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Abstract. Using a combination of seismic oceanographic
and physical oceanographic data acquired across the Faroe-
Shetland Channel we present evidence of a turbidity layer
that transports suspended sediment along the western bound-
ary of the Channel. We focus on reflections observed on seis-
mic data close to the sea-bed on the Faroese side of the Chan-
nel below 900 m. Forward modelling based on independent
physical oceanographic data show that thermohaline struc-
ture does not explain these near sea-bed reflections but they
are consistent with optical backscatter data, dry matter con-
centrations from water samples and from seabed sediment
traps. Hence we conclude that an impedance contrast in wa-
ter column caused by turbidity layers is strong enough to be
seen in seismic sections and this provides a new way to visu-
alise this type of current and its lateral structure. By invert-
ing the seismic data we estimate a sediment concentration
in the turbidity layers, present at the time of the survey, of
45± 25 mg l−1. We believe this is the first direct observation
of a turbidity current using Seismic Oceanography.

1 Introduction

Turbidity layers are some of the largest sediment-laden un-
derflows that occur in ocean basins. In a geological context,
these layers play an important role in transporting fluvial,
littoral and shelf sediments into deep ocean environments.
They may be sourced from sediment-laden river flow cas-
cading down submarine canyons, slope failure, or by the re-
mobilisation of unconsolidated sediment by strong currents.
Turbidity layers are typically defined as relatively dilute
flows in which particles are dominantly supported by fluid
turbulence with sediment volume concentrations of<∼10 %.
At higher sediment concentrations grain collision is more
frequent and the flow dynamics are changed (Sumner et al.,
2009). A large number of experimental studies on turbid-
ity layers are available (e.g. Middleton, 1966; Sumner et al.,

2009), however natural turbidity layers and other sediment-
laden transient currents are hard to observe and study, due to
their irregular occurrence and often destructive nature (Hay,
1987). Hence our knowledge of the turbidity layers is based
largely on indirect observations of the modern seafloor from
multibeam bathymetry surveys (Kuijpers et al., 2002), high-
resolution seismic surveys especially those designed for ob-
servations of geohazards (Bulat and Long, 2001; Meiburg
and Kneller, 2010) and the study of contourites (Masson et
al., 2010; Koenitz et al., 2008); together with direct obser-
vation of suspended sediment of the neptheloid layer from
optical backscatter or transmissometer and sampling either
in Niskin bottles or sediment traps (Bonnin et al., 2002; van
Raaphorst et al., 2001; Hosegood and van Haren, 2004).

2 Turbidity layers in the Faroe-Shetland Channel

The Faroe-Shetland Channel (FSC) (60◦ N, 6◦ W–63◦ N,
1◦ W) is an elongate basin that trends NE–SW between
the West Shetland Shelf and the Faroe Shelf (Fig. 1c). It
is one of the major conduits of the global thermohaline
system as it connects the deep waters of the Norwegian
Basin with the Iceland Basin and Atlantic ocean. Turrell
et al. (1999) identify five major water masses in the FSC
defined by differences in temperature, salinity and prove-
nance. These are North Atlantic Water (NAW), Modified
North Atlantic Water (MNAW), Arctic Intermediate/North
Icelandic Water (AI/NIW), Norwegian Sea Arctic Intermedi-
ate Water (NSAIW) and Faroe Shetland Channel Bottom Wa-
ter (FSCBW). The classification can be simplified into two
groups based on transport direction and water depth, which
we will refer to as surface water and bottom water. The
surface water (NAW, MNAW and AI/NIW) are essentially
warmer, higher salinity water masses and have a transport di-
rection from the south-west to the north-east, with a base in
the FSC at approximately 500 m below sea-level. The bottom
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Fig. 1. (a)a depth converted stacked seismic section of the FAST profile (England et al., 2005) reprocessed to recover the reflectivity in the
water layer. The seabed reflection is the high amplitude event that can be traced from the centre of the trough at about 1.2 km depth onto the
margins. The band of reflectivity at a depth of about 500 m is caused by mixing of the North Atlantic Water with the Faroe-Shetland Channel
Bottom Water.(b) the inset in rectangle focuses on the near-bed reflections between 65 and 82 km of the profile which we investigate in this
paper. The red line shows the section of data used to compute the histograms in Fig. 4.(c) a map showing the location of profiles used in
this study: black line: the FAST seismic profile; red dots: locations of CTD and moorings (Bonnin et al., 2002; Hosegood et al., 2005) cross
signifies location used for modelling sound-speed and density profiles (see Fig. 2).
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water (NSAIW and FSCBW) are cold, low salinity, water
masses flowing from the north-east to the south-west entirely
contained within the FSC. The boundary zone between these
two water types is a complex mix of waters and will vary
seasonally and over time (Sherwin et al., 2006, 2008).

