g. in the Irminger Sea). This phenomenon
is more obvious if we look at the rank of this ensemble mem-
ber in the ensemble forecast (Fig.6, bottom middle panel).
More precisely, what is shown is the rank divided by the en-
semble size (to be between 0 and 1), which corresponds to
the local anamorphic transformation of the ensemble mem-
ber using the uniform distributionU(0,1) as a target distribu-
tion. For instance, a value below 0.2 means below the second
decile (r2 = 0.2), a value below 0.5 means below the me-
dian (r5 = 0.5), etc. In this figure, we can see immediately
where this ensemble member is high or low with respect to
the others (compare the rank in the Labrador Sea and in the
Irminger Sea), even in regions where the dispersion of the
ensemble is very small, as along the coast of Africa or in the
Southern half of the North Sea. See also how the high rank
region in the Irminger Sea (i.e. with a production well above
the ensemble median) embeds indifferently areas of high pri-
mary production and areas of low production, as a result of
a strongly positive wind anomaly covering the whole region.

The rank may thus better translate the effect of a homoge-
neous perturbation, which is masked in the original variable
by the heterogeneity of the ecosystem dynamics. And from
the local rank (Fig.6, bottom middle panel) to the local Gaus-
sian anamorphic transformation of the same ensemble mem-
ber (Fig.6, bottom right panel), there is nothing but a global
anamorphosis transformingU(0,1) intoN (0,1). The figure
thus looks very similar, with the same nonlinear change of
variable at every grid point (we could have kept the same
figure, with a nonlinear labelling of the colorbar).

Figure7 illustrates the effect of these transformations on
the PHY (top panels) and NO3 (bottom panels) horizontal
correlation structure with respect to PHY at 37.5◦ W 50.8◦ N
(North Atlantic), as obtained for the original variables (left
panels), their local rank in the ensemble (middle panels),
and the transformed variables after Gaussian anamophosis
(right panels), based on the deciles of the ensemble forecast.
The first thing that we observe is that, despite of the deep
changes in the horizontal structure of each ensemble mem-
ber (illustrated in Fig.6, bottom panels), the general shape
of the correlation is still not much altered by the transforma-
tions. A linear measure of correlation (Fig.7, left panels) is
already quite good in this case, because it is not influenced
by the heterogeneity of the ensemble variance, which is here
the main reason for the changes in the horizontal structure
of the ensemble members observed in Fig.6 (bottom pan-
els). Going to a nonlinear measure of correlation (like the
rank correlation, in the middle panels of Fig.7) is only useful
if the transformation can help linearizing the regression line
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Fig. 8. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplankton at 20◦ W 35◦ N
(North Atlantic), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

between the two random variables (as illustrated in Fig.5).
The rank correlation was indeed introduced by Spearman (as
explained byVon Mises, 1964) to produce this effect and thus
to go beyond the linear correlation coefficient (of Pearson),
as a measure of the (nonlinear) dependency between random
variables. Furthermore, since the linear correlation structure
after a local Gaussian anamorphosis is very similar to rank
correlation (compare right and middle panels in Fig.7), this
explains why the correlation radius is generally increased by
the transformation (compare with left panels, in which the
area with a correlation above 80 % is about 26 % smaller for
PHY and 35 % smaller for NO3). The same kind of phe-
nomenon can be observed in Fig.8, showing the same result
at 20◦ W 35◦ N, except that the rank correlation is not shown
anymore since it is always very similar to the linear corre-
lation structure after Gaussian anamorphosis. However, we
can see that here, the NO3 horizontal correlation structure
(bottom panels) is deeply modified by the transformation,
becoming more similar (in shape and extension, but with
the opposite sign) to the PHY horizontal correlation struc-
ture (top panels). This is also related to the improvement of
the correlation between NO3 and PHY at every horizontal lo-
cation (which was described inBéal et al., 2010), and further
supports the idea that local anamorphic transformations may
substantially increase the benefit that can be expected from
ocean colour observations in the multivariate estimation of
the state of the ecosystem.

5 Ecosystem response to ecosystem parameters
uncertainties

As a third example, we study the stochastic response of the
same CPBM to uncertainties in the parameterization of the
ecosystem model. For that purpose, we use the 200-member
ensemble that has been performed byDoron et al.(2011) to
evaluate the potential of ensemble methods to estimate a few
ecoystem parameters using ocean colour observations (with
or without anamorphosis). This ensemble forecast is iden-
tical to that described in the previous section (same model,
same forcing, same initial condition), except that the ran-
dom perturbations are applied to a few ecosystem parame-
ters rather than to the wind forcing. Three rate parameters
are assumed uncertain in the ensemble forecast: (i) the max-
imum growth rate of phytoplankton, (ii) the maximum graz-
ing rate of phytoplankton by zooplankton, and (iii) the phy-
toplankton mortality rate. The uncertainties for these three
parameters are assumed independent and constant over each
of the 13 North Atlantic biogeochemical provinces (defined
by Longhurst, 1995), which makes a total of 3×13= 39 in-
dependent random parameters. And the probability distribu-
tion for each of these parameters is assumed to be a Gamma
distribution, with a mean equal to the default parameter value
in the LOBSTER model, and a 95 % percentile equal to 2.5
times the mode of the distribution (as in Fig.1, seeDoron
et al., 2011, for more details). In the following, we de-
scribe the correlation structure of the model response to these
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Fig. 9. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplankton at 11.7◦ W
36◦ N (North Atlantic), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

uncertainties after a 1-month ensemble forecast (instead of a
4-day forecast in the previous example).

Figure9 shows for instance the PHY (top panels) and NO3
(bottom panels) horizontal correlation structure with respect
to PHY at 11.7◦ W 36◦ N (in the Longhurst province west
of Spain and North Africa), as obtained without anamorpho-
sis (left panels) and after local anamorphosis transformations
(right panels), based on the deciles of the ensemble forecast.
The first thing to observe is that the correlation is mostly sig-
nificant inside the Longhurst province (materialized by the
black line) with constant parameters perturbations, which
means (i) that the ensemble size is sufficient to decorrelate
independent behaviours, and (ii) that, even after 1 month,
the effect of the parameter uncertainties is here mainly lo-
cal (the main exceptions being the intense mesoscale activity
in the North-Western corner of the province, and the south-
ward advection along the coast of Africa). However, inside
the Longhurst province, the response of the ecosystem to
the homogeneous parameters uncertainties is far from be-
ing the same everywhere, as a result of the heterogeneity of
the initial condition and physical forcing. It is also clearly
nonlinear, in view of the strong impact of the anamorpho-
sis transformation on the horizontal correlation structure. As
in Fig. 8, the NO3 correlation structure becomes very sim-
ilar (with an opposite sign) to the PHY correlation struc-
ture (Fig.9, right panels), even though without anamorphosis
(Fig. 9, left panels), the two variables were only weakly cor-
related.

Figure10 shows the same kind of result as Fig.9 in the
Longhurst province covering the Caribbean Sea and the Gulf
of Mexico, with a reference point located at 86◦ W 23.8◦ N in
the inside of the Loop Current. Here, the impact of advection
is more obvious: (i) along the Eastern coast of Florida, where
the effect of the parameter perturbation inside the Longhurst
province (delimited by the black line) is advected by the Gulf
Stream, and (ii) in the Gulf of Mexico, where the ecosystem
response to the parameters uncertainties decorrelates across
the front defined by the Loop Current. However, even if the
heterogeneity of the ecosystem behaviour across the Loop
Current is clearly due to differences brought by advection,
the decorrelation across the front also results from the non-
linearity of the ecosystem response to the same parameters
perturbations. This is why a nonlinear measure of correla-
tion (i.e. the linear correlation coefficient for the transformed
variables, in the right panels) can be much larger than the lin-
ear correlation coefficient (for the original variables, in the
left panels), going from below 0.4 to above 0.6 for PHY (the
opposite sign for NO3) in a large part of the Gulf of Mex-
ico. It is also interesting to remark the modifications along
the Western coast of the Gulf of Mexico, where a zero linear
correlation transforms either to (i) a negative correlation with
PHY and a positive correlation with NO3 in the Southern half
of the coastal band, (ii) a negative correlation with both PHY
and NO3 in the Northern half, or (iii) a positive correlation
with PHY and a negative correlation with NO3 (as in the rest
of the domain) at the mouth of the Rio Grande. (Here, it
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Fig. 10. Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplankton at 86◦ W
23.8◦ N (Gulf of Mexico), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

must be remembered that, even if these large long-range cor-
relations are certainly meaningful, they cannot be expected
to describe real model errors, because they correspond to a
very simple assumption, in which parameter errors are as-
sumed constant over the whole Gulf of Mexico.)