The shape of the Faroe-Shetland Channel and the orienta-
tion of the Wyville-Thomson Ridge effects on the strength of
the bottom currents, firstly funnelling these waters together
and then deflecting most of the water mass by ninety degrees
into the Faroe bank Channel. Hansen and Østerhus (2000)
estimate the average flow of bottom water in the FSC to be
3 Sv. Direct measurements at 1000 m depth on the Shetland
side of the FSC show a variable current speed with a mean
of 0.25 m s−1 with an M2 period with occasional peaks in
speed of over 0.5 m s−1 (Bonnin et al., 2002). These bottom
currents have sufficient strength to mould and rework the sea-
floor sediments within the FSC (Stoker et al., 1998; Bonnin
et al., 2002).

The emergence of 3-D seismic acquisition as a tool for re-
gional reconnaissance for the hydrocarbons industry as well
as oil field development has resulted in nearly complete cov-
erage of the FSC area by seismic reflection imaging. High-
resolution seismic profiles acquired by the British Geolog-
ical Survey in the FSC area, were integrated with the 3-D
data to produce a regional image of the sea floor with an aim
to identify seabed hazards (Bulat and Long, 2001; Masson
et al., 2010). These detailed images of the seabed reveal a
number of sedimentary processes at work adjacent to and
within the FSC. Of particular interest is an extensive net-
work of long mounds that run sub-parallel to the strike of
the slope between the 900 m and 1400 m isobaths. The net-
work is restricted to the slope area but appears to cover it
completely (Bulat and Long, 2001, their Fig. 2). One of the
proposed mechanisms for generating these features are sedi-
ment waves produced by turbidity-layers creating a series of
channels and levees. The irregular character and internal ge-
ometry of the mounds are indicative of erratic and turbulent
flow.

3 Data sets

To date there has not been an integrated physical oceanog-
raphy and seismic imaging survey with coincident and co-
located sampling to examine turbidity layers. So we draw on
two surveys, described below, that provide evidence of sus-
pended particulate matter (SPM) that were acquired at dif-
ferent times but in the same region of the Faroe-Shetland
channel (Fig. 1). Seismic data (FAST) were obtained during
summer 1994, with near ideal weather conditions with wind
speeds of less than force 3 (England et al., 2005). Physical
oceanography data comes from an array of four moorings
(PROCS-Processes at the Continental Slope) which was de-
ployed during spring (April–May) and late summer (Septem-
ber) 1999 (Bonnin et al., 2002). The dynamics that dominate

large resuspension events, and a possible mechanism for the
formation of turbidity layers is the passage of solibores up
the continental slope (Hosegood et al., 2004; Hosegood and
van Haren, 2005). Long-term moorings deployed between
the two PROCS cruises showed that these events occurred
with a 3–5 day periodicity. Other observations of highly non-
linear waves near the sea bed that could also promote resus-
pension at depth were attributed to the internal tide (Hall et
al., 2011). Thus, the hydrodynamics that drive the resuspen-
sion events observed in the 1994 FAST data appear to be
ubiquitous throughout the FSC, implying that a comparison
between the FAST and PROCS data is valid despite the dif-
ferent periods of observation.

3.1 Seismic reflection

The seismic line (FAST) which traverses the whole width of
the Faroe-Shetland Trough (Fig. 1c) (England et al., 2005)
was acquired with the original objective to map the struc-
ture of the sedimentary basin and underlying basement. The
acquisition used a 147 l (8970 cu in) air-gun source opti-
mised for low frequencies (bandwidth 6–60 Hz) and a 6 km
240-channel hydrophone receiver array towed at 18 m depth.
Though the acquisition configuration and the source were
designed specifically for deep seismic profiling, the repro-
cessed section presented here can still produce an image of
the overlying water column (Fig. 1a) as demonstrated by
Holbrook et al. (2003). The processing sequence for seismic
data was modified to include an eigenvector filter to suppress
the direct-wave between the seismic source and receiver ar-
ray which obscures the weak reflectivity from the water col-
umn. This reprocessing reveals a band of seismic reflectiv-
ity centred around 500 m which correlates with the boundary
between the warmer surface waters and the colder bottom
waters (Turrell et al., 1999). In addition, a discontinuous re-
flection can be traced as a thin layer on the western slope
and along the base of the channel. Figure 1b shows an ex-
panded section focused on the near sea-bed. The amplitude
variations along the reflection are indicative of the complex
3-D nature of this boundary (Hobbs et al., 2006). Below this
reflection, for the bandwidth of 6–60 Hz, there is a lack of
reflectivity in the interval immediately overlying the seabed.