All these increases of linear correlation (or anticorrelation)
contribute to simplify the Gaussian description of the uncer-
tainties (in the transformed variables vs. the original vari-
ables), by concentrating a larger fraction of the total variance
in a smaller dimension subspace, thus reducing the number
of degrees of freedom that must be controlled to obtain a
given accuracy. This simplification is one of the main reasons
for which local anamorphic transformations were so helpful
in the work of Doron et al.(2011) to estimate the 39 un-
known parameters from ocean colour observations (in a twin
experiment approach, without localization of the ensemble
covariance).

6 Modelling ice forecast uncertainties

In this section, we are moving to another class of examples,
in which non-stochastic ensembles are used to describe fore-
cast uncertainties. In many situations indeed, the forward
model is too expensive to allow the explicit Monte Carlo ex-
ploration of the uncertainties. Assumptions are then needed
to produce the required ensemble of model states, using for
instance an appropriate sample of the past system variability.
The purpose of this section (and of Sect.7) is to show that,

even in such a case, local anamorphic transformations may
be useful to go beyond the Gaussian model.

As a first example of this kind, we study the non-stochastic
ensemble description of sea-ice forecast uncertainties that
is currently tested for assimilating sea-ice observations in
the Mercator/MyOcean operational system. To construct
the ensemble, it is assumed that the forecast uncertainties
have the same statistics as the combined effect of the for-
ward model short term and interannual variabilities. More
precisely, to describe the uncertainties at a given date (e.g.
15 June 2011), we sample a past interannual free model sim-
ulation (17 years, between 1991 and 2007) every 3 days in a
running window of±66 days around that date (thus retain-
ing 44 model states, every year), which make an ensemble
of size m = 17× 44= 748 model states. This assumption
means that we do not try to resolve anything else than the
seasonal cycle in the description of the uncertainties. This
might look quite crude if we forget that this is applied to a
1/4◦ resolution global configuration of the NEMO model,
and already tested with a 1/12◦ resolution prototype. The
size of these systems makes truly stochastic solutions (with
sufficient ensemble size) unaffordable with present-day com-
putational facilities, so that the above solution can actually
be considered as quite sophisticated. In the following, we
focus our study on the resulting description of the uncertain-
ties (as obtained from the 1/4◦ resolution model) for the ice
fractionf , which is the (well-observed) model variable giv-
ing the fraction of the ocean that is covered by sea-ice. It is
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Fig. 11. Probability that the ocean is free of ice [p(f = 0)], as computed from the non-stochastic ensemble for 15 March (left panel) and
11 September (right panel).

defined in the interval betweenf = 0 (no ice) andf = 1 (no
free water).

Because of this bounded interval, it is already clear that
the Gaussian model is not appropriate to describe uncertain-
ties in ice concentrations. Moreover, the probability density
function is usually maximum at one of these bounds (atf = 1
in the middle of the ice pack, or atf = 0 at the borders),
or even at both (U-shaped pdf), which makes the Gaussian
model even less appropriate. Furthermore, the two extreme
values (f = 0 orf = 1) can often concentrate a finite proba-
bility, which means that the cdf of ice concentration makes a
step atf = 0 or f = 1 (as explained in Sect.2.3). Figure11
shows for instance the probability that the ocean is free of ice
(f = 0), as computed from the ensemble for 15 March (left
panel) and 11 September (right panel). In practice, the value
of this probability is computed as the fraction of the ensemble
members for whichf = 0. In this computation, we also ap-
plied the sample enrichment method described in Sect.2.3,
by concatenating in the local description of the probability
distribution all ice concentration values in a window of 9×9
grid points. The total ensemble size at each horizontal lo-
cation is thus equal tom = 81× 748= 60588. The effect
of this enrichment of the ensemble is to slightly smooth the
probability maps displayed in Fig.11, but in view of the ap-
proximations that are made in the construction of the original
ensemble, there was no reason here to stay perfectly local,
while the enrichment may be a good way of mitigating the
inaccuracies that are related to the limited size of the avail-

able ensemble. In Fig.11, the resulting probability increases
from p(f = 0) = 0 in the interior of the ice pack, where a
zero ice concentration is impossible, top(f = 0) = 1 outside
of the ice pack, where a zero ice concentration is certain (ac-
cording to our assumption about the uncertainties). In the
Arctic, it is also generally much larger in September (mini-
mum ice extension) as compared to March, which shows the
primary importance of resolving the seasonal cycle in the de-
scription of the probability distributions.

Strictly speaking, in presence of such probability concen-
trations (atf = 0 in Fig.11), a Gaussian anamorphosis trans-
formation is not possible, since the cdf in Eq. (1) is not in-
vertible. In our example, this means that several quantiles of
the ensemble are equal tof = 0, so that the piecewise linear
approximation in Eq. (2) is not defined (zero denominator
if x̃k = x̃k+1). This is why, in this example, we need to ap-
ply the approximate solution described in Sect.2.3, which
consists in modifying the quantiles of the ensemble that are
equal to 0, by interpolating them betweenf = 0 and the first
non-zero quantile. In this particular case, this approxima-
tion amounts to replacing the Dirac atf = 0 in the exact
pdf by a boxcar function betweenf = 0 and the first non-
zero quantile, cumulating the same total probability as the
Dirac. (Any other function to approximate the Dirac is pos-
sible by modifying the interpolation of the quantiles.) In this
way, we restore the applicability of anamorphosis by trans-
forming the non-invertible cdf into an invertible cdf, at the
price of a slight spreading of the probability that is actually
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Fig. 12. Ice concentration horizontal correlation structure with respect to a reference location at 15◦ W 75◦ N (black dot) for 15 March (top
panels) and 11 September (bottom panels), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

concentrated atf = 0. It would of course be better to avoid
any kind of approximation and to keep the exact descrip-
tion of the probability concentrations, but this is impossible
with anamorphic transformations, and it is anyway useful for
data assimilation to find new variables for which the Gaus-
sian model is (at least approximately) valid, because it makes
the observational update of the prior probability distribution
(with linear formulas) numerically much more efficient. And
to describe the marginal probability distributions for ice con-
centrations, the above approximation is certainly much better
than using a Gaussian model for the original variables (i.e.
without anamorphic transformations).

Now, as in the previous examples, we turn to evaluating
the effect of these local anamorphic transformations on the
joint probability distribution by looking at the linear corre-
lation structure. Figure12 shows for instance the horizon-

tal correlation structure for ice concentration with respect to
a reference location at 15◦ W 75◦ N (North-East of Green-
land). In the figure, we observe first that the correlation struc-
ture is very anisotropic, as a consequence of the southward
ice flow along the coast of Greenland, and that the correla-
tion distance is larger in March (Fig.12, top panels) as com-
pared to September (Fig.12, bottom panels), as a result of
the larger extension of the ice pack (see Fig.11). However,
in both cases, the effect of anamorphosis (in the right panels)
is mainly to increase the correlation distance. In March, the
correlation radius mainly increases in the cross-flow direc-
tion, because it is across the front that nonlinear dependences
between the variations of ice concentrations mainly occur.
And in September, the correlation radius mainly increases in
the direction of the ice flow, because the reference point is
then located close to the southmost edge of the ice extension.
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Fig. 13. Time variability of the ensemble decilesrk = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 at 20◦ W 35◦ N (black dot in Fig.14), as
obtained for phytoplankton (left panels) and nitrate (right panels) close to the surface (top panels) and at 41 m depth (bottom panels). The
further from the median (rk = 0.5, thick central curve), the thinner the curve.