3.2 Physical oceanography datasets

In this study we used data from Optical Back-Scatter (OBS)
measurements of suspended sediment, using a Seapoint STM
sensor, and water samples taken during Conductivity Tem-
perature Depth (CTD) casts during the PROCS programme
in 1999, together with measurements from sediment traps at-
tached to moorings deployed on a transect across the Shet-
land side of the channel (Bonnin et al., 2002; Hosegood et al.,
2005) (Fig. 1c). The CTD data (Fig. 2a, b) shows no signifi-
cant changes in either temperature or salinity in the proximity
of the seabed suggesting the deeper reflections observed on
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Fig. 2. (a) temperature,(b) salinity and(c) optical back-scatter from the CTD cast (crossed red dot Fig. 1c).(d) corresponding sound-speed
and(e) the density profiles without (blue) and with (red) the addition of suspended sediment (assumed to be quartz). The intrusion at 750 m
shown in insert.(f) and(g) the vertical gradient of sound-speed and density respectively again without and with suspended sediment. The
effects of intrusion at 750 m and near seabed sediment load are highlighted by arrows.

the seismic image (Fig. 1b) are wholly within the FSCBW.
However, there is evidence of a change in suspended sed-
iment, both dry matter from water samples and high OBS
readings close to the sea-bed (Fig. 2c; Bonnin et al., 2002,
their Fig. 2). The addition of suspended sediment will change
the bulk average sound-speed and density which we propose
causes the change in impedance necessary to produce the ob-
served seismic reflection which we can verify through mod-
elling.

4 Modelling

To test our hypothesis that measurable reflections can be gen-
erated by suspended sediment we perform forward modelling
of seismic response based on the temperature, salinity and
optical back-scatter measurements from a CTD cast (Fig. 2a,
b and c). Initially, we compute the background sound-speed
and density profiles using the UNESCO equations of state
(Fofonoff and Millard, 1983) assuming no suspended sedi-
ment (Fig. 2d, e blue line). From these profiles we can cal-
culate the vertical derivatives (Ruddick et al., 2009) which,
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when combined to form the impedance contrast and con-
volved with the seismic source wavelet, will produce a seis-
mogram similar to that observed experimentally. The result
(Fig. 3 blue line) shows a band of strong reflectivity from 0.3
to 0.6 s travel-time which equates to depths of 200 to 400 m
that correlates well with the temperature and salinity change
between surface and bottom waters.

We repeat the modelling exercise but this time including
the effect of the sediment load (Fig. 2c) with the depth depen-
dent density and sound-speed modified using the equation

ηmod(z) = (1−φ)ηwater(z)+φηsediment(z) (1)

whereφ is the fraction of sediment by volume andη repre-
sents either the sound-speed or density. We consider the mix-
ture at any depth as quasi-homogeneous because of the ap-
proximate 106 scale factor between the size of the sediment
particle and the seismic wavelength (Wu and Aki, 1988); this
form of averaging is widely used elsewhere (e.g. see for ex-
ample Lewis et al., 2009). The sediments on the slope are
of glacial origin and composed mainly of coarse sands and
gravel (Stoker et al., 1993) confirmed by direct sampling
which showed that the suspended sediment at depths greater
than 700 m was mainly lithogenic in origin (Bonnin et al.,
2002). So we assumed the suspended sediment would be
largely composed of quartz with bulk values of 6000 m s−1

and 2700 kg m−3 for sound-speed and density respectively.
The fraction of sediment (φ) is more difficult to quantify.
The OBS signal depends on the particle size and shape (Bunt
et al., 1999). Grain size analysis is beyond the scope of
this paper and quantitatively we do not use it in our calcu-
lations. However, the data on sediment traps from PROCS
were published in (van Raaphorst et al., 2001 and references
therein). Median grain size was found to decrease with depth
over the slope, from 274 µm at 649 m to 158 µm at 801 m.
A later study (Bonnin et al., 2005) found the median grains
size of the surface sediment to be approximately 150 µm, and
to remain at this value at depths greater than 600 m. Ap-
proximately 70 % of sediment fell within the size range 63–
250 µm (Bonnin et al., 2005 their Fig. 7). Benns and Pil-
grim (1994) give sensitivities from 1.104 mV per 1 mg l−1