As a secondary effect, the anamorphosis transformations also
tend to remove the spurious correlations with the exterior of
the ice pack (where the probability of a zero ice concentra-
tion is close to 1). In the exterior of the ice pack, nearly all
ice fractions are indeed equal to zero, so that the scatterplot
with a point inside of the ice pack consists in a set of points
aligned atf = 0, except for a few outliers, which produce
the spurious correlation. The shape of the scatterplot is thus
like the example 4 in Anscombe’s quartet (Anscombe, 1973,
Fig. 4), showing the effect of outliers on linear correlations
in this typical case. By replacing the linear correlation by
a nonparametric correlation, the anamorphic transformations
help producing more robust correlations that are less influ-
enced by the presence of outliers (see Sect.2.4).

Hence, we can conclude that, in addition to significantly
improving the description of the marginal probability dis-
tributions for ice concentration (in the interval between 0
and 1), local anamorphic transformations are not detrimental
to the description of the horizontal correlation structure, and
may even help representing nonlinear dependences between
distant ice behaviours.

7 Modelling ecosystem forecast uncertainties

As a second example of non-stochastic ensemble, we study
the description of ecosystem forecast uncertainties that has
been used in the MyOcean project (byFontana et al., 2012)
to assimilate ocean colour data in the NEMO/LOBSTER

1/4◦ resolution CPBM (already described in Sects.4 and5)
and produce a 9-year reanalysis (from 1998 to 2006) of the
North-Atlantic ecosystem. The ensemble is constructed us-
ing the same kind of assumption as in the previous example
(in Sect.6), by sampling an interannual free model simula-
tion (7 years, between 1999 and 2005) every 2 days in a run-
ning window of±30 days around the date of interest (thus
retaining 30 model states, every year), which makes an en-
semble of sizem = 7×30= 210 model states.

Figure13 shows the deciles of the resulting ensemble as
a function of time for phytoplankton (left panels) and nitrate
(right panels) at 20◦ W 35◦ N (black dot in Fig.14). This
fully describes the approximate piecewise linear anamor-
phosis transformation for this location, which is defined in
Eqs. (2) and (3) by a remapping of this set of decilesx̃k on
the corresponding Gaussian decileszk. Consistently with our
ensemble description of the uncertainties, only the seasonal
cycle is resolved, so that the transformation is kept the same
from year to year. As in the previous example, the seasonal
cycle is certainly the first thing that needs to be taken into
account in the description of the uncertainties. The figure in-
deed clearly illustrates the extreme seasonal variations in the
spreading of the ensemble, in relation to the dynamics of the
ecosystem. For instance, close to the surface (Fig.13, top
panels), large phytoplankton concentrations (left panel) ap-
pear during the spring bloom (around day 90), together with
larger associated uncertainties. The bloom progressively de-
pletes nitrates (right panel) until the surface concentration
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Fig. 14.Phytoplankton (top panels) and nitrate (bottom panels) horizontal correlation structure with respect to phytoplankton at 20◦ W 35◦ N
(North Atlantic), without anamorphosis (left panels), and after local anamorphosis transformations (right panels).

becomes very low during the whole summer (between days
180 and 270), together with very low associated uncertain-
ties (according to our assumption). To close the annual cy-
cle, larger nitrate concentrations are then restored by vertical
mixing during fall and winter (between days 270 and 45),
when the primary production is reduced. During the whole
cycle, the uncertainties on both concentrations (which are
positive quantities) are clearly non-Gaussian, with the higher
deciles (rk > 0.5) being further away from the median than
the lower deciles (rk < 0.5), especially during the transi-
tions between high and low concentrations. For instance,
just before nitrates are fully depleted, the lower deciles and
the median are already all close to zero, while the higher
deciles are still very significant. These non-Gaussian ef-
fects are first-order behaviours of the ecosystem uncertain-
ties, which clearly illustrate the inadequacy of the Gaussian
model, and the usefulness of our approximate piecewise-
linear anamorphic transformations to improve the description
of the marginal probability distributions, as well as their vari-
ations in time along the annual cycle. Moreover, the dynam-
ical characteristics of the spring bloom (amplitude, starting
date,. . . ) are known to be very heterogeneous in the ocean,
so that the associated uncertainties require local transforma-
tions to be properly described. For instance, Fig.13 (bottom
panels) shows the seasonal cycle of the ensemble deciles at
the same horizontal location, but at a different depth (41 m
depth instead of the first model level). Here, the situation
is completely changed with respect to the surface, because

the spring bloom is smaller, and nitrate is not fully depleted
during summer. This implies that the non-Gaussian descrip-
tion of the uncertainties must also be very different. See in
particular the uncertainty in the nitrate concentration, which
stays more symmetric around the median for the whole year.
Moreover, as soon as the bloom is terminated in the surface
layers (around day 180), more light becomes available at that
depth, and a secondary bloom can occur during summer, to-
gether with larger phytoplankton uncertainties as compared
to surface layers. The improvement in the local description
of the marginal distributions already explains why the ap-
proximate anamorphosis algorithm described in Sect.2 has
been so useful in the work ofFontana et al.(2012) to improve
ocean colour data assimilation.

However, it is important to check that this improvement
in the description of the marginal probability distributions is
not done at the expense of the joint probability distribution.
And again, to evaluate if the dependence between random
variables is better described by a Gaussian model before or
after the anamorphosis transformations, we look at the modi-
fication of the linear correlation coefficient. Figure14shows
for instance the PHY (top panels) and NO3 (bottom panels)
horizontal correlation structure with respect to PHY at 20◦ W
35◦ N, as obtained for the original variables (left panels) and
the transformed variables (right panels), based on the ensem-
ble obtained for 19 April, i.e. the same result as displayed in
Fig. 8 for the stochastic ensemble resulting from wind ran-
dom perturbations (described in Sect.4). Concerning the
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PHY correlation structure, the first thing that we observe is
the same kind of anisotropy as in Fig.8, probably reflecting
some basic horizontal structure of the ecosystem dynamics,
even if the correlation radius is here much larger, because the
wind variability (which has been used in Sect.4 to parameter-
ize the statistics of wind perturbations) has a smaller decor-
relation scale than the ecosystem variability in this region.
But despite of this difference, the effect of anamorphosis is
the same: a substantial increase of the correlation radius, es-
pecially in the direction in which the correlation radius is the
smallest. This reduced anisotropy of the correlation struc-
ture after anamorphosis indicates a nonlinear dependence be-
tween the ecosystem behaviours across the frontal pattern.

Concerning the NO3 correlation structure (Fig.14, bottom
panels), the horizontal pattern is not much changed by the lo-
cal anamorphosis transformations, but the value of the cross-
correlation with PHY is significantly increased. It is interest-
ing to note that PHY and NO3 are here positively correlated
(they were anticorrelated in Fig.8), which is the sign that,
on 19 April (day 109 in Fig.13), the short term variability
dominates in the non-stochastic ensemble. This difference of
behaviour between Figs.8 and14can be better illustrated us-
ing scatterplots of PHY at the reference point (20◦ W 35◦ N)
vs. NO3 at some distance from the reference (20◦ W 33◦ N),
as shown in Fig.15for the correlation structure of Fig.8 (top
panels) and Fig.14 (bottom panels), without anamorphosis
(left panels) and with anamorphosis (right panels). In the
first situation (corresponding to Fig.8), the effect of wind
perturbations is to introduce more or less mixing in the wa-
ter column, so that the resulting perturbation of PHY and
NO3 tend to be anticorrelated (because of their opposit ver-
tical gradient). And in the second situation (corresponding
to Fig.14), the model variability tends to positively correlate
the PHY and NO3 fluctuations. However, in both cases, we
can observe in the scatterplots that the effect of the anamor-
phic transformations (giving the same normalized Gaussian
distribution to all marginal distributions) is to produce a scat-
terplot with a more elliptical shape, which is a good indica-
tion that the joint distribution is also closer to a bi-Gaussian
distribution. In these cases, it can be seen that the modifi-
cation of the scatterplots results from the two properties of
anamorphosis that were introduced in Sect. 2: (a) the lin-
earization of a nonlinear dependence between the two vari-
ables, and (b) the reduction of the effect of outliers (result-
ing here from occasional extreme behaviours). In both cases,
these two properties explain the increase of linear correlation
from |ρX1X2| = 0.07 to |ρZ1Z2| = 0.43 in the top panels, and
from |ρX1X2| = 0.24 to|ρZ1Z2| = 0.38 in the bottom panels.