for fine sediments (particle size of 12.7 µm) to 0.151 mV per
1 mg l−1 for coarse sediments (particle size of 192 µm) and a
well defined linear response with correlation coefficients of
over 0.99 over a range of concentrations. Similar sensitivities
are given by Rogers and Raven (2008). Given the likely grain
size range we opt for the calibration based on a poly-disperse
distribution ranging from 12.7 to 192 µm which gives a sen-
sitivity of 0.438 mV per 1 mg l−1 (Benns and Pilgrim, 1994).
Using the observed OBS signal (Fig. 2c) gives a depth vary-
ing concentration which has a value of 0.000037 at 1000 m.

The difference to both the sound-speed and density pro-
files caused by the addition of calculated the suspended sed-
iment are small (Fig. 2d, e). However, the absolute values of
density and sound-speed are not important as the seismic re-
flection is only sensitive to the change over depths that are

Fig. 3. Synthetic seismograms computed for the sound-speed and
density profiles shown in Fig. 2. The blue line assumes that there
is no suspended sediment whereas the red line includes the effects
of the of suspended sediment. The intrusion at 750 m and the sed-
iment load below 900 m produce additional reflectivity, arrowed.
The seismic source function used in both cases was a zero-phase
Ricker wavelet with a peak response at 20 Hz that has a similar ver-
tical resolution to that used for the seismic survey shown in Fig. 1a.

shorter than its the wavelength of the seismic signal. So
the reflectivity potential is best appreciated when gradients
for both sound-speed and density are computed (Fig. 2f, g)
which, when converted to a synthetic seismogram (Fig. 3b)
shows a reflection at∼1 s caused by the addition of the sus-
pended sediments in the thin layer centred at 750 m and en-
hanced reflectivity from 1.17 s. The polarity and amplitude
of the modelled reflections are similar to that observed so we
conclude that seismic reflection imaging is capable of imag-
ing turbidity layers.

5 Inversion of observed data

To compute the quantity of suspended sediment from the ob-
served seismic data we require an estimate of the reflection
coefficient. To do this we need to calibrate the seismic re-
flection system using the amplitude of the seabed reflection
and the first multiple (the second reflection of the seabed is
caused by seismic energy trapped in the water layer) to solve
for the two unknowns; the reflection coefficient and the sys-
tem calibration factor (Warner, 1990). In deep water, after
compensation for the spherical spreading of the wave-front
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from a point source, the amplitude of the primary reflection
from sea bed is given by

AP= cR (2)

whereR is the unknown reflection coefficient andc is the
required calibration factor. The amplitudeAM of the corre-
sponding first sea bed multiple is

AM = −cR2. (3)

By taking the ratio of the primary to multiple amplitude, the
reflection coefficient of the sea bedR can be determined.

To make the calculation robust, we used the ratio of
mean values and standard deviations from distributions of the
seabed primary and multiple from 900 traces from a section
of the profile where we observe the turbidity layer. The se-
lected data were processed to suppress low frequency noise,
corrected for spherical divergence and normal move-out then
stacked with a maximum aperture of 1000 m. This limits the
maximum incident angle for reflections from the base of the
channel to less than 24◦, which is sufficient to increase the
amplitude of the reflection from the turbidity layer above the
ambient noise while minimises the effect of any amplitude or
phase distortion of the reflections caused by the angle of in-
cidence of the seismic energy or processing. The histograms
for the seabed reflection and multiple are shown in Fig. 4a,
b. The computed ratio ofAM/AP gives a value for the re-
flection coefficient at the sea-bed ofR = 0.20± 0.05 which
is a reasonable value for an interface between sea-water and
unconsolidated sediment (Warner, 1990). Substituting back
into (2) or (3) we can compute the calibration factor,c, of
18± 3. We can now invert amplitudes on the seismic data
to reflection coefficients provided we only use data with the
same processing applied as used for the calibration and, as
is the case for sea-water at these frequencies, we ignore any
additional transmission losses.

The top of the reflectivity interpreted as the turbidity layer
is sampled at 900 locations and the mean and standard de-
viation are used to estimate the reflection coefficient (Eq. 2,
Fig. 4c) to give a value ofR = 0.00004± 0.00002. We can in-
vert this value to estimate the sediment loading. Provided the
impedance contrast is small the reflection coefficientR can
be approximated toδZ/2Z where the impedanceZ =ρν; ρ is
the density andν is the sound-speed (Ruddick et al., 2009).
Using Eq. (1),δZ is equal to

δZ = ((1−φ)vw +φvs)((1−φ)ρw +φρs)−vwρw (4)

which can be expanded to give

δZ = φvwρs+φvsρw −2φvwρw +O
(
φ2

)
. (5)

Ignoring the higher order terms and substituting in the val-
ues of sound-speed and density for water (1470 m s−1 and
1033 kg m−3 respectively) and quartz, we arrive at the re-
lationship for the volume fraction of sediment. This is fi-
nally converted back into sediment loading to give a value of
45± 25 mg l−1.
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Fig. 4. Histograms of the peak amplitude of reflections picked from
900 traces from the seismic section (Fig. 1).(a) the seabed;(b) the
multiple of the seabed (not shown on figure); and(c) the top of the
turbidity layer. The shape of the histogram is indicative of the con-
sistency of the reflection coefficient, the rugosity of the reflection
surface in 3-D and the signal-to-noise ratio.

6 Discussions and conclusions

Benns and Pilgrim (1994) discussed the response of opti-
cal backscatter devices to variations in suspended particu-
late matter (SPM) and conclude that the particle size is the
most influential physical characteristic of SPM on the in-
strument response; Bunt et al. (1999) also mention that de-
viations from sphericity in particle shape and the existence
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of radial projections can both increase scattering by 20 %.
Using the calibration for medium size particles from Benns
and Pilgrim (1994) who suggest that the sediment load for
the observed SPM data could be 75–100 mg l−1 which is of
the same order as estimated from the seismic data. As the
seismic wavelength is much larger than the size of the par-
ticulate matter, this method is not sensitive to the geome-
try of the particles and the suspended sediment/water mix-
ture can be considered as an equivalent homogeneous me-
dia with properties determined by Eq. (1). Compared to dry
weight of total particulate matter estimated from PROCS ex-
periment, which is given as not exceeding 10 mg l−1 (van
Raaphorst et al., 2001), our value for the sediment load is
rather high. However they mention that the design of the fil-
ters used in the experiment was changed to avoid overload-
ing and to match the filter parameters for particulate organic
matter. Hence the results from the PROC experiment are not
diagnostic for the analysis of turbidity layer. Furthermore,
our estimation is in a good agreement with sediment load
found in other areas of the Ocean: Ashley and Smith (2000)
give values of 8–15 mg l−1 of suspended solids in ephemeral
turbid horizons, and 25–36 mg l−1 for “quasipermanent” tur-
bidity layer; and Larcombe and Carter (2004) provide values
of 10–100 mg l−1.

A potential error is the assumption that the suspended mat-
ter is wholly composed of quartz. Stoker et al. (1998) esti-
mates that in the FSC 8–16 % of the seabed is composed of of
muddy sand facies. Assuming a similar fraction is present in
the suspend matter with a lower density ofρ = 2350 kg m−3

(Sumner et al., 2009) gives us an error of 2 % in our result
which is well below level of error we estimated for reflection
coefficient. Error due to the motion of the sediment particles
is also negligible for the seismic survey. Furthermore, the re-
gion within which we observed the seismic reflection is espe-
cially homogeneous in terms of water density and thus speed
of sound (Hosegood et al., 2005), with values for the Brunt-
Väis̈alä frequency,N , <10−3.5 s−1. Specifically, the water at
this depth is vertically homogeneous FSCBW as confirmed
by the data available from CTD profiles. The accuracy of the
SPM concentration computed from seismic data is limited by
the signal-to-noise ratio of the data and the effects on reflec-
tion amplitude caused by the local 3-D rugosity of the top
of the current (Drummond et al., 2004; Hobbs et al., 2006).
Further, we have assumed the upper boundary of the turbidity
flow is sharp. If the boundary is gradational with a thickness
of more than 10 m the amplitude of the reflection is reduced
hence our method will tend to produce an underestimate.

From this investigation we conclude that an impedance
contrast in the water column caused by turbidity layers is
strong enough to be seen in seismic sections and this pro-
vides a new way to visualise this type of current to assess
its dimensions and lateral structure. Further, it is possible to
derive reasonable estimates of SPM in turbidity layers which
are consistent with other observation methods and, because
of the longer seismic wavelength, maybe more robust.
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