However, a closer analysis of PHY-NO3 cross-correlations
in the last example shows that they are often changing sign
after the bloom event, in a way that is very heterogeneous
in space and time. In addition to the improvement of the
marginal distributions illustrated in Fig.13 (in particular, the
zero probability associated to negative concentrations) and
to the increase of the correlation radius illustrated in Fig.14,

this ability of the scheme to adjust in space and time to local
statistical behaviours is most probably one of the main rea-
sons why it has been so helpful in the work ofFontana et al.
(2012) to improve the estimate of NO3 concentrations from
ocean colour observations.

8 Conclusions

Many kinds of ocean uncertainties cannot be accurately de-
scribed using a Gaussian model. This is particularly obvi-
ous in the examples of ecosystem uncertainties (in Sects.4,
5 and7) and sea ice uncertainties (in Sect.6), although this
may also be true for ocean dynamics uncertainties (as in the
mixed layer depth example in Sect.3). On the other hand,
in these examples, a general non-Gaussian description of the
joint probability distribution would be impossible to iden-
tify from a moderate size ensemble, because the uncertain-
ties occur in too many dimensions (curse of dimensional-
ity). Nevertheless, even with the available ensemble (a few
hundred members in all examples described in the paper), it
is certainly possible to go beyond the Gaussian assumption
in the description of the marginal distribution for any indi-
vidual random variable (including observation equivalents or
indirect operational product). In this paper, we suggested
that a very significant improvement can already be obtained
with a very simple non-Gaussian description of the marginal
distributions (histograms), based on a few quantiles of the
ensemble (typically deciles, as in our examples). It is es-
pecially interesting for large size applications, because it is
(i) concise (described byqn values, ifn is the number of
variables, andq, the number of quantiles), (ii) efficient (com-
putational complexity proportional tonmlogm, if m is the
size of the ensemble), and (iii) often more accurate than the
Gaussian description (based on the mean and standard de-
viation). More importantly, this simple histogram descrip-
tion can also directly be used to perform a piecewise linear
change of variable (anamorphosis transformation), in such a
way that each marginal distribution becomes approximately
Gaussian. In these transformed variables, it is then possible
to perform the ensemble observational update consistently
with our simple description of the marginal uncertainties,
by applying the standard Gaussian algorithm, providing that
the ensemble correlation structure is preserved, or even im-
proved, by the transformation.

In the paper, various examples were used to evaluate the
effect of these local anamorphic transformations on the spa-
tial correlation structure. The results indicate that (i) the
transformation is accurate enough to faithfully preserve the
correlation structure if the distribution is already close to
Gaussian, and (ii) the transformation has the general ten-
dency of increasing the correlation radius as soon as the
dependence between random variables becomes nonlinear.
These effects may be understood by observing that the lin-
ear correlation coefficient (Pearson) between the transformed
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Fig. 15. Scatterplots of PHY at the reference point (20◦ W 35◦ N) vs. NO3 at some distance from the reference (20◦ W 33◦ N), corresponding
to the correlation structures that are shown in Fig.8 (top panels) and in Fig.14 (bottom panels), without anamorphosis (left panels) and with
anamorphosis (right panels).

variables corresponds to a nonlinear measure of correlation
between the original variables, which is very similar to the
rank correlation (Spearman). On the other hand, even if the
method finds its full justification with a stochastic ensemble
description of the uncertainties, the last two examples show
that it may also be useful with the non-stochastic ensembles
(resulting for instance from the system past variability) that
are often used in present-day operational systems to reduce
the numerical cost of data assimilation (until truly stochastic
solutions become affordable). In both cases, the most impor-
tant consequence for data assimilation of this increase in the
correlation magnitude is a significant reduction in the num-
ber of degrees of freedom in the uncertainties (in a Gaussian
sense), so that a better estimation accuracy can be obtained
from a given observation network. And from a more general
point of view, this also means that it may sometimes be re-
warding to put some time and numerical effort to improve the
statistical description of the uncertainties, rather than giving
too much confidence to oversimplistic assumptions.

Appendix A

Implementation issues

All examples of local anamorphic transformations described
in this paper have been performed using specific tools that
we have implemented in the SESAM public software2, ex-
cept the example of Sect.6, which has been perfomed using
an independent implementation of the algorithm in the Mer-
cator assimilation system (SAM2). More specifically, the re-
sults displayed in Figs.3 to 10, 13and14have been obtained
using four SESAM tools:

1. Computation of the quantiles of the input ensemble,
with the SESAM commandline:

sesam -mode anam -inxbas [ens dir]
-outxbasref [quant dir]

where[ens dir] is a directory containing the input en-
semble forecast (as a set of NetCDF files, using the

2http://www-meom.hmg.inpg.fr/SESAM
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SESAM naming conventions), and[quant dir] , a direc-
tory containing as an input, the definition of the quan-
tiles (an ASCII file with therk, k = 1,...,q). From this,
SESAM computes the (local) quantiles of the ensemble
x̃k, k = 1,...,q (as a set of NetCDF files, in the directory
[quant dir] ), linearly interpolating between successive
ensemble members, if necessary.

2. Local anamorphic transformation of the input ensem-
ble, with the SESAM commandline:

sesam -mode anam -inxbas [ens dir]
-inxbasref [quant dir]
-outxbas [aensdir]
-typeoper +

where[ens dir] is a directory containing the input en-
semble forecast, and[quant dir] , a directory contain-
ing the quantiles̃xk, k = 1,...,q of the ensemble (as ob-
tained from the previous tool), and, as an additional in-
put, the quantiles of the target distribution (an ASCII file
with thezk, k = 1,...,q). From this, SESAM computes
the transformed ensemble (as a set of NetCDF files, in
the directory[aensdir] ), by linearly interpolating be-
tween thezk using Eq. (2). In this way, the transforma-
tion can easily be performed towards any target distri-
bution (by just changing the ASCII file with thezk), in
particular towards the Gaussian distribution (as in most
examples presented in this paper) or towards the uni-
form distribution (using the same file for thezk and for
the rk) as in the middle panels of Figs.6 and7. (The
backward transformation of Eq. (3) can be performed
similarly by replacing the+ sign by a− sign in the
commandline.)

3. Computation of the EOFs of the ensemble, with the
SESAM commandline:

sesam -mode geof -inxbas [(a)ensdir]
-outxbas [(a)eof dir]

where[(a)ensdir] is a directory containing the input or
transformed ensemble, from which SESAM computes
the EOFs (as a set of NetCDF files, in the directory
[(a)eof dir] ). This tool may be useful to obtain an or-
thogonal basis of the linear subspace spanned by the
(original or transformed) ensemble forecast, or to re-
duce the rank of the ensemble covariance matrix (by
discarding the directions with negligible variance). No
rank reduction has been performed in the examples de-
scribed in this paper.

4. Computation of the correlation structure, with the
SESAM commandline:

sesam -mode corr -inxbas [(a)eof dir]
-outvar [corr file]
-incfg [cfg file]

where[(a)eof dir] is a directory containing the EOFs of
the original or transformed ensemble (or the columns
of any other square root of the ensemble covariance
matrix), and[cfg file] is a configuration file describ-
ing the reference variable (an ASCII file, with the name
of the variable, and the grid coordinates). From this,
SESAM computes the multivariate correlation structure
with respect to the reference variable (as a NetCDF file
[corr file] providing the corresponding column of the
correlation matrix). This is the kind of result that is
mostly displayed throughout this paper.

Hence, only four SESAM commandlines have been suffi-
cient to produce all kinds of result that have been presented
in this paper, for a variety of oceanographic applications.
The first one (1) provides the histogram description of the
marginal uncertainties. This is used by the second one (2) to
perform the piecewise linear local anamorphic transforma-
tion, as a preprocessing to any operation taking profit from
Gaussianity, like the computation of EOFs (3), the diagnos-
tic of the linear correlation structure (4) or the linear obser-
vational update (not shown here). In this way, the same study
can be easily repeated to any new oceanographic problem, to
check if the same conclusions apply. In our view, the sim-
plicity and modularity of the implementation is an additional
argument speaking in favour of the approximate algorithm
described in Sect.2.
